Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (1) : 80-89    https://doi.org/10.1007/s11705-018-1763-2
RESEARCH ARTICLE
The influence of the NCO/OH ratio and the 1,6-hexanediol/dimethylol propionic acid molar ratio on the properties of waterborne polyurethane dispersions based on 1,5-pentamethylene diisocyanate
Jiao Feng1, Qiuhao Lu1, Weimin Tan2, Kequan Chen1(), Pingkai Ouyang1
1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
2. National Engineering Research Center for Coatings, CNOOC Changzhou Paint and Coatings Industry Research Institute Co., Ltd., Changzhou 213016, China
 Download: PDF(1507 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

1,5-Pentamethylene diisocyanate, a novel aliphatic diisocyanate formed from bio-based 1,5-pentamethylenediamine, has been used as a hard segmented material to synthesize polyurethane. In this study, several waterborne polyurethane (WPU) dispersions have been successfully prepared by a prepolymer process from 1,5-pentamethylene diisocyanate poly(polyether) with different NCO/OH ratios and 1,6-hexanediol (HDO)/dimethylol propionic acid (DMPA) molar ratios. The Fourier transform infrared (FTIR) spectra, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, and a mechanical tensile test were used to investigate the structures, thermal stability, phase separation, crystallinity, mechanical properties, and adhesive performance of the WPU dispersions. The FTIR results indicate that the degree of hydrogen bonding and the numbers of urea groups increase as the NCO/OH ratio and HDO/DMPA molar ratio increase. Furthermore, the phase separation increases and the thermal stability decreases as the NCO/OH ratio increases or the HDO/DMPA molar ratio decreases. Finally, WPU3.0-2.4 (NCO/OH=3, HDO/DMPA=2.4) exhibits a maximum tensile strength and shear strength, pointing to its possible use as an adhesive. These results could provide a very valuable reference for industrial applications of WPU.

Keywords 1,5-pentamethylene diisocyanate      polyurethane      water based     
Corresponding Author(s): Kequan Chen   
Just Accepted Date: 10 July 2018   Online First Date: 19 December 2018    Issue Date: 25 February 2019
 Cite this article:   
Jiao Feng,Qiuhao Lu,Weimin Tan, et al. The influence of the NCO/OH ratio and the 1,6-hexanediol/dimethylol propionic acid molar ratio on the properties of waterborne polyurethane dispersions based on 1,5-pentamethylene diisocyanate[J]. Front. Chem. Sci. Eng., 2019, 13(1): 80-89.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1763-2
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I1/80
Fig.1  Scheme1 Synthesis route of the WPU dispersions
Samples NCO/OH ratio HDO/DMPA molar ratio N210/g PDI/g DMPA/g HDO/g TEA/g
WPU2.2-1.8 2.2 1.8 34.1 11.5 2.56 4.15 1.93
WPU2.6-1.8 2.6 1.8 28.0 11.5 2.25 3.70 1.69
WPU3.0-1.8 3.0 1.8 25 11.5 2.05 3.31 1.55
WPU3-2.0 3.0 2.0 25 11.5 1.93 3.42 1.45
WPU3-2.2 3.0 2.2 25 11.5 1.81 3.52 1.36
WPU3-2.4 3.0 2.4 25 11.5 1.70 3.62 1.28
Tab.1  Sample designations and compositions of the WPU dispersions
Fig.2  FTIR spectra of (a) polyether, PDI, and prepolymer, (b) WPU films with different NCO/OH ratios, and (c) the carbonyl groups (stretching vibration)
Fig.3  TGA curves of WPU films with different NCO/OH ratios
Samples Residual Soft segments Hard segments T10%/°C T50%/°C Residue at 500°C/wt-%
T/°C Weight loss/wt-% T/°C Weight loss/wt-% T/°C Weight loss/wt-%
WPU2.2-1.8 ? ? 367 30 284, 343 17.2, 51.9 284 340 0.9
WPU2.6-1.8 150 6.8 367 26 285, 340 11.2, 55.3 274 339 0.7
WPU3.0-1.8 179 6.9 370 16.8 281, 342 11, 62.8 267 332 2.5
Tab.2  TGA data of WPU films with different NCO/OH ratio
Fig.4  DSC thermograms of WPU films with different NCO/OH ratios
Fig.5  XRD of WPU films with different NCO/OH ratios
Fig.6  FTIR spectra of (a) WPU films with different HDO/DMPA molar ratio, and (b) C=O stretching vibrations
Fig.7  TGA curves of WPU films with different HDO/DMPA molar ratios
