Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (4) : 643-659    https://doi.org/10.1007/s11705-018-1760-5
RESEARCH ARTICLE
Influence of entrainer recycle for batch heteroazeotropic distillation
Laszlo Hegely(), Peter Lang
Department of Building Service and Process Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Muegyetem rkp. 3-9, Hungary
 Download: PDF(596 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dehydration of isopropanol applying batch heteroazeotropic distillation with toluene as entrainer (E) is investigated. The composition of the feed is near to that of the isopropanol (A)-water (B) azeotrope. The effects of recycling the entrainer and the off-cut are studied by dynamic simulation with a professional flow-sheet simulator. Three consecutive batches (one production cycle) is studied. Both operational modes (Mode I: decantation after distillation and Mode II: decantation during distillation) are simulated. For Mode II, calculations are performed both for Strategy A (distillate from the aqueous (E-lean) phase only) and Strategy B (partial withdrawal of the organic (E-rich phase), as well). The E-rich phase, the final column hold-up and the off-cut (Mode II only) are recycled to the next batch. The influence of the following parameters are determined: quantity of entrainer, reflux ratios of the steps. The variations caused by the recycling in the 2nd and 3rd batches are also shown. The best results (lowest specific energy demand and highest recovery of A) are obtained by Mode II, Strategy A. Recycling increases the recovery, and drastically diminishes the entrainer consumption. However, it makes the production slower and decreases the quantity of fresh feed that can be processed.

Keywords batch distillation      heteroazeotropic distillation      operational policies      off-cut recycle      entrainer     
Corresponding Author(s): Laszlo Hegely   
Just Accepted Date: 10 July 2018   Online First Date: 19 December 2018    Issue Date: 03 January 2019
 Cite this article:   
Laszlo Hegely,Peter Lang. Influence of entrainer recycle for batch heteroazeotropic distillation[J]. Front. Chem. Sci. Eng., 2018, 12(4): 643-659.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1760-5
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I4/643
Tbp /°C A /mol-% B /mol-% E /mol-%
ABE 76.3 33.6 38.5 27.9
AB 80.3 68.3 31.7 ?
AE 81.3 83 ? 17
A 82.6 100 ? ?
BE 84.1 ? 55.7 44.3
B 100 ? 100 ?
E 111 ? ? 100
Tab.1  Measured boiling points and azeotropic compositions
Component i Component j Uij-Uji /(cal?mol?1) Uji-Uii /(cal?mol?1)
A B 380.07 46.649
A E ?1.352 369.065
B E 58.842 1457.866
Tab.2  Binary interaction parameters for describing vapour-liquid equilibrium (UNIQUAC)
Tbp /°C A /mol-% B /mol-% E /mol-%
ABE 76.56 36.4 37.7 25.9
AB 80.04 67.6 32.4 ?
AE 81.26 81.3 ? 18.7
A 82.47 100 ? ?
BE 84.76 ? 56.4 43.6
B 100.00 ? 100 ?
E 110.68 ? ? 100
Tab.3  Calculated boiling points and azeotropic compositions
Azeotrope A /mol-% B /mol-% E /mol-%
ABE Organic phase 37.7 29.2 33.1
Aqueous phase 15.0 83.6 1.4
BE Organic phase ? 0.2771 99.7229
Aqueous phase ? 99.98879 0.01121
Tab.4  Measured liquid-liquid equilibrium data (25 °C)
Component i Component j Uij-Ujj /(cal?mol–1) Uji-Uii /(cal?mol–1)
A B 108.062 106.777
A E ?321.292 903.664
B E 230.258 1431.923
Tab.5  Binary interaction parameters for describing liquid-liquid equilibrium (UNIQUAC)
Azeotrope A /mol-% B /mol-% E /mol-%
ABE Organic phase 39.3 31.6 25.5
Aqueous phase 14.3 84.5 1.2
BE Organic phase ? 1.3 98.7
Aqueous phase ? 99.87 0.13
Tab.6  Calculated liquid-liquid equilibrium data (25 °C).
Fig.1  Calculated residue curve map and binodal solubility curve with the tie-lines at 25 °C
Fig.2  State-task-network of (a) Mode I, (b) Mode II
Fig.3  ChemCAD 7.0 model (Mode II)
Fig.4  The production speed of Mode I as a function of the reflux ratios for different FE values: (a) FE = 3 kmol, (b) FE = 4 kmol, (c) FE =5 kmol (Batch I)
FE /kmol R1 R2 tRCh /h E-rich phase /kmol E-lean phase /kmol Off-cut /kmol Product /kmol Duration /h PS /(kmol?h–1) ηA /%
3 2 5 1.80 8.9 1.08 7.78 3.68 9.87 0.373 26.8
4 3 8 ? 11.1 1.41 4.27 5.69 9.82 0.579 41.4
5 2 6 ? 10.5 1.32 7.61 4.17 9.78 0.426 30.3
Tab.7  Results of Batch I for Mode I
Fig.5  Influence of FE on the still path (Mode I, Batch I, Step 0 is not included)
Fig.6  The production speed of Mode II as a function of R2 and Dmin (Batch I, FE = 1.4 kmol)
Fig.7  Influence of FE on the still path (Mode II, Strategy A, Batch I; Step 0 is not shown)
Policy FE /kmol E-rich phase /kmol E-lean phase /kmol Off-cut /kmol Product /kmol Duration /h PS /(kmol?h–1) ηA /%
Strategy A, E in still 0.7 1.302 6.618 ? 11.11 13.1 0.851 80.8
0.843 1.310 6.780 ? 11.13 12.9 0.863 80.9
1.4 1.266 5.681 2.387 10.29 11.5 0.899 74.9
Strategy A, E in decanter 0.843 1.309 6.794 ? 11.13 11.5 0.965 80.9
Strategy B, RER = 49 0.7 2.113 1.383 12.66 2.656 19.5 0.136 19.3
Strategy B, RER = 499 0.7 1.473 6.542 ? 11.00 13.2 0.836 80.0
Tab.8  Results of Batch I for different operational policies of Mode II
Fig.8  Variation of the charge composition due to the recycling
Fig.9  Variation of the still path during the processing cycle (Mode I, Step 0 is not shown)
Policy Batch FE /kmol Fresh feed /kmol Non-recycled material /kmol Product /kmol Duration /h PS /(kmol?h?1) ηA /%
Mode I II 0.771 11.37 7.88 3.61 12.0 0.301 26.6
III 0.628 10.96 19.85 3.32 12.3 0.270 24.5
Mode II, Case 1 II 0.224 16.61 6.34 10.42 11.8 0.885 80.5
III 0.222 16.61 7.67 10.44 11.7 0.891 80.4
Mode II, Case 2 II 0.181 16.26 6.23 10.26 11.9 0.864 74.5
III 0.187 16.23 9.80 10.24 11.9 0.860 74.6
Tab.9  Results for Batch II and Batch III
Policy FE in Batch I /kmol Total FE /kmol Fresh feed /kmol Non-recycled material /kmol Product /kmol Duration /h PS /(kmol?h–1) ηA /%
Mode I, no recycle 4 12.0 60.0 50.3 17.1 29.5 0.579 41.4
Mode I, with recycle 4 5.40 42.3 33.4 12.6 34.1 0.370 43.4
Mode II, Case 1, no recycle 0.843 2.53 60.0 24.3 33.4 34.6 0.965 80.9
Mode II, Case 1, with recycle 0.843 1.29 53.2 20.8 32.0 35.0 0.914 87.4
Mode II, Case 2, no recycle 1.4 4.20 60.0 28.0 30.9 34.4 0.899 74.8
Mode II, Case 2, with recycle 1.4 1.77 52.5 21.9 30.8 35.2 0.874 85.3
Tab.10  Summary of the results for the whole production cycle
Fig.10  Evolution of instantaneous distillate composition of Batch II (Mode I)
FE /kmol Fresh feed /kmol Non-recycled material /kmol Product /kmol Duration /h PS /(kmol?h?1) ηA /%
Batch II 0.771 11.37 5.71 3.61 12.0 0.301 26.6
Batch III 0.612 8.70 17.35 3.32 12.2 0.273 24.6
Whole cycle 5.38 40.07 28.73 12.62 34.0 0.371 45.8
Tab.11  Results for the partial recycling of off-cut D2 (Mode I)
1 I MMujtaba. Batch Distillation: Design and Operation. London: Imperial College Press, 2004, 3, 230–269
2 XCui, T Feng, YZhang, ZYang. The energy consumption in a batch stripper and a batch rectifier. Frontiers of Chemical Science and Engineering, 2011, 3(4): 443–452
https://doi.org/10.1007/s11705-009-0266-6
3 D NMayur, R A May, R Jackson. The time-optimal problem in binary batch distillation with a recycled waste-cut. Chemical Engineering Journal, 1970, 1(1): 15–21
https://doi.org/10.1016/0300-9467(70)85026-2
4 I MMujtaba. Optimal operation policies in batch distillation. Dissertation for the Doctoral Degree. London: Imperial College, University of London, 1989, 83–136
5 I MMujtaba, S Macchietto. An optimal recycle policy for multicomponent batch distillation. Computers & Chemical Engineering, 1992, 16: S273–S280
https://doi.org/10.1016/S0098-1354(09)80032-X
6 LBonny, S Domenech, PFloquet, LPibouleau. Optimal strategies for batch distillation campaign of different mixtures. Chemical Engineering and Processing: Process Intensification, 1996, 35(5): 349–361
https://doi.org/10.1016/0255-2701(96)80015-8
7 M MMiladi, I M Mujtaba. The effect of off-cut recycle on the optimum design and operation of binary batch distillation with fixed product demand. Computers & Chemical Engineering, 2005, 29(7): 1687–1695
https://doi.org/10.1016/j.compchemeng.2005.02.019
8 R MWajge, G V Reklaitis. An optimal campaign structure for multicomponent batch distillation with reversible reaction. Industrial & Engineering Chemistry Research, 1998, 37(5): 1910–1916
https://doi.org/10.1021/ie970527t
9 Y LKao, J D Ward. Design and optimization of batch reactive distillation processes with off-cut. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2): 411–420
https://doi.org/10.1016/j.jtice.2013.05.018
10 Y LKao, J D Ward. Improving batch reactive distillation processes with offcut. Industrial & Engineering Chemistry Research, 2014, 53(20): 8528–8542
https://doi.org/10.1021/ie404229w
11 Y LKao, J D Ward. Batch reactive distillation with off-cut recycling. Industrial & Engineering Chemistry Research, 2015, 54(7): 2188–2200
https://doi.org/10.1021/ie5042929
12 HYatim, P Moszkowicz, MOtterbein, PLang. Dynamic simulation of a batch extractive distillation process. Computers & Chemical Engineering, 1993, 17: S57–S62
https://doi.org/10.1016/0098-1354(93)80209-6
13 W LLuyben, I L Chien. Design and Control of Distillation Systems for Separating Azeotropes. New Jersey: John Wiley & Sons, 2010, 421–422
14 J DSeader, E J Henley. Separation Process Principles. New York: Wiley, 1998, 604
15 IRodriguez-Donis, V Gerbaud, XJoulia. Thermodynamic insights on the feasibility of homogeneous batch extractive distillation. 3. Azeotropic mixtures with light entrainer. Industrial & Engineering Chemistry Research, 2012, 51(12): 4643–4660
https://doi.org/10.1021/ie201942b
16 IRodriguez-Donis, V Gerbaud, XJoulia. Thermodynamic insights on the feasibility of homogeneous. Batch extractive distillation. 4. Azeotropic mixtures with intermediate boiling entrainer. Industrial & Engineering Chemistry Research, 2012, 51(18): 6489–6501
https://doi.org/10.1021/ie2019432
17 LHegely, P Lang. Optimization of a batch extractive distillation process with recycling off-cuts. Journal of Cleaner Production, 2016, 136: 99–110
https://doi.org/10.1016/j.jclepro.2016.04.140
18 LHegely, P Lang. Batch extractive distillation with off-cut and entrainer recycle. In: 4th International Scientific Conference on Advances in Mechanical Engineering (ISCAME), Debrecen, Hungary, 2016, 221–227
19 LHegely, P Lang. Batch extractive distillation with recycling of off-cut and entrainer. In: 13th French-Quebecois Interuniversity Seminar on Thermal Systems (CIFQ), Saint-Lô, France, 2017, 4–10 (in French)
20 SYoung. The preparation of absolute alcohol from strong spirit. Journal of the Chemical Society, 1902, 81(0): 707–717
https://doi.org/10.1039/CT9028100707
21 TOoms, S Vreysen, GVan Baelen, VGerbaud, IRodriguez-Donis. Separation of ethyl acetate-isooctane mixture by heteroazeotropic batch distillation. Chemical Engineering Research & Design, 2014, 92(6): 995–1004
https://doi.org/10.1016/j.cherd.2013.10.010
22 H NPham, M F Doherty. Design and synthesis of heterogeneous azeotropic distillations. II. Residue curve maps. Chemical Engineering Science, 1990, 45(7): 1837–1844
https://doi.org/10.1016/0009-2509(90)87059-2
23 IRodriguez-Donis, V Gerbaud, XJoulia. Heterogeneous entrainer selection for the separation of azeotropic and close boiling temperature mixtures by heterogeneous batch distillation. Industrial & Engineering Chemistry Research, 2001, 40(22): 4935–4950
https://doi.org/10.1021/ie0010363
24 SSkouras, V Kiva, SSkogestad. Feasible separations and entrainer selection rules for heteroazeotropic batch distillation. Chemical Engineering Science, 2005, 60(11): 2895–2909
https://doi.org/10.1016/j.ces.2004.11.056
25 SSkouras, S Skogestad, VKiva. Analysis and control of heteroazeotropic batch distillation. AIChE Journal. American Institute of Chemical Engineers, 2005, 51(4): 1144–1157
https://doi.org/10.1002/aic.10376
26 RDüssel, J Stichlmair. Separation of azeotropic mixtures by batch distillation using an entrainer. Computers & Chemical Engineering, 1995, 19: 113–118
https://doi.org/10.1016/0098-1354(95)87024-5
27 JKoehler, H Haverkamp, NSchadler. On the batch rectification of azeotropic mixtures with separating agent. Chemieingenieurtechnik (Weinheim), 1995, 67(8): 967–971 (in German)
https://doi.org/10.1002/cite.330670805
28 IRodriguez-Donis, V Gerbaud, XJoulia. Feasibility of heterogeneous batch distillation processes. AIChE Journal. American Institute of Chemical Engineers, 2002, 48(6): 1168–1178
https://doi.org/10.1002/aic.690480605
29 PLang, G Modla. Generalised method for the determination of heterogeneous batch distillation regions. Chemical Engineering Science, 2006, 61(13): 4262–4270
https://doi.org/10.1016/j.ces.2006.02.004
30 LHegely, V Gerbaud, PLang. Generalised model for heteroazeotropic batch distillation with variable decanter hold-up. Separation and Purification Technology, 2013, 115: 9–19
https://doi.org/10.1016/j.seppur.2013.04.031
31 SPommier, S Massebeuf, BKotai, PLang, O Baudouin, VGerbaud. Heterogeneous batch distillation processes: Real system optimisation. Chemical Engineering and Processing: Process Intensification, 2008, 47(3): 408–419
https://doi.org/10.1016/j.cep.2007.01.022
32 IRodriguez-Donis, N Hernandez-Gonzalez, VGerbaud, XJoulia. Thermodynamic efficiency and cost-effective optimization of heterogeneous batch distillation. Computer-Aided Chemical Engineering, 2012, 30: 362–366
https://doi.org/10.1016/B978-0-444-59519-5.50073-3
33 GModla, P Lang, KMolnar. Batch heteroazeotropic rectification of a low relative volatility mixture under continuous entrainer feeding: Feasibility studies. In: Proceedings of the 6th World Congress of Chemical Engineering, Melbourne, Australia, 2001, (10 pages on CD)
34 IRodriguez-Donis, J A Equijarosa, V Gerbaud, XJoulia. Heterogeneous batch extractive distillation of minimum boiling azeotropic mixtures. AIChE Journal. American Institute of Chemical Engineers, 2003, 49(12): 3074–3083
https://doi.org/10.1002/aic.690491209
35 LHegely, V Gerbaud, PLang. General model for studying the feasibility of heterogeneous extractive batch distillation. Industrial & Engineering Chemistry Research, 2014, 53(45): 17782–17793
https://doi.org/10.1021/ie502704w
36 A ABarreto, I Rodriguez-Donis, VGerbaud, XJoulia. Optimization of heterogeneous batch extractive distillation. Industrial & Engineering Chemistry Research, 2011, 50(9): 5204–5217
https://doi.org/10.1021/ie101965f
37 M CMussati, P A Aguirre, J Espinosa, O AIribarren. Optimal design of azeotropic batch distillation. AIChE Journal, 2006, 52(3): 968–985
https://doi.org/10.1002/aic.10696
38 JGmehling, C Möllmann. Synthesis of distillation processes using thermodynamic models and the Dortmund Data Bank. Industrial & Engineering Chemistry Research, 1998, 37(8): 3112–3123
https://doi.org/10.1021/ie970782d
39 J YYao, S Y Lin, I L Chien. Operation and control of batch extractive distillation for the separation of mixtures with minimum-boiling azeotrope. Journal of the Chinese Institute of Chemical Engineers, 2007, 38(5-6): 371–383
https://doi.org/10.1016/j.jcice.2007.08.004
40 FGironi, L Lamberti. Vapour-liquid equilibrium data for the water-2-propanol system in the presence of dissolved salts. Fluid Phase Equilibria, 1995, 105(2): 273–286
https://doi.org/10.1016/0378-3812(94)02610-D
41 J TSlusher, P T Cummings, Y Hu, C AVega, J PO’Connell. Vapor-liquid equilibrium and density measurements of tetraalkylammonium bromide+ propanol+ water systems. Journal of Chemical & Engineering Data, 1995, 40(4): 792–798
https://doi.org/10.1021/je00020a012
42 MIino, A Nakae, JSudoh, YHirose. Separation of isopropyl alcohol-water azeotropic mixture by salting out. Kagaku Kogaku, 1971, 35(9): 1017–1021 (in Japanese)
https://doi.org/10.1252/kakoronbunshu1953.35.1017
43 VVan Hoof, L Van den Abeele, ABuekenhoudt, CDotremont, RLeysen. Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol. Separation and Purification Technology, 2004, 37(1): 33–49
https://doi.org/10.1016/j.seppur.2003.08.003
44 MMujiburohman, W B Sediawan, H Sulistyo. A preliminary study: Distillation of isopropanol-water mixture using fixed adsorptive distillation method. Separation and Purification Technology, 2006, 48(1): 85–92
https://doi.org/10.1016/j.seppur.2005.07.025
45 FDenes, P Lang, GModla, XJoulia. New double column system for heteroazeotropic batch distillation. Computers & Chemical Engineering, 2009, 33(10): 1631–1643
https://doi.org/10.1016/j.compchemeng.2009.01.011
46 FDenes, P Lang, XJoulia. Generalised closed double-column system for batch heteroazeotropic distillation. Separation and Purification Technology, 2012, 89: 297–308
https://doi.org/10.1016/j.seppur.2012.01.042
47 GVan Baelen, S Vreysen, VGerbaud, IRodriguez-Donis, JGeens, BJanssens. Isopropyl alcohol recovery by heteroazeotropic batch distillation. In: European Meeting on Chemical Industry and Environment (EMChiE), Mechelen, Belgium, 2010, 979–986
48 Chemstations. CHEMCAD Version 7 User Guide. 2016
49 JGmehling, J Menke, JKrafczyk, KFischer. Azeotropic data. Weinheim: Wiley-VCH, 1994, 620, 624–625, 1310, 1681
50 L HHorsley, W Tamplin. Azeotropic data-II. Advances in Chemistry Series, 35. Washington: American Chemical Society, 1962, 63
51 LStankova, F Vesely, JPick. Liquid-vapour equilibrium. XLI. The system isopropyl alcohol-water-toluene at 760 torr. Collection of Czechoslovak Chemical Contributions, 1970, 35(1): 1–12
https://doi.org/10.1135/cccc19700001
52 E RWashburn, A E Beguin. The ternary system: Isopropyl alcohol, toluene and water at 25°C. Journal of the American Chemical Society, 1940, 62(3): 579–581
https://doi.org/10.1021/ja01860a041
53 JPolak, B C Y Lu. Mutual solubilities of hydrocarbons and water at 0 and 25 °C. Canadian Journal of Chemistry, 1973, 51(24): 4018–4023
https://doi.org/10.1139/v73-599
54 J MSørensen, WArlt. Liquid-liquid equilibrium data collection: Ternary and quaternary systems. In: Chemistry Data Series. Frankfurt/Main: DECHEMA, 1980, 619
55 EKondili, C C Pantelides, R W H Sargent. A general algorithm for scheduling batch operations. In: 3rd International Symposium on Process System Engineering, 1988, 62–75
56 I MMujtaba, S Macchietto. Optimal operation of multicomponent batch distillation multiperiod formulation and solution. Computers & Chemical Engineering, 1993, 17(12): 1191–1207
https://doi.org/10.1016/0098-1354(93)80099-9
57 LHegely, P Lang. Entrainer recycle for batch heteroazeotropic distillation. Chemical Engineering Transactions, 2017, 61: 949–954
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed