|
|
Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes |
Navid Azizi1, Mojgan Isanejad1, Toraj Mohammadi1( ), Reza M. Behbahani2 |
1. Research and Technology Center of Membrane Processes, Chemical Engineering Department, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran 2. Gas Engineering Department, Petroleum University of Technology, Ahwaz, Iran |
|
|
Abstract Membranes have attracted much attention as economical methods for industrial chemical processes. The effects of the titanium dioxide nanoparticle load on the morphology and CO2/CH4 separation performance of poly (ether-block-amide) (PEBAX-1657) mixed matrix membranes (MMMs) were investigated from pressures of 3–12 bar and temperatures of 30°C–60°C. The PEBAX membranes were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, atomic force microscopy and tensile strength analysis. The incorporation of TiO2 nanoparticles into the polymeric MMMs improved the CO2/CH4 gas separation performance (both the permeability and selectivity) of the membranes. The CO2 permeability and ideal CO2/CH4 selectivity values of the nanocomposite membrane loaded with 8 wt-% TiO2 were 172.32 Barrer and 24.79, respectively whereas those of the neat membrane were 129.87 Barrer and 21.39, respectively.
|
Keywords
mixed matrix membrane
TiO2 nanoparticles
PEBAX-1657
CO2/CH4 separation
|
Corresponding Author(s):
Toraj Mohammadi
|
Online First Date: 21 March 2019
Issue Date: 22 August 2019
|
|
1 |
S Couck, J F Denayer, G V Baron, T Rémy, J Gascon, F Kapteijn. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. Journal of the American Chemical Society, 2009, 131(18): 6326–6327
https://doi.org/10.1021/ja900555r
|
2 |
Y Zhang, J Sunarso, S Liu, R Wang. Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 2013, 12: 84–107
https://doi.org/10.1016/j.ijggc.2012.10.009
|
3 |
N Azizi, T Mohammadi, R M Behbahani. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. Journal of Natural Gas Science and Engineering, 2017, 37: 39–51
https://doi.org/10.1016/j.jngse.2016.11.038
|
4 |
M Gholami, T Mohammadi, S Mosleh, M Hemmati. CO2/CH4 separation using mixed matrix membrane-based polyurethane incorporated with ZIF-8 nanoparticles. Chemical Papers, 2017, 71(10): 1839–1853
https://doi.org/10.1007/s11696-017-0177-9
|
5 |
V Bondar, B Freeman, I Pinnau. Gas transport properties of poly (ether-b-amide) segmented block copolymers. Journal of Polymer Science. Part B, Polymer Physics, 2000, 38(15): 2051–2062
https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
|
6 |
H R Mahdavi, N Azizi, T Mohammadi. Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/γ-Al2O3 membrane for CO2/CH4 separation using response surface methodology. Journal of Polymer Research, 2017, 24(5): 67
https://doi.org/10.1007/s10965-017-1228-1
|
7 |
N Azizi, H R Mahdavi, M Isanejad, T Mohammadi. Effects of low and high molecular mass PEG incorporation into different types of poly (ether-b-amide) copolymers on the permeation properties of CO2 and CH4. Journal of Polymer Research, 2017, 24(9): 141
https://doi.org/10.1007/s10965-017-1297-1
|
8 |
G R Hatfield, Y Guo, W E Killinger, R A Andrejak, P M Roubicek. Characterization of structure and morphology in two poly (ether-block-amide) copolymers. Macromolecules, 1993, 26(24): 6350–6353
https://doi.org/10.1021/ma00076a008
|
9 |
N Azizi, T Mohammadi, R M Behbahani. Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. Journal of Energy Chemistry, 2017, 26(3): 454–465
https://doi.org/10.1016/j.jechem.2016.11.018
|
10 |
M Di Lorenzo, M Pyda, B Wunderlich. Calorimetry of nanophase-separated poly (oligoamide-alt-oligoether)s. Journal of Polymer Science. Part B, Polymer Physics, 2001, 39(14): 1594–1604
https://doi.org/10.1002/polb.1131
|
11 |
E Konyukhova, A Buzin, Y K Godovsky. Melting of polyether block amide (Pebax): The effect of stretching. Thermochimica Acta, 2002, 391(1): 271–277
https://doi.org/10.1016/S0040-6031(02)00189-2
|
12 |
X Ren, J Ren, H Li, S Feng, M Deng. Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation. International Journal of Greenhouse Gas Control, 2012, 8: 111–120
https://doi.org/10.1016/j.ijggc.2012.01.017
|
13 |
L Zhao, Y Chen, B Wang, C Sun, S Chakraborty, K Ramasubramanian, P K Dutta, W W Ho. Multilayer polymer/zeolite Y composite membrane structure for CO2 capture from flue gas. Journal of Membrane Science, 2016, 498: 1–13
https://doi.org/10.1016/j.memsci.2015.10.006
|
14 |
Y Chen, B Wang, L Zhao, P Dutta, W W Ho. New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas. Journal of Membrane Science, 2015, 495: 415–423
https://doi.org/10.1016/j.memsci.2015.08.045
|
15 |
M Isanejad, T Mohammadi. Effect of amine modification on morphology and performance of poly (ether-block-amide)/fumed silica nanocomposite membranes for CO2/CH4 separation. Materials Chemistry and Physics, 2018, 205: 303–314
https://doi.org/10.1016/j.matchemphys.2017.11.018
|
16 |
N Azizi, T Mohammadi, R Mosayebi Behbahani. Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation. Chemical Engineering Research & Design, 2017, 117: 177–189
https://doi.org/10.1016/j.cherd.2016.10.018
|
17 |
Y Wang, H Li, G Dong, C Scholes, V Chen. Effect of fabrication and operation conditions on CO2 separation performance of PEO-PA block copolymer membranes. Industrial & Engineering Chemistry Research, 2015, 54(29): 7273–7283
https://doi.org/10.1021/acs.iecr.5b01234
|
18 |
L M Robeson. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185
https://doi.org/10.1016/0376-7388(91)80060-J
|
19 |
L M Robeson. The upper bound revisited. Journal of Membrane Science, 2008, 320(1): 390–400
https://doi.org/10.1016/j.memsci.2008.04.030
|
20 |
D Bastani, N Esmaeili, M Asadollahi. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 375–393
https://doi.org/10.1016/j.jiec.2012.09.019
|
21 |
C Karthikeyan, S Nunes, L Prado, M Ponce, H Silva, B Ruffmann, K Schulte. Polymer nanocomposite membranes for DMFC application. Journal of Membrane Science, 2005, 254(1): 139–146
https://doi.org/10.1016/j.memsci.2004.12.048
|
22 |
L Wang, Y Li, S Li, P Ji, C Jiang. Preparation of composite poly(ether block amide) membrane for CO2 capture. Journal of Energy Chemistry, 2014, 23(6): 717–725
https://doi.org/10.1016/S2095-4956(14)60204-7
|
23 |
H R Mahdavi, N Azizi, M Arzani, T Mohammadi. Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane. Journal of Natural Gas Science and Engineering, 2017, 46: 275–288
https://doi.org/10.1016/j.jngse.2017.07.024
|
24 |
N Azizi, M M Zarei. CO2/CH4 separation using prepared and characterized poly (ether-block-amide)/ZIF-8 mixed matrix membranes. Petroleum Science and Technology, 2017, 35(9): 869–874
https://doi.org/10.1080/10916466.2017.1283519
|
25 |
A Khoshkharam, N Azizi, R M Behbahani, M A Ghayyem. Separation of CO2 from CH4 using a synthesized Pebax-1657/ZIF-7 mixed matrix membrane. Petroleum Science and Technology, 2017, 35(7): 667–673
https://doi.org/10.1080/10916466.2016.1273242
|
26 |
L E José Cirilo Ignacio, L Ant, S Karl, B Emilio. PEBAX TM-silanized Al2O3 composite: Synthesis and characterization. Open Journal of Polymer Chemistry, 2012, 2012: 63–69
|
27 |
N Azizi, M Arzani, H R Mahdavi, T Mohammadi. Synthesis and characterization of poly(ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2017, 34(9): 2459–2470
https://doi.org/10.1007/s11814-017-0152-8
|
28 |
A Jomekian, R M Behbahani, T Mohammadi, A Kargari. CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. Journal of Natural Gas Science and Engineering, 2016, 31: 562–574
https://doi.org/10.1016/j.jngse.2016.03.067
|
29 |
A Ghadimi, T Mohammadi, N Kasiri. A novel chemical surface modification for the fabrication of PEBA/SiO2 nanocomposite membranes to separate CO2 from syngas and natural gas streams. Industrial & Engineering Chemistry Research, 2014, 53(44): 17476–17486
https://doi.org/10.1021/ie503216p
|
30 |
D Zhao, J Ren, H Li, K Hua, M Deng. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation. Journal of Energy Chemistry, 2014, 23(2): 227–234
https://doi.org/10.1016/S2095-4956(14)60140-6
|
31 |
F Moghadam, M R Omidkhah, E Vasheghani-Farahani, M Z Pedram, F Dorosti. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 2011, 77(1): 128–136
https://doi.org/10.1016/j.seppur.2010.11.032
|
32 |
C Y Liang, P Uchytil, R Petrychkovych, Y C Lai, K Friess, M Sipek, M M Reddy, S Y Suen. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Separation and Purification Technology, 2012, 92: 57–63
https://doi.org/10.1016/j.seppur.2012.03.016
|
33 |
A Khosravanian, M Dehghani, M Pazirofteh, M Asghari, A H Mohammadi, D Shahsavari. Grand canonical Monte Carlo and molecular dynamics simulations of the structural properties, diffusion and adsorption of hydrogen molecules through poly(benzimidazoles)/nanoparticle oxides composites. International Journal of Hydrogen Energy, 2018, 43(5): 2803–2816
https://doi.org/10.1016/j.ijhydene.2017.12.122
|
34 |
H Sun, C Ma, B Yuan, T Wang, Y Xu, Q Xue, P Li, Y Kong. Cardo polyimides/TiO2 mixed matrix membranes: Synthesis, characterization, and gas separation property improvement. Separation and Purification Technology, 2014, 122: 367–375
https://doi.org/10.1016/j.seppur.2013.11.030
|
35 |
Q Hu, E Marand, S Dhingra, D Fritsch, J Wen, G Wilkes. Poly (amide-imide)/TiO2 nano-composite gas separation membranes: Fabrication and characterization. Journal of Membrane Science, 1997, 135(1): 65–79
https://doi.org/10.1016/S0376-7388(97)00120-8
|
36 |
S Shishatskiy, J R Pauls, S P Nunes, K V Peinemann. Quaternary ammonium membrane materials for CO2 separation. Journal of Membrane Science, 2010, 359(1-2): 44–53
https://doi.org/10.1016/j.memsci.2009.09.006
|
37 |
M Isanejad, N Azizi, T Mohammadi. Pebax membrane for CO2/CH4 separation: Effects of various solvents on morphology and performance. Journal of Applied Polymer Science, 2017, 134(9): 44531–44540
https://doi.org/10.1002/app.44531
|
38 |
J A Thompson, K W Chapman, W J Koros, C W Jones, S Nair. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Microporous and Mesoporous Materials, 2012, 158: 292–299
https://doi.org/10.1016/j.micromeso.2012.03.052
|
39 |
L Xiang, Y Pan, G Zeng, J Jiang, J Chen, C Wang. Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. Journal of Membrane Science, 2016, 500: 66–75
https://doi.org/10.1016/j.memsci.2015.11.017
|
40 |
T Fan, W Xie, X Ji, C Liu, X Feng, X Lu. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures. Chinese Journal of Chemical Engineering, 2016, 24(11): 1513–1521
https://doi.org/10.1016/j.cjche.2016.03.006
|
41 |
S Wang, Y Liu, S Huang, H Wu, Y Li, Z Tian, Z Jiang. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 2014, 460: 62–70
https://doi.org/10.1016/j.memsci.2014.02.036
|
42 |
W Ho, K Sirkar. Membrane Handbook. Heidelberg: Springer Science & Business Media, 2012
|
43 |
J K Adewole, A L Ahmad, S Ismail, C P Leo, A S Sultan. Comparative studies on the effects of casting solvent on physico-chemical and gas transport properties of dense polysulfone membrane used for CO2/CH4 separation. Journal of Applied Polymer Science, 2015, 132(27): 42205–42215
https://doi.org/10.1002/app.42205
|
44 |
A F Ismail, K C Khulbe, T Matsuura. Gas Separation Membrane Materials and Structures. Gas Separation Membranes. Heidelberg: Springer, 2015, 37–192
|
45 |
R Surya Murali, A F Ismail, M A Rahman, S Sridhar. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Separation and Purification Technology, 2014, 129: 1–8
https://doi.org/10.1016/j.seppur.2014.03.017
|
46 |
S Hassanajili, M Khademi, P Keshavarz. Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes. Journal of Membrane Science, 2014, 453: 369–383
https://doi.org/10.1016/j.memsci.2013.10.057
|
47 |
Y Qiu, J Ren, D Zhao, H Li, M Deng. Poly(amide-6-b-ethylene oxide)/[Bmim][Tf2N] blend membranes for carbon dioxide separation. Journal of Energy Chemistry, 2016, 25(1): 122–130
https://doi.org/10.1016/j.jechem.2015.10.009
|
48 |
A Ghadimi, M Amirilargani, T Mohammadi, N Kasiri, B Sadatnia. Preparation of alloyed poly(ether block amide)/poly (ethylene glycol diacrylate) membranes for separation of CO2/H2 (syngas application). Journal of Membrane Science, 2014, 458: 14–26
https://doi.org/10.1016/j.memsci.2014.01.048
|
49 |
J H Kim, Y M Lee. Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. Journal of Membrane Science, 2001, 193(2): 209–225
https://doi.org/10.1016/S0376-7388(01)00514-2
|
50 |
C W Tu, S W Kuo. Using FTIR spectroscopy to study the phase transitions of poly (N-isopropylacrylamide) in tetrahydrofuran-d8/D2O. Journal of Polymer Research, 2014, 21(6): 476
https://doi.org/10.1007/s10965-014-0476-6
|
51 |
J Berg, J Tymoczko, L Stryer. Secondary structure: Polypeptide chains can fold into regular structures such as the alpha helix, the beta sheet, and turns and loops Biochemistry. New York: WH Freeman, 2002
|
52 |
N S Murthy. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. Journal of Polymer Science. Part B, Polymer Physics, 2006, 44(13): 1763–1782
https://doi.org/10.1002/polb.20833
|
53 |
X Zheng, Q Lin, P Jiang, Y Li, J Li. Ionic liquids incorporating polyamide 6: Miscibility and physical properties. Polymers, 2018, 10(5): 562
https://doi.org/10.3390/polym10050562
|
54 |
L Schroeder, S L Cooper. Hydrogen bonding in polyamides. Journal of Applied Physics, 1976, 47(10): 4310–4317
https://doi.org/10.1063/1.322432
|
55 |
R S Murali, K P Kumar, A Ismail, S Sridhar. Nanosilica and H-Mordenite incorporated poly(ether-block-amide)-1657 membranes for gaseous separations. Microporous and Mesoporous Materials, 2014, 197: 291–298
https://doi.org/10.1016/j.micromeso.2014.07.001
|
56 |
Y Dai, X Ruan, Z Yan, K Yang, M Yu, H Li, W Zhao, G He. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Separation and Purification Technology, 2016, 166: 171–180
https://doi.org/10.1016/j.seppur.2016.04.038
|
57 |
N A H M Nordin, S M Racha, T Matsuura, N Misdan, N A A Sani, A F Ismail, A Mustafa. Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: Synthesis and preparation. RSC Advances, 2015, 5(54): 43110–43120
https://doi.org/10.1039/C5RA02230D
|
58 |
N A H M Nordin, A F Ismail, A Mustafa, R S Murali, T Matsuura. Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation. RSC Advances, 2015, 5(38): 30206–30215
https://doi.org/10.1039/C5RA00567A
|
59 |
F Dorosti, M Omidkhah, R Abedini. Enhanced CO2/CH4 separation properties of asymmetric mixed matrix membrane by incorporating nano-porous ZSM-5 and MIL-53 particles into Matrimid®5218. Journal of Natural Gas Science and Engineering, 2015, 25: 88–102
https://doi.org/10.1016/j.jngse.2015.04.033
|
60 |
A Ehsani, M Pakizeh. Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66: 414–423
https://doi.org/10.1016/j.jtice.2016.07.005
|
61 |
M M Rahman, V Filiz, S Shishatskiy, C Abetz, S Neumann, S Bolmer, M M Khan, V Abetz. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation. Journal of Membrane Science, 2013, 437: 286–297
https://doi.org/10.1016/j.memsci.2013.03.001
|
62 |
D Shekhawat, D R Luebke, H W Pennline. A review of carbon dioxide selective membranes: A topical report. Pittsburgh, PA: National Energy Technology Laboratory, United States Dwpartment of Energy, 2003
|
63 |
H Rabiee, A Ghadimi, T Mohammadi. Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation. Journal of Membrane Science, 2015, 476: 286–302
https://doi.org/10.1016/j.memsci.2014.11.037
|
64 |
H Rabiee, S Meshkat Alsadat, M Soltanieh, S A Mousavi, A Ghadimi. Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2015, 27: 223–239
https://doi.org/10.1016/j.jiec.2014.12.039
|
65 |
S Takahashi, D Paul. Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix. Polymer, 2006, 47(21): 7519–7534
https://doi.org/10.1016/j.polymer.2006.08.029
|
66 |
S Matteucci, V A Kusuma, D Sanders, S Swinnea, B D Freeman. Gas transport in TiO2 nanoparticle-filled poly(1-trimethylsilyl-1-propyne). Journal of Membrane Science, 2008, 307(2): 196–217
https://doi.org/10.1016/j.memsci.2007.09.035
|
67 |
A Shariati, M Omidkhah, M Z Pedram. New permeation models for nanocomposite polymeric membranes filled with nonporous particles. Chemical Engineering Research & Design, 2012, 90(4): 563–575
https://doi.org/10.1016/j.cherd.2011.08.010
|
68 |
A F Ismail, T Kusworo, A Mustafa, H Hasbulla. Understanding the solution-diffusion mechanism in gas separation membrane for engineering students. Regional Conference on Engineering Education RCEE2005, 2005
|
69 |
E C Suloff. Sorption behavior of an aliphatic series of aldehydes in the presence of poly(ethylene terephthalate) blends containing aldehyde scavenging agents. Dissertation for the Doctoral Degree. Blacksburg, Virginia: Virginia Tech, 2002, 29–99
|
70 |
M Sadeghi, M Mehdi T, B Ghalei, M Shafiei. Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane. Journal of Membrane Science, 2013, 427: 21–29
https://doi.org/10.1016/j.memsci.2012.07.036
|
71 |
R Gharibi, A Ghadimi, H Yeganeh, B Sadatnia, M Gharedaghi. Preparation and evaluation of hybrid organic-inorganic poly (urethane-siloxane) membranes with build-in poly(ethylene glycol) segments for efficient separation of CO2/CH4 and CO2/H2. Journal of Membrane Science, 2018, 548: 572–582
https://doi.org/10.1016/j.memsci.2017.11.058
|
72 |
G Maier. Gas separation by polymer membranes: Beyond the border. Angewandte Chemie International Edition, 2013, 52(19): 4982–4984
https://doi.org/10.1002/anie.201302312
|
73 |
D Zhao, J Ren, H Li, X Li, M Deng. Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes. Journal of Membrane Science, 2014, 467: 41–47
https://doi.org/10.1016/j.memsci.2014.05.009
|
74 |
M H Jazebizadeh, S Khazraei. Investigation of methane and carbon dioxide gases permeability through PEBAX/PEG/ZnO nanoparticle mixed matrix membrane. Silicon, 2017, 9(5): 775–784
https://doi.org/10.1007/s12633-016-9435-7
|
75 |
R S Murali, A F Ismail, M A Rahman, S Sridhar. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Separation and Purification Technology, 2014, 129: 1–8
https://doi.org/10.1016/j.seppur.2014.03.017
|
76 |
V Nafisi, M B Hägg. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014, 459: 244–255
https://doi.org/10.1016/j.memsci.2014.02.002
|
77 |
S Feng, J Ren, K Hua, H Li, X Ren, M Deng. Poly(amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation. Separation and Purification Technology, 2013, 116: 25–34
https://doi.org/10.1016/j.seppur.2013.05.002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|