Fig.8  DSC thermograms of WPU films with different HDO/DMPA molar ratios
Samples Residual T10%/°C T50%/°C Tmax/°C Residue at 500°C /wt-% TgSS/°C Tm/°C ΔHm/(J?g−1)
T/°C Weight loss/wt-%
WPU3.0-1.8 179 6.9 267 332 342 2.5 ?47.6 79.3 1.05
WPU3.0-2.0 186 4.3 287 336 342 0.43 ?42.6 73.58 3.83
WPU3.0-2.2 194 4.0 289 340 342 0.46 ?42.0 73.75 4.09
WPU3.0-2.4 196 3.0 294 339 342 0.48 ?41.8 75.19 3.63
Tab.3  TGA data and DSC data of WPU films with different HDO/DMPA molar ratios
Fig.9  XRD of WPU films with different HDO/DMPA molar ratios
Fig.10  Tensile strength, elongation at break, and shear strength of WSPU films with different HDO/DMPA molar ratios
1 VGarcia-Pacios, V Costa, MColera, J MMartin-Martinez. Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings. Progress in Organic Coatings, 2011, 71(2): 136–146
https://doi.org/10.1016/j.porgcoat.2011.01.006
2 PKrol, B Krol, JKozakiewicz, SZapotoczny, BPilch-Pitera, SKozdra. Composites prepared from polyurethanes modified with silicone-acrylic nanopowders. Progress in Organic Coatings, 2015, 81: 72–79
https://doi.org/10.1016/j.porgcoat.2014.12.016
3 A CAznar, O R Pardini, J I Amalvy. Glossy topcoat exterior paint formulations using water-based polyurethane/acrylic hybrid binders. Progress in Organic Coatings, 2006, 55(1): 43–49
https://doi.org/10.1016/j.porgcoat.2005.11.001
4 D KChattopadhyay, K V S NRaju. Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 2007, 32(3): 352–418
https://doi.org/10.1016/j.progpolymsci.2006.05.003
5 C QFang, X Zhou, QYu, S LLiu, D GGuo, R EYu, J BHu. Synthesis and characterization of low crystalline waterborne polyurethane for potential application in water-based ink binder. Progress in Organic Coatings, 2014, 77(1): 61–71
https://doi.org/10.1016/j.porgcoat.2013.08.004
6 S DMiao, L J Sun, P Wang, R NLiu, Z GSu, S PZhang. Soybean oil-based polyurethane networks as candidate biomaterials: Synthesis and biocompatibility. European Journal of Lipid Science and Technology, 2012, 114(10): 1165–1174
https://doi.org/10.1002/ejlt.201200050
7 RUdagama, E Degrandi-Contraires, CCreton, CGraillat, T F LMcKenna, EBourgeat-Lami. Synthesis of acrylic-polyurethane hybrid latexes by miniemulsion polymerization and their pressure-sensitive adhesive applications. Macromolecules, 2011, 44(8): 2632–2642
https://doi.org/10.1021/ma200073d
8 AAli, K Yusoh, S FHasany. Synthesis and physicochemical behaviour of polyurethane-multiwalled carbon nanotubes nanocomposites based on renewable castor oil polyols. Journal of Nanomaterials, 2014, 2014: 564384
https://doi.org/10.1155/2014/564384
9 DJi, Z Fang, WHe, KZhang, Z YLuo, T WWang, KGuo. Synthesis of soy-polyols using a continuous microflow system and preparation of soy-based polyurethane rigid foams. ACS Sustainable Chemistry & Engineering, 2015, 3(6): 1197–1204
https://doi.org/10.1021/acssuschemeng.5b00170
10 CBayer. Das di-isocyanat-polyadditionsverfahren (Polyurethane). Angewandte Chemie, 1947, 59(9): 257–288 (in German)
https://doi.org/10.1002/ange.19470590901
11 X HKong, G G Liu, J M Curtis. Characterization of canola oil based polyurethane wood adhesives. International Journal of Adhesion and Adhesives, 2011, 31(6): 559–564
https://doi.org/10.1016/j.ijadhadh.2011.05.004
12 AMoubarik, A Allal, APizzi, FCharrier, BCharrier. Characterization of a formaldehyde-free cornstarch-tannin wood adhesive for interior plywood. European Journal of Wood and Wood Products, 2010, 68(4): 427–433
https://doi.org/10.1007/s00107-009-0379-0
13 ATenorio-Alfonso, M C Sanchez, J M Franco. Preparation, characterization and mechanical properties of bio-based polyurethane adhesives from isocyanate-functionalized cellulose acetate and castor oil for bonding wood. Polymers, 2017, 9(12): 132
https://doi.org/10.3390/polym9040132
14 P J AGeurink, TScherer, RButer, ASteenbergen, HHenderiks. A complete new design for waterborne 2-pack PUR coatings with robust application properties. Progress in Organic Coatings, 2006, 55(2): 119–127
https://doi.org/10.1016/j.porgcoat.2005.08.014
15 MMelchiors, M Sonntag, CKobusch, EJurgens. Recent developments in aqueous two-component polyurethane (2K-PUR) coatings. Progress in Organic Coatings, 2000, 40(1-4): 99–109
https://doi.org/10.1016/S0300-9440(00)00123-5
16 X JLai, X R Li, L Wang, Y DShen. Synthesis and characterizations of waterborne polyurethane modified with 3-aminopropyltriethoxysilane. Polymer Bulletin, 2010, 65(1): 45–57
https://doi.org/10.1007/s00289-009-0233-x
17 Y SLu, R C Larock. Soybean oil-based, aqueous cationic polyurethane dispersions: Synthesis and properties. Progress in Organic Coatings, 2010, 69(1): 31–37
https://doi.org/10.1016/j.porgcoat.2010.04.024
18 XZhou, Y Li, C QFang, S JLi, Y LCheng, W QLei, X JMeng. Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: A review. Journal of Materials Science and Technology, 2015, 31(7): 708–722
https://doi.org/10.1016/j.jmst.2015.03.002
19 VSharma, P P Kundu. Condensation polymers from natural oils. Progress in Polymer Science, 2008, 33(12): 1199–1215
https://doi.org/10.1016/j.progpolymsci.2008.07.004
20 VGarcia-Pacios, J A Jofre-Reche, V Costa, MColera, J MMartin-Martinez. Coatings prepared from waterborne polyurethane dispersions obtained with polycarbonates of 1,6-hexanediol of different molecular weights. Progress in Organic Coatings, 2013, 76(10): 1484–1493
https://doi.org/10.1016/j.porgcoat.2013.06.005
21 S KLee, B K Kim. High solid and high stability waterborne polyurethanes via ionic groups in soft segments and chain termini. Journal of Colloid and Interface Science, 2009, 336(1): 208–214
https://doi.org/10.1016/j.jcis.2009.03.028
22 JYang, Y L Gao, J H Li, M M Ding, F Chen, HTan, QFu. Synthesis and microphase separated structures of polydimethylsiloxane/polycarbonate-based polyurethanes. RSC Advances, 2013, 3(22): 8291–8297
https://doi.org/10.1039/c3ra40515j
23 S MCakic, I S Ristic, M M Cincovitc, N C Nikolic, L B Nikolic, M J Cvetinov. Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly(caprolactone) diol. Progress in Organic Coatings, 2017, 105: 111–112
https://doi.org/10.1016/j.porgcoat.2016.10.038
24 K PSomani, S S Kansara, N K Patel, A K Rakshit. Castor oil based polyurethane adhesives for wood-to-wood bonding. International Journal of Adhesion and Adhesives, 2003, 23(4): 269–275
https://doi.org/10.1016/S0143-7496(03)00044-7
25 S SYoon, S C Kim. Modification of aqueous polyurethane dispersions by polybutadiene. Journal of Applied Polymer Science, 2005, 95(5): 1062–1068
https://doi.org/10.1002/app.21301
26 NLiu, Y H Zhao, M Q Kang, J W Wang, X K Wang, Y L Feng, N Yin, Q FLi. The effects of the molecular weight and structure of polycarbonatediols on the properties of waterborne polyurethanes. Progress in Organic Coatings, 2015, 82: 46–56
https://doi.org/10.1016/j.porgcoat.2015.01.015
27 HDu, Y H Zhao, Q F Li, J W Wang, M Q Kang, X K Wang, H W Xiang. Synthesis and characterization of waterborne polyurethane adhesive from MDI and HDI. Journal of Applied Polymer Science, 2008, 110(3): 1396–1402
https://doi.org/10.1002/app.28805
28 I MBarszczewska-Rybarek. Characterization of urethane-dimethacrylate derivatives as alternative monomers for the restorative composite matrix. Dental Materials, 2014, 30(12): 1336–1344
https://doi.org/10.1016/j.dental.2014.09.008
29 THidesaki, A Natsuji, TNakagawa, GKuwamura, DHasegawa, SYamasaki, KSato, H Takeuchi. US Patent, 20130079486A1, 2013-5-28
30 EGłowinska, JDatta. Bio polyetherurethane composites with high content of natural ingredients: Hydroxylated soybean oil based polyol, bio glycol and microcrystalline cellulose. Cellulose (London, England), 2016, 23(1): 581–592
https://doi.org/10.1007/s10570-015-0825-6
31 HFu, K Liu, CYan, WChen, Y Wang. Phase morphology and mechanical properties of aliphatic waterborne polyurethane-ureas: Effect of 1,6-hexamethylene diisocyanate (HDI)/isophorone diisocyanate (IPDI) ratio. Polymers & Polymer Composites, 2015, 23(3): 141–150
https://doi.org/10.1177/096739111502300304
32 J HChe, J M Cheon, J H Chun, C C Park, Y H Lee, H D Kim. Preparation and properties of emulsifier-/solventfree slightly crosslinked waterborne polyurethaneacrylic hybrid emulsions for footwear adhesives (III)-effect of trimethylol propane (TMP)/ethylene diamine (EDA) content. Journal of Adhesion Science and Technology, 2017, 31(17): 1872–1887
https://doi.org/10.1080/01694243.2017.1285744
33 RGallego, J F Arteaga, C Vaencia, M JDiaz, J MFranco. Gel-like dispersions of HMDI-cross-linked lignocellulosic materials in castor oil: Toward completely renewable lubricating grease formulations. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2130–2141
https://doi.org/10.1021/acssuschemeng.5b00389
34 IYilgor, E Yilgor, SDas, G LWilkes. Time-dependent morphology development in segmented polyetherurea copolymers based on aromatic diisocyanates. Journal of Polymer Science. Part B, Polymer Physics, 2009, 47(5): 471–483
https://doi.org/10.1002/polb.21652
35 Y LZhang, L S Shao, B Liu, FWang, Y HWang. Effect of molecular weight of liquid polysulfide on water and organic solvent resistances of waterborne polyurethane/polysulfide copolymer. Progress in Organic Coatings, 2017, 112: 219–224
https://doi.org/10.1016/j.porgcoat.2017.07.010
36 C BWang, S L Cooper. Morphology and properties of segmented polyether polyurethaneureas. Macromolecules, 1983, 16(5): 775–786
https://doi.org/10.1021/ma00239a014
37 VGarcia-Pacios, V Costa, MColera, J MMartin-Martinez. Affect of polydispersity on the properties of waterborne polyurethane dispersions based on polycarbonate polyol. International Journal of Adhesion and Adhesives, 2010, 30(6): 456–465
https://doi.org/10.1016/j.ijadhadh.2010.03.006
38 Y FZhang, H W Zhou, L Wang, W YJiang, M DSoucek, YYi. Preparation and characterization of castor oil-based waterborne polyurethane crosslinked with 2-amino-2-(hydroxymethyl)-1,3-propanediol. Journal of Applied Polymer Science, 2017, 134(47): 134
https://doi.org/10.1002/app.45532
39 XZhou, C Q Fang, Q Yu, RYang, LXie, Y L Cheng, Y Li. Synthesis and characterization of waterborne polyurethane dispersion from glycolyzed products of waste polyethylene terephthalate used as soft and hard segment. International Journal of Adhesion and Adhesives, 2017, 74: 49–56
https://doi.org/10.1016/j.ijadhadh.2016.12.010
40 Z ZGao, J Peng, T HZhong, JSun, X B Wang, C Yue. Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers, 2012, 87(3): 2068–2075
https://doi.org/10.1016/j.carbpol.2011.10.027
41 T WPechar, G L Wilkes, B Zhou, NLuo. Characterization of soy-based polyurethane networks prepared with different diisocyanates and their blends with petroleum-based polyols. Journal of Applied Polymer Science, 2007, 106(4): 2350–2362
https://doi.org/10.1002/app.26569
[1] Weihong Zhang, Dan Wang, Jie-Xin Wang, Yuan Pu, Jian-Feng Chen. High-gravity-assisted emulsification for continuous preparation of waterborne polyurethane nanodispersion with high solids content[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1087-1099.
[2] Dongjie Yang, Shengyu Wang, Ruisheng Zhong, Weifeng Liu, Xueqing Qiu. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings[J]. Front. Chem. Sci. Eng., 2019, 13(1): 59-69.
[3] Juichen YANG,Hong CHEN,Yuan YUAN,Debanjan SARKAR,Jie ZHENG. Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and hydrophilic drugs[J]. Front. Chem. Sci. Eng., 2014, 8(4): 498-510.
[4] Heyun WANG, Yakai FENG, Marc BEHL, Andreas LENDLEIN, Haiyang ZHAO, Ruofang XIAO, Jian LU, Li ZHANG, Jintang GUO. Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels[J]. Front Chem Sci Eng, 2011, 5(3): 392-400.
[5] CHE Pengchao, HE Yaning, WANG Xiaogong. Hyperbranched azo polyurethane synthesized through A + B scheme[J]. Front. Chem. Sci. Eng., 2008, 2(1): 123-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed