Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (3) : 458-474    https://doi.org/10.1007/s11705-018-1780-1
REVIEW ARTICLE
Mass transport mechanisms within pervaporation membranes
Yimeng Song1,2, Fusheng Pan1,2, Ying Li1,2, Kaidong Quan1,2, Zhongyi Jiang1,2()
1. Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
 Download: PDF(1859 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pervaporation is an energy-efficient membrane technology for separating liquid molecules of similar physical properties, which may compete or combine with distillation separation technology in a number of applications. With the rapid development of new membrane materials, the pervaporation performance was significantly improved. Fundamental understanding of the mass transport mechanisms is crucial for the rational design of membrane materials and efficient intensification of pervaporation process. Based on the interactions between permeate molecules and membranes, this review focuses on two categories of mass transport mechanisms within pervaporation membranes: physical mechanism (solution-diffusion mechanism, molecular sieving mechanism) and chemical mechanism (facilitated transport mechanism). Furthermore, the optimal integration and evolution of different mass transport mechanisms are briefly introduced. Material selection and relevant applications are highlighted under the guidance of mass transport mechanisms. Finally, the current challenges and future perspectives are tentatively identified.

Keywords pervaporation membrane      mass transport mechanisms      physical mechanism      chemical mechanism     
Corresponding Author(s): Zhongyi Jiang   
Online First Date: 21 March 2019    Issue Date: 22 August 2019
 Cite this article:   
Yimeng Song,Fusheng Pan,Ying Li, et al. Mass transport mechanisms within pervaporation membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 458-474.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1780-1
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I3/458
Fig.1  (a) Schematic of pervaporation process and overview of mass transport mechanisms within pervaporation membranes, (b) solution-diffusion mechanism, (c) molecular sieving mechanism, and (d) facilitated transport mechanism
Fig.2  Materials design and typical membrane materials that derive from different mass transport mechanisms
Steps Models Number of permeating components Classification of model Membrane type Ref.
Solution Langmuir and Henry’s law isotherms Single Empirical Polymeric [45]
Solubility parameter theory Binary Semi-empirical Polymeric [46]
ENSIC model Binary Semi-empirical Polymeric [47]
PC-SAFT model Binary Theoretical Polymeric [48]
Flory-Huggins theory Binary/multi Semi-empirical Polymeric [49,50]
UNIFAC model Multi Theoretical Polymeric [51]
UNIQUAC model Multi Semi-empirical Polymeric [52]
NRTL model Binary Semi-empirical Polymeric/inorganic [53,54]
Ideal adsorbed
solution theory
Multi Theoretical Inorganic [55]
Diffusion Empirical diffusion coefficients Multi Empirical Polymeric [56]
Free volume theory Binary Theoretical Polymeric [57]
Dual sorption Binary Theoretical Polymeric [58]
Dusty gas model Multi Theoretical Inorganic [59]
Resistance-based model Binary Theoretical Mixed matrix [60]
Trans-membrane
mass transport
Meyer-Blumenroth model Binary Semi-empirical Polymeric [56]
Qi-model Binary Semi-empirical Polymeric [56]
Pseudophase-change solution-diffusion model Binary Theoretical Polymeric [61]
Maxwell-Stefan theory Multi Theoretical Polymeric/inorganic [6264]
Maxwell model Binary Theoretical Mixed matrix [65]
Tab.1  Models based on solution-diffusion mechanism
Fig.3  (a) Top view SEM images for the MFI membrane. Reproduced with permission from ref. [73]. (b) Schematic of removing water from organics through a UiO-66 membrane. A unit cell of UiO-66 (right) is shown. H atoms are omitted for clarity. (c) Top view SEM images of UiO-66 membranes. (b) and (c) are reproduced with permission from ref. [77]. (d) Structural diagram of GO and three diamine-crosslinked membranes. Reproduced with permission from ref. [89]
Fig.4  (a) Dewar-Chatt model of p-bond complexation. Reproduced with permission from ref. [97]. (b) The synthetic route of the Ag+/TiO2 microsphere. Reproduced with permission from ref. [112]. (c) Chemical structure of different cyclodextrins
Fig.5  (a) Schematic of water and ethanol molecules transport through SA-SNW-1/PAN and interfacial interaction between SNW-1 and SA. Reproduced with permission from ref. [130]. (b) Structural model of CNs with triangular nanopores in red circle and structure magnification of the triangular nanopores. Reproduced with permission from ref. [131]
Fig.6  (a) Schematic representation of the water flow through the AQP1 subunit. Reproduced with permission from ref. [139]. (b) Schematic representation of the mechanism for separating i-propanol and H2O using a GO membrane. Reproduced with permission from ref. [147]
1 D S Sholl, R P Lively. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
https://doi.org/10.1038/532435a
2 P Shao, R Y M Huang. Polymeric membrane pervaporation. Journal of Membrane Science, 2007, 287(2): 162–179
https://doi.org/10.1016/j.memsci.2006.10.043
3 Y K Ong, G M Shi, N L Le, Y P Tang, J Zuo, S P Nunes, T S Chung. Recent membrane development for pervaporation processes. Progress in Polymer Science, 2016, 57: 1–31
https://doi.org/10.1016/j.progpolymsci.2016.02.003
4 J Zhao, W Q Jin. Manipulation of confined structure in alcohol-permselective pervaporation membranes. Chinese Journal of Chemical Engineering, 2017, 25(11): 1616–1626
https://doi.org/10.1016/j.cjche.2017.05.004
5 L Cao, X Y He, Z Y Jiang, X Q Li, Y F Li, Y X Ren, L X Yang, H Wu. Channel-facilitated molecule and ion transport across polymer composite membranes. Chemical Society Reviews, 2017, 46(22): 6725–6745
https://doi.org/10.1039/C5CS00906E
6 J W Wang, D S Dlamini, A K Mishra, M T M Pendergast, M C Y Wong, B B Mamba, V Freger, A R D Verliefde, E M V Hoek. A critical review of transport through osmotic membranes. Journal of Membrane Science, 2014, 454: 516–537
https://doi.org/10.1016/j.memsci.2013.12.034
7 W J Koros, C Zhang. Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297
https://doi.org/10.1038/nmat4805
8 P D Chapman, T Oliveira, A G Livingston, K Li. Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science, 2008, 318(1-2): 5–37
https://doi.org/10.1016/j.memsci.2008.02.061
9 L Y Jiang, Y Wang, T S Chung, X Y Qiao, J Y Lai. Polyimides membranes for pervaporation and biofuels separation. Progress in Polymer Science, 2009, 34(11): 1135–1160
https://doi.org/10.1016/j.progpolymsci.2009.06.001
10 Q Zhao, Q F An, Y L Ji, J W Qian, C J Gao. Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. Journal of Membrane Science, 2011, 379(1-2): 19–45
https://doi.org/10.1016/j.memsci.2011.06.016
11 G P Liu, W Q Jin, N P Xu. Graphene-based membranes. Chemical Society Reviews, 2015, 44(15): 5016–5030
https://doi.org/10.1039/C4CS00423J
12 X Li, Y X Liu, J Wang, J Gascon, J S Li, B Van der Bruggen. Metal-organic frameworks based membranes for liquid separation. Chemical Society Reviews, 2017, 46(23): 7124–7144
https://doi.org/10.1039/C7CS00575J
13 X X Cheng, F S Pan, M R Wang, W D Li, Y M Song, G H Liu, H Yang, B X Gao, H Wu, Z Y Jiang. Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541: 329–346
https://doi.org/10.1016/j.memsci.2017.07.009
14 B Smitha, D Suhanya, S Sridhar, M Ramakrishna. Separation of organic-organic mixtures by pervaporation: A review. Journal of Membrane Science, 2004, 241(1): 1–21
https://doi.org/10.1016/j.memsci.2004.03.042
15 C Zhang, L Peng, J Jiang, X H Gu. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: A review. Chinese Journal of Chemical Engineering, 2017, 25(11): 1627–1638
https://doi.org/10.1016/j.cjche.2017.09.014
16 J Wang, S Zhu, C Xu. Biochemistry. 3rd ed. Beijing: High Education Press, 2002, 1: 201–202
17 E Espinosa, E Molins, C Lecomte. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 1998, 285(3-4): 170–173
https://doi.org/10.1016/S0009-2614(98)00036-0
18 G Némethy. Hydrophobic interactions. Angewandte Chemie International Edition, 1967, 6(3): 195–206
https://doi.org/10.1002/anie.196701951
19 J G Wijmans, R W Baker. The solution-diffusion model: A review. Journal of Membrane Science, 1995, 107(1-2): 1–21
https://doi.org/10.1016/0376-7388(95)00102-I
20 C M Hansen. Hansen Solubility Parameters: A User’s Handbook. Florida: CRC Press, 2007, 4–17
21 T P Lodge. Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers. Physical Review Letters, 1999, 83(16): 3218–3221
https://doi.org/10.1103/PhysRevLett.83.3218
22 S C George, S Thomas. Transport phenomena through polymeric systems. Progress in Polymer Science, 2001, 26(6): 985–1017
https://doi.org/10.1016/S0079-6700(00)00036-8
23 X M Wu, H Guo, F Soyekwo, Q G Zhang, C X Lin, Q L Liu, A M Zhu. Pervaporation purification of ethylene glycol using the highly permeable PIM-1 membrane. Journal of Chemical & Engineering Data, 2016, 61(1): 579–586
https://doi.org/10.1021/acs.jced.5b00731
24 M M Chen, X M Wu, F Soyekwo, Q G Zhang, R X Lv, A M Zhu, Q L Liu. Toward improved hydrophilicity of polymers of intrinsic microporosity for pervaporation dehydration of ethylene glycol. Separation and Purification Technology, 2017, 174: 166–173
https://doi.org/10.1016/j.seppur.2016.10.024
25 J Grimaldi, J Imbrogno, J Kilduff, G Belfort. New class of synthetic membranes: Organophilic pervaporation brushes for organics recovery. Chemistry of Materials, 2015, 27(11): 4142–4148
https://doi.org/10.1021/acs.chemmater.5b01326
26 Y M Xu, Y P Tang, T S Chung, M Weber, C Maletzko. Polyarylether membranes for dehydration of ethanol and methanol via pervaporation. Separation and Purification Technology, 2018, 193: 165–174
https://doi.org/10.1016/j.seppur.2017.11.004
27 A Bofinger, J A Drake. Preferential permeability of methanol into water using polysilicone and poly(1-trimethylsilyl-1-propyne) membranes. Journal of Membrane Science, 2006, 285(1-2): 282–289
https://doi.org/10.1016/j.memsci.2006.08.030
28 N Y Du, H B Park, G P Robertson, M M Dal-Cin, T Visser, L Scoles, M D Guiver. Polymer nanosieve membranes for CO2-capture applications. Nature Materials, 2011, 10(5): 372–375
https://doi.org/10.1038/nmat2989
29 L X Tan, B Tan. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chemical Society Reviews, 2017, 46(11): 3322–3356
https://doi.org/10.1039/C6CS00851H
30 Y P Tang, H Wang, T S Chung. Towards high water permeability in triazine-framework-based microporous membranes for dehydration of ethanol. ChemSusChem, 2015, 8(1): 138–147
https://doi.org/10.1002/cssc.201402816
31 Y M Xu, S Japip, T S Chung. Mixed matrix membranes with nano-sized functional UiO-66-type MOFs embedded in 6FDA-HAB/DABA polyimide for dehydration of C1-C3 alcohols via pervaporation. Journal of Membrane Science, 2018, 549: 217–226
https://doi.org/10.1016/j.memsci.2017.12.001
32 J Zhao, X T Zhao, Z Y Jiang, Z Li, X C Fan, J N Zhu, H Wu, Y L Su, D Yang, F S Pan, J Shi. Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 2014, 39(9): 1668–1720
https://doi.org/10.1016/j.progpolymsci.2014.06.001
33 H Yang, H Wu, Z Q Yao, B B Shi, Z Xu, X X Cheng, F S Pan, G H Liu, Z Y Jiang, X Z Cao. Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(2): 583–591
https://doi.org/10.1039/C7TA09596A
34 G H Liu, Z Y Jiang, K T Cao, S Nair, X X Cheng, J Zhao, H Gomaa, H Wu, F S Pan. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. Journal of Membrane Science, 2017, 523: 185–196
https://doi.org/10.1016/j.memsci.2016.09.064
35 M R Wang, R S Xing, H Wu, F S Pan, J J Zhang, H Ding, Z Y Jiang. Nanocomposite membranes based on alginate matrix and high loading of pegylated POSS for pervaporation dehydration. Journal of Membrane Science, 2017, 538: 86–95
https://doi.org/10.1016/j.memsci.2017.05.040
36 T Ben, H Ren, S Q Ma, D P Cao, J H Lan, X F Jing, W C Wang, J Xu, F Deng, J M Simmons, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angewandte Chemie International Edition, 2009, 48(50): 9457–9460
https://doi.org/10.1002/anie.200904637
37 X Q Zou, G S Zhu. Microporous organic materials for membrane-based gas separation. Advanced Materials, 2018, 30(3): 17000750
https://doi.org/10.1002/adma.201700750
38 X Q Cheng, K Konstas, C M Doherty, C D Wood, X Mulet, Z L Xie, D Ng, M R Hill, C H Lau, L Shao. Organic microporous nanofillers with unique alcohol affinity for superior ethanol recovery toward sustainable biofuels. ChemSusChem, 2017, 10(9): 1887–1891
https://doi.org/10.1002/cssc.201700362
39 K Zhang, R P Lively, C Zhang, R R Chance, W J Koros, D S Sholl, S Nair. Exploring the framework hydrophobicity and flexibility of ZIF-8: From biofuel recovery to hydrocarbon separations. Journal of Physical Chemistry Letters, 2013, 4(21): 3618–3622
https://doi.org/10.1021/jz402019d
40 K Zhang, R P Lively, C Zhang, W J Koros, R R Chance. Investigating the intrinsic ethanol/water separation capability of ZIF-8: An adsorption and diffusion study. Journal of Physical Chemistry C, 2013, 117(14): 7214–7225
https://doi.org/10.1021/jp401548b
41 L H Wee, Y Li, K Zhang, P Davit, S Bordiga, J Jiang, I F J Vankelecom, J A Martens. Submicrometer-sized ZIF-71 filled organophilic membranes for improved bioethanol recovery: Mechanistic in-sights by Monte Carlo simulation and FTIR spectroscopy. Advanced Functional Materials, 2015, 25(4): 516–525
https://doi.org/10.1002/adfm.201402972
42 X L Liu, Y S Li, G Q Zhu, Y J Ban, L Y Xu, W S Yang. An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. Angewandte Chemie International Edition, 2011, 50(45): 10636–10639
https://doi.org/10.1002/anie.201104383
43 H Fan, S Qi, Y Hao, S Ji, J Dong, G Zhang. Simultaneous spray self-assembly of highly loaded ZIF-8-PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angewandte Chemie International Edition, 2014, 53(22): 5578–5582
https://doi.org/10.1002/anie.201309534
44 P Sukitpaneenit, T S Chung, L Y Jiang. Modified pore-flow model for pervaporation mass transport in PVDF hollow fiber membranes for ethanol-water separation. Journal of Membrane Science, 2010, 362(1-2): 393–406
https://doi.org/10.1016/j.memsci.2010.06.062
45 Y L Zhang, N E Benes, R G H Lammertink. Performance study of pervaporation in a microfluidic system for the removal of acetone from water. Chemical Engineering Journal, 2016, 284: 1342–1347
https://doi.org/10.1016/j.cej.2015.09.084
46 W F Yong, P Salehian, L L Zhang, T S Chung. Effects of hydrolyzed PIM-1 in polyimide-based membranes on C2-C4 alcohols dehydration via pervaporation. Journal of Membrane Science, 2017, 523: 430–438
https://doi.org/10.1016/j.memsci.2016.10.021
47 K Friess, J C Jansen, O Vopička, A Randová, V Hynek, M Šípek, L Bartovská, P Izák, M Dingemans, J Dewulf, et al. Comparative study of sorption and permeation techniques for the determination of heptane and toluene transport in polyethylene membranes. Journal of Membrane Science, 2009, 338(1): 161–174
https://doi.org/10.1016/j.memsci.2009.04.030
48 L Liu, S E Kentish. Pervaporation performance of crosslinked PVA membranes in the vicinity of the glass transition temperature. Journal of Membrane Science, 2018, 553: 63–69
https://doi.org/10.1016/j.memsci.2018.02.021
49 M Mulder. Thermodynamic Principles of Pervaporation: Pervaporation Membrane Separation Processes. Amsterdam: Elsevier, 1991, 225–250
50 A Dawiec, A Witek-Krowiak, D Podstawczyk, K Pokomeda. Mathematical modeling of sorption step in pervaporative aroma compounds recovery from the multicomponent solution. Chemical Engineering Science, 2015, 129: 78–90
https://doi.org/10.1016/j.ces.2015.02.036
51 M Jain, D Attarde, S K Gupta. Removal of thiophene from n-heptane/thiophene mixtures by spiral wound pervaporation module: Modelling, validation and influence of operating conditions. Journal of Membrane Science, 2015, 490: 328–345
https://doi.org/10.1016/j.memsci.2015.05.004
52 G Genduso, H Farrokhzad, Y Latre, S Darvishmanesh, P Luis, B Van der Bruggen. Polyvinylidene fluoride dense membrane for the pervaporation of methyl acetate-methanol mixtures. Journal of Membrane Science, 2015, 482: 128–136
https://doi.org/10.1016/j.memsci.2015.02.008
53 B Elyassi, M Y Jeon, M Tsapatsis, K Narasimharao, S N Basahel, S Thabaiti. Ethanol/water mixture pervaporation performance of b-oriented silicalite-1 membranes made by gel-free secondary growth. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(2): 556–563
https://doi.org/10.1002/aic.15124
54 M T Ashraf, J E Schmidt, J Kujawa, W Kujawski, H A Arafat. One-dimensional modeling of pervaporation systems using a semi-empirical flux model. Separation and Purification Technology, 2017, 174: 502–512
https://doi.org/10.1016/j.seppur.2016.10.043
55 F Kapteijn, J A Moulijn, R Krishna. The generalized Maxwell-Stefan model for diffusion in zeolites: Sorbate molecules with different saturation loadings. Chemical Engineering Science, 2000, 55(15): 2923–2930
https://doi.org/10.1016/S0009-2509(99)00564-3
56 F Lipnizki, G Tragardh. Modelling of pervaporation: Models to analyze and predict the mass transport in pervaporation. Separation and Purification Methods, 2001, 30(1): 49–125
https://doi.org/10.1081/SPM-100102985
57 A Mafi, A Raisi, M Hatam, A Aroujalian. A mathematical model for mass transfer in hydrophobic pervaporation for organic compounds separation from aqueous solutions. Journal of Membrane Science, 2012, 423-424(12): 175–188
https://doi.org/10.1016/j.memsci.2012.08.012
58 H D Feng. Modeling of vapor sorption in glassy polymers using a new dual mode sorption model based on multilayer sorption theory. Polymer, 2007, 48(10): 2988–3002
https://doi.org/10.1016/j.polymer.2006.10.050
59 P Ye, Y Zhang, H Wu, X Gu. Mass transfer simulation on pervaporation dehydration of ethanol through hollow fiber NaA zeolite membranes. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(7): 2468–2478
https://doi.org/10.1002/aic.15227
60 A Ebneyamini, H Azimi, F H Tezel, J Thibault. Modelling of mixed matrix membranes: Validation of the resistance-based model. Journal of Membrane Science, 2017, 543: 361–369
https://doi.org/10.1016/j.memsci.2017.08.064
61 J J Shieh, R Y M Huang. A pseudophase-change solution-diffusion model for pervaporation. II. Binary mixture permeation. Separation Science and Technology, 1998, 33(7): 933–957
https://doi.org/10.1080/01496399808545000
62 T M Pera, C Fite, V Sebastian, E Lorente, J Llorens, F Cunill. Modeling pervaporation of ethanol/water mixtures within ‘Real’ zeolite NaA membranes. Industrial & Engineering Chemistry Research, 2008, 47(9): 3213–3224
https://doi.org/10.1021/ie071645b
63 W Y Zhang, S S Na, W X Li, W H Xing. Kinetic modeling of pervaporation aided esterification of propionic acid and ethanol using T-type zeolite membrane. Industrial & Engineering Chemistry Research, 2015, 54(18): 4940–4946
https://doi.org/10.1021/acs.iecr.5b00505
64 R Krishna. Describing mixture permeation across polymeric membranes by a combination of Maxwell-Stefan and Flory-Huggins models. Polymer, 2016, 103: 124–131
https://doi.org/10.1016/j.polymer.2016.09.051
65 X Zhuang, X Chen, Y Su, J Luo, S Feng, H Zhou, Y Wan. Surface modification of silicalite-1 with alkoxysilanes to improve the performance of PDMS/silicalite-1 pervaporation membranes: Preparation, characterization and modeling. Journal of Membrane Science, 2016, 499: 386–395
https://doi.org/10.1016/j.memsci.2015.10.018
66 L D Wang, M S H Boutilier, P R Kidambi, D Jang, N G Hadjiconstantinou, R Karnik. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522
https://doi.org/10.1038/nnano.2017.72
67 X C Gao, G Z Ji, J C Wang, L Peng, X H Gu, L Chen. Critical pore dimensions for gases in a BTESE-derived organic-inorganic hybrid silica: A theoretical analysis. Separation and Purification Technology, 2018, 191: 27–37
https://doi.org/10.1016/j.seppur.2017.09.013
68 M Choi, K Na, J Kim, Y Sakamoto, O Terasaki, R Ryoo. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
https://doi.org/10.1038/nature08288
69 J Sekulic, J E Elshof, D H A Blank. A microporous titania membrane for nanofiltration and pervaporation. Advanced Materials, 2004, 16(17): 1546–1550
https://doi.org/10.1002/adma.200306472
70 T M Pera. Porous inorganic membranes for CO2 capture: Present and prospects. Chemical Reviews, 2014, 114(2): 1413–1492
https://doi.org/10.1021/cr400237k
71 M Nishibayashi, H Yoshida, M Uenishi, M Kanezashi, H Nagasawa, T Yoshioka, T Tsuru. Photo-induced sol-gel processing for low-temperature fabrication of high-performance silsesquioxane membranes for use in molecular separation. Chemical Communications, 2015, 51(49): 9932–9935
https://doi.org/10.1039/C5CC02997J
72 S Araki, A Okabe, A Ogawa, D Gondo, S Imasaka, Y Hasegawa, K Sato, K Li, H Yamamoto. Preparation and pervaporation performance of vinyl-functionalized silica membranes. Journal of Membrane Science, 2018, 548: 66–72
https://doi.org/10.1016/j.memsci.2017.10.066
73 M Y Jeon, D Kim, P Kumar, P S Lee, N Rangnekar, P Bai, M Shete, B Elyassi, H S Lee, K Narasimharao, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature, 2017, 543(7647): 690–694
https://doi.org/10.1038/nature21421
74 D Kim, M Y Jeon, B L Stottrup, M Tsapatsis. para-Xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface. Angewandte Chemie International Edition, 2018, 57(2): 480–485
https://doi.org/10.1002/anie.201708835
75 H Furukawa, F Gandara, Y B Zhang, J C Jiang, W L Queen, M R Hudson, O M Yaghi. Water adsorption in porous metal-organic frameworks and related materials. Journal of the American Chemical Society, 2014, 136(11): 4369–4381
https://doi.org/10.1021/ja500330a
76 F C Wu, L Lin, H O Liu, H T Wang, J S Qiu, X F Zhang. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544: 342–350
https://doi.org/10.1016/j.memsci.2017.09.047
77 X L Liu, C H Wang, B Wang, K Li. Novel organic-dehydration membranes prepared from zirconium metal-organic frameworks. Advanced Functional Materials, 2017, 27(3): 1604311
https://doi.org/10.1002/adfm.201604311
78 A Ibrahim, Y S Lin. Pervaporation separation of organic mixtures by MOF-5 membranes. Industrial & Engineering Chemistry Research, 2016, 55(31): 8652–8658
https://doi.org/10.1021/acs.iecr.6b01965
79 G Liu, W Jin, N Xu. Two-dimensional-material membranes: A new family of high-performance separation membranes. Angewandte Chemie International Edition, 2016, 55(43): 13384–13397
https://doi.org/10.1002/anie.201600438
80 A Kommu, J K Singh. Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: A molecular dynamics study. Journal of Physical Chemistry C, 2017, 121(14): 7867–7880
https://doi.org/10.1021/acs.jpcc.7b00172
81 Y Yoon, K Lee, S Kwon, S Seo, H Yoo, S Kim, Y Shin, Y Park, D Kim, J Y Choi, H Lee. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano, 2014, 8(5): 4580–4590
https://doi.org/10.1021/nn500150j
82 K Huang, G Liu, Y Lou, Z Dong, J Shen, W Jin. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 7049–7052
https://doi.org/10.1002/ange.201401061
83 G Z Liu, J Shen, Q Liu, G P Liu, J Xiong, J Yang, W Q Jin. Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science, 2018, 548: 548–558
https://doi.org/10.1016/j.memsci.2017.11.065
84 R K Joshi, P Carbone, F C Wang, V G Kravets, Y Su, I V Grigorieva, H A Wu, A K Geim, R R Nair. Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 2014, 343(6172): 752–754
https://doi.org/10.1126/science.1245711
85 C H Tsou, Q F An, S C Lo, G M De, W S Hung, C C Hu, K R Lee, J Y Lai. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science, 2015, 477: 93–100
https://doi.org/10.1016/j.memsci.2014.12.039
86 B Y Qi, X F He, G F Zeng, Y C Pan, G H Li, G J Liu, Y F Zhang, W Chen, Y H Sun. Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes. Nature Communications, 2017, 8(825): 1–10
https://doi.org/10.1038/s41467-017-00990-x
87 J Y Wan, S D Lacey, J Q Dai, W Z Bao, M S Fuhrer, L B Hu. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chemical Society Reviews, 2016, 45(24): 6742–6765
https://doi.org/10.1039/C5CS00758E
88 L Chen, G S Shi, J Shen, B Q Peng, B W Zhang, Y Z Wang, F G Bian, J J Wang, D Y Li, Z Qian, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550(7676): 380–383
https://doi.org/10.1038/nature24044
89 W S Hung, C H Tsou, G M De, Q F An, Y L Liu, Y M Zhang, C C Hu, K R Lee, J Y Lai. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chemistry of Materials, 2014, 26(9): 2983–2990
https://doi.org/10.1021/cm5007873
90 J J Yang, D A Gong, G H Li, G F Zeng, Q Y Wang, Y L Zhang, G J Liu, P Wu, E Vovk, Z Peng, et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules. Advanced Materials, 2018, 30(16): 1705775
https://doi.org/10.1002/adma.201705775
91 Y Li, S Wang, G He, H Wu, F Pan, Z Jiang. Facilitated transport of small molecules and ions for energy-efficient membranes. Chemical Society Reviews, 2015, 44(1): 103–118
https://doi.org/10.1039/C4CS00215F
92 E L Cussler, R Aris, A Bhown. On the limits of facilitated diffusion. Journal of Membrane Science, 1989, 43(2): 149–164
https://doi.org/10.1016/S0376-7388(00)85094-2
93 H S Kim, Y J Kim, J J Kim, S D Lee, Y S Kang, C S Chin. Spectroscopic characterization of cellulose acetate polymer membranes containing Cu(1,3-butadiene)OTf as a facilitated olefin transport carrier. Chemistry of Materials, 2001, 13(5): 1720–1725
https://doi.org/10.1021/cm000807q
94 M A J Hernandez, R T Yang. Desulfurization of diesel fuels via π-complexation with nickel(II)-exchanged X- and Y-zeolites. Industrial & Engineering Chemistry Research, 2004, 43(4): 1081–1089
https://doi.org/10.1021/ie034206v
95 Z J Yang, W Zhang, T Wang, J D Li. Improved thiophene solution selectivity by Cu2+, Pb2+ and Mn2+ ions in pervaporative poly bis(p-methyl phenyl) phosphazene desulfurization membrane. Journal of Membrane Science, 2014, 454: 463–469
https://doi.org/10.1016/j.memsci.2013.12.036
96 A Takahashi, F H Yang, R T Yang. New sorbents for desulfurization by π-complexation: Thiophene/benzene adsorption. Industrial & Engineering Chemistry Research, 2002, 41(10): 2487–2496
https://doi.org/10.1021/ie0109657
97 D J Safarik, R B Eldridge. Olefin/paraffin separations by reactive absorption: A review. Industrial & Engineering Chemistry Research, 1998, 37(7): 2571–2581
https://doi.org/10.1021/ie970897h
98 R T Yang. Adsorbents: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2003, 191–193
99 S Martinez, L Valek, I S Oslakovic. Adsorption of organic anions on low-carbon steel in saturated Ca(OH)2 and the HSAB principle. Journal of the Electrochemical Society, 2007, 154(11): 671–677
https://doi.org/10.1149/1.2777882
100 W Li, F Pan, Y Song, M Wang, H Wang, S Walker, H Wu, Z Jiang. Construction of molecule-selective mixed matrix membranes with confined mass transfer structure. Chinese Journal of Chemical Engineering, 2017, 25(11): 1563–1580
https://doi.org/10.1016/j.cjche.2017.04.015
101 Y S Kang, S W Kang, H Kim, J H Kim, J Won, C K Kim, K Char. Interaction with olefins of the partially polarized surface of silver nanoparticles activated by p-benzoquinone and its implications for facilitated olefin transport. Advanced Materials, 2007, 19(3): 475–479
https://doi.org/10.1002/adma.200601009
102 D J L Tranchemontagne, Z Ni, M O’Keeffe, O M Yaghi. Reticular chemistry of metal-organic polyhedra. Angewandte Chemie International Edition, 2008, 47(28): 5136–5147
https://doi.org/10.1002/anie.200705008
103 L Zhou, X Q Dai, J J Du, T Wang, L G Wu, Y C Tang, J Shen. Fabrication of poly(MMA-co-ST) hybrid membranes containing AgCl nanoparticles by in situ ionic liquid microemulsion polymerization and enhancement of their separation performance. Industrial & Engineering Chemistry Research, 2015, 54(13): 3326–3332
https://doi.org/10.1021/acs.iecr.5b00042
104 F Wu, Y Cao, H Liu, X Zhang. High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. Journal of Membrane Science, 2018, 556: 54–65
https://doi.org/10.1016/j.memsci.2018.03.090
105 B Li, D Xu, Z Y Jiang, X F Zhang, W P Liu, X A Dong. Pervaporation performance of PDMS-Ni2+Y zeolite hybrid membranes in the desulfurization of gasoline. Journal of Membrane Science, 2008, 322(2): 293–301
https://doi.org/10.1016/j.memsci.2008.06.015
106 S N Yu, F S Pan, S Yang, H Ding, Z Y Jiang, B Y Wang, Z X Li, X Z Cao. Enhanced pervaporation performance of MIL-101 (Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chemical Engineering Science, 2015, 135: 479–488
https://doi.org/10.1016/j.ces.2014.11.058
107 Y Zhang, N X Wang, C Zhao, L Wang, S L Ji, J R Li. Co(HCOO)(2)-based hybrid membranes for the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures. Journal of Membrane Science, 2016, 520: 646–656
https://doi.org/10.1016/j.memsci.2016.08.028
108 C Zhao, N X Wang, L Wang, H L Huang, R Zhang, F Yang, Y B Xie, S L Ji, J R Li. Hybrid membranes of metal-organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation. Chemical Communications, 2014, 50(90): 13921–13923
https://doi.org/10.1039/C4CC05279J
109 C Zhao, N X Wang, L Wang, S N Sheng, H W Fan, F Yang, S L Ji, J R Li, J M Yu. Functionalized metal-organic polyhedra hybrid membranes for aromatic hydrocarbons recovery. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(10): 3706–3716
https://doi.org/10.1002/aic.15263
110 F S Pan, M D Wang, H Ding, Y M Song, W D Li, H Wu, Z Y Jiang, B Y Wang, X Z Cao. Embedding Ag+@COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. Journal of Membrane Science, 2018, 552: 1–12
https://doi.org/10.1016/j.memsci.2018.01.038
111 H Lee, S M Dellatore, W M Miller, P B Messersmith. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849): 426–430
https://doi.org/10.1126/science.1147241
112 W P Liu, B Li, R J Cao, Z Y Jiang, S N Yu, G H Liu, H Wu. Enhanced pervaporation performance of poly(dimethyl siloxane) membrane by incorporating titania microspheres with high silver ion loading. Journal of Membrane Science, 2011, 378(1-2): 382–392
https://doi.org/10.1016/j.memsci.2011.05.027
113 G Liu, T Zhou, W Liu, S Hu, F Pan, H Wu, Z Jiang, B Wang, J Yang, X Cao. Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 12907–12917
https://doi.org/10.1039/C4TA01778A
114 S N Yu, Z Y Jiang, S Yang, H Ding, B F Zhou, K Gu, D Yang, F S Pan, B Y Wang, S Wang, X Cao. Highly swelling resistant membranes for model gasoline desulfurization. Journal of Membrane Science, 2016, 514: 440–449
https://doi.org/10.1016/j.memsci.2016.05.015
115 C. JaniakA critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society-Dalton Transactions, 2000(21): 3885–3896
116 C A Hunter, J K M Sanders. The nature of π-π interactions. Journal of the American Chemical Society, 1990, 112(14): 5525–5534
https://doi.org/10.1021/ja00170a016
117 S Sha, Y Kong, J R Yang. The pervaporation performance of C-60-filled ethyl cellulose hybrid membrane for gasoline desulfurization: Effect of operating temperature. Energy & Fuels, 2012, 26(11): 6925–6929
https://doi.org/10.1021/ef300986n
118 T Wu, N X Wang, J Li, L Wang, W Zhang, G J Zhang, S L Ji. Tubular thermal crosslinked-PEBA/ceramic membrane for aromatic/aliphatic pervaporation. Journal of Membrane Science, 2015, 486: 1–9
https://doi.org/10.1016/j.memsci.2015.03.037
119 H Gulhane, Z V P Murthy. Separation of benzene-isooctane mixtures using poly(vinyl alcohol)/graphene composite pervaporation membranes. Journal of Polymer Materials, 2017, 34(2): 439–453
120 T Wang, J N Shen, L G Wu, B V D Bruggen. Improvement in the permeation performance of hybrid membranes by the incorporation of functional multi-walled carbon nanotubes. Journal of Membrane Science, 2014, 466(18): 338–347
https://doi.org/10.1016/j.memsci.2014.04.054
121 F S Pan, H Ding, W D Li, Y M Song, H Yang, H Wu, Z Y Jiang, B Y Wang, X Z Cao. Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets. Journal of Membrane Science, 2018, 545: 29–37
https://doi.org/10.1016/j.memsci.2017.09.054
122 H Yang, B Yuan, X Zhang, O A Scherman. Supramolecular chemistry at interfaces: Host-guest interactions for fabricating multifunctional biointerfaces. Accounts of Chemical Research, 2014, 47(7): 2106–2115
https://doi.org/10.1021/ar500105t
123 J Liu, D Hua, Y Zhang, S Japip, T S Chung. Precise molecular sieving architectures with janus pathways for both polar and nonpolar molecules. Advanced Materials, 2018, 30(11): 1705933
https://doi.org/10.1002/adma.201705933
124 H Takaba, J D Way. Separation of isomeric xylenes using cyclodextrin-modified ceramic membranes. Industrial & Engineering Chemistry Research, 2003, 42(6): 1243–1252
https://doi.org/10.1021/ie0204080
125 P Rolling, M Lamers, C Staudt. Cross-linked membranes based on acrylated cyclodextrins and polyethylene glycol dimethacrylates for aromatic/aliphatic separation. Journal of Membrane Science, 2010, 362(1-2): 154–163
https://doi.org/10.1016/j.memsci.2010.06.036
126 Y Wang, T S Chung, H Wang. Polyamide-imide membranes with surface immobilized cyclodextrin for butanol isomer separation via pervaporation. AIChE Journal. American Institute of Chemical Engineers, 2011, 57(6): 1470–1484
https://doi.org/10.1002/aic.12360
127 T Van Gestel, J Barthel. New types of graphene-based membranes with molecular sieve properties for He, H2 and H2O. Journal of Membrane Science, 2018, 554: 378–384
https://doi.org/10.1016/j.memsci.2018.02.034
128 K Huang, G P Liu, J Shen, Z Y Chu, H L Zhou, X H Gu, W Q Jin, N P Xu. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates. Advanced Functional Materials, 2015, 25(36): 5809–5815
https://doi.org/10.1002/adfm.201502205
129 D Konios, M M Stylianakis, E Stratakis, E Kymakis. Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 2014, 430: 108–112
https://doi.org/10.1016/j.jcis.2014.05.033
130 H Yang, H Wu, F S Pan, Z Li, H Ding, G H Liu, Z Y Jiang, P Zhang, X Z Cao, B Y Wang. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. Journal of Membrane Science, 2016, 520: 583–595
https://doi.org/10.1016/j.memsci.2016.08.022
131 K Cao, Z Jiang, X Zhang, Y Zhang, J Zhao, R Xing, S Yang, C Gao, F Pan. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015, 490: 72–83
https://doi.org/10.1016/j.memsci.2015.04.050
132 S B Kuila, S K Ray. Separation of benzene-cyclohexane mixtures by filled blend membranes of carboxymethyl cellulose and sodium alginate. Separation and Purification Technology, 2014, 123: 45–52
https://doi.org/10.1016/j.seppur.2013.12.017
133 T Wang, L Zhao, Y F Chen, L F Ding, S Feng, L G Wu, Y X Wang. Influence of modification of MWCNTs on the structure and performance of MWCNT-Poly (MMA-AM) hybrid membranes. Polymers for Advanced Technologies, 2014, 25(3): 288–293
https://doi.org/10.1002/pat.3235
134 X L Zhang, L P Qian, H T Wang, W Zhong, Q G Du. Pervaporation of benzene/cyclohexane mixtures through rhodium-loaded beta-zeolite-filled polyvinyl chloride hybrid membranes. Separation and Purification Technology, 2008, 63(2): 434–443
https://doi.org/10.1016/j.seppur.2008.05.028
135 S N Yu, Z Y Jiang, H Ding, F S Pan, B Y Wang, J Yang, X Z Cao. Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC. Journal of Membrane Science, 2015, 481: 73–81
https://doi.org/10.1016/j.memsci.2015.01.045
136 M Majumder, N Chopra, R Andrews, B J Hinds. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature, 2005, 438(7064): 44
https://doi.org/10.1038/438044a
137 H X Sui, B G Han, J K Lee, P Walian, B K Jap. Structural basis of water-specific transport through the AQP1 water channel. Nature, 2001, 414(6866): 872–878
https://doi.org/10.1038/414872a
138 L Wen, X Zhang, Y Tian, L Jiang. Quantum-confined superfluidics: From nature to artificial. Science China Materials, 2018, 61(8): 1027–1032
https://doi.org/10.1007/s40843-018-9289-2
139 P Agre. Aquaporin water channels (Nobel lecture). Angewandte Chemie International Edition, 2004, 43(33): 4278–4290
https://doi.org/10.1002/anie.200460804
140 J Kofinger, G Hummer, C Dellago. Single-file water in nanopores. Physical Chemistry Chemical Physics, 2011, 13(34): 15403–15417
https://doi.org/10.1039/c1cp21086f
141 A Horner, P Pohl. Single-file transport of water through membrane channels. Faraday Discussions, 2018, 209: 9–33
https://doi.org/10.1039/C8FD00122G
142 W Q Jin, C Yang. Preface to special issue of membranes and membrane processes based on confined mass transfer. Chinese Journal of Chemical Engineering, 2017, 25(11): 1551
https://doi.org/10.1016/j.cjche.2017.09.022
143 S D Bernardina, E Paineau, J B Brubach, P Judeinstein, S Rouziere, P Launois, P Roy. Water in carbon nanotubes: The peculiar hydrogen bond network revealed by Infrared spectroscopy. Journal of the American Chemical Society, 2016, 138(33): 10437–10443
https://doi.org/10.1021/jacs.6b02635
144 A M Sajjan, B K J Kumar, A A Kittur, M Y Kariduraganavar. Novel approach for the development of pervaporation membranes using sodium alginate and chitosan-wrapped multiwalled carbon nanotubes for the dehydration of isopropanol. Journal of Membrane Science, 2013, 425: 77–88
https://doi.org/10.1016/j.memsci.2012.08.042
145 B X Gao, Z Y Jiang, C H Zhao, H Gomaa, F S Pan. Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers. Journal of Membrane Science, 2015, 492: 230–241
https://doi.org/10.1016/j.memsci.2015.05.035
146 R R Nair, H A Wu, P N Jayaram, I V Grigorieva, A K Geim. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442–444
https://doi.org/10.1126/science.1211694
147 W S Hung, Q F An, M De Guzman, H Y Lin, S H Huang, W R Liu, C C Hu, K R Lee, J Y Lai. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon, 2014, 68: 670–677
https://doi.org/10.1016/j.carbon.2013.11.048
148 K Huang, G Liu, Y Lou, Z Dong, J Shen, W Jin. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 6929–6932
https://doi.org/10.1002/anie.201401061
149 K Cao, Z Jiang, J Zhao, C Zhao, C Gao, F Pan, B Wang, X Cao, J Yang. Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides. Journal of Membrane Science, 2014, 469: 272–283
https://doi.org/10.1016/j.memsci.2014.06.053
150 Y Song, Z Jiang, B Gao, H Wang, M Wang, Z He, X Cao, F Pan. Embedding hydrophobic MoS2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chemical Engineering Science, 2018, 185: 231–242
https://doi.org/10.1016/j.ces.2018.03.057
151 J Dechnik, J Gascon, C J Doonan, C Janiak, C J Sumby. Mixed-matrix membranes. Angewandte Chemie International Edition, 2017, 56(32): 9292–9310
https://doi.org/10.1002/anie.201701109
152 R P Lively, D S Sholl. From water to organics in membrane separations. Nature Materials, 2017, 16(3): 276–279
https://doi.org/10.1038/nmat4860
153 Z R Herm, B M Wiers, J A Mason, J M van Baten, M R Hudson, P Zajdel, C M Brown, N Masciocchi, R Krishna, J R Long. Separation of hexane isomers in a metal-organic framework with triangular channels. Science, 2013, 340(6135): 960–964
https://doi.org/10.1126/science.1234071
154 Z B Bao, G G Chang, H B Xing, R Krishna, Q L Ren, B L Chen. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy & Environmental Science, 2016, 9(12): 3612–3641
https://doi.org/10.1039/C6EE01886F
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed