|
|
Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces |
Daniil Marinov( ) |
IMEC, 3001 Leuven, Belgium |
|
|
Abstract Reactions of atoms and molecules on chamber walls in contact with low temperature plasmas are important in various technological applications. Plasma-surface interactions are complex and relatively poorly understood. Experiments performed over the last decade by several groups prove that interactions of reactive species with relevant plasma-facing materials are characterized by distributions of adsorption energy and reactivity. In this paper, we develop a kinetic Monte Carlo (KMC) model that can effectively handle chemical kinetics on such heterogenous surfaces. Using this model, we analyse published adsorption-desorption kinetics of chlorine molecules and recombination of oxygen atoms on rotating substrates as a test case for the KMC model.
|
Keywords
plasma-surface interaction
kinetic Monte Carlo
plasma nano technology
|
Corresponding Author(s):
Daniil Marinov
|
Just Accepted Date: 24 June 2019
Online First Date: 27 August 2019
Issue Date: 04 December 2019
|
|
1 |
V M Donnelly, A Kornblit. Plasma etching: Yesterday, today, and tomorrow. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2013, 31(5): 050825–050872
https://doi.org/10.1116/1.4819316
|
2 |
D Zhang, M J Kushner. Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2001, 19(2): 524–538
https://doi.org/10.1116/1.1349728
|
3 |
P Brichon, E Despiau-Pujo, O Mourey, O Joubert. Key plasma parameters for nanometric precision etching of Si films in chlorine discharges. Journal of Applied Physics, 2015, 118(5): 053303–053312
https://doi.org/10.1063/1.4928294
|
4 |
M E Barone, D B Graves. Molecular-dynamics simulations of direct reactive ion etching of silicon by fluorine and chlorine. Journal of Applied Physics, 1995, 78(11): 6604–6617
https://doi.org/10.1063/1.360482
|
5 |
J Benedikt, R V Woen, S L M van Mensfoort, V Perina, J Hong, M C M van de Sanden. Plasma chemistry during the deposition of a-C:H films and its influence on film properties. Diamond and Related Materials, 2003, 12(2): 90–97
https://doi.org/10.1016/S0925-9635(03)00008-6
|
6 |
D G Tsalikis, C Baig, V G Mavrantzas, E Amanatides, D Mataras. A hybrid kinetic Monte Carlo method for simulating silicon films grown by plasma-enhanced chemical vapor deposition. Journal of Chemical Physics, 2013, 139(20): 204706–204719
https://doi.org/10.1063/1.4830425
|
7 |
M Crose, J Sang-Il Kwon, M Nayhouse, D Ni, P D Christofides. Multiscale modeling and operation of PECVD of thin film solar cells. Chemical Engineering Science, 2015, 136: 50–61
https://doi.org/10.1016/j.ces.2015.02.027
|
8 |
I Zyulkov, M Krishtab, S De Gendt, S Armini. Selective Ru ALD as a catalyst for sub-seven-nanometer bottom-up metal interconnects. ACS Applied Materials & Interfaces, 2017, 9(36): 31031–31041
https://doi.org/10.1021/acsami.7b07811
|
9 |
A von Keudell, W Möller. A combined plasma-surface model for the deposition of C:H films from a methane plasma. Journal of Applied Physics, 1994, 75(12): 7718–7727
https://doi.org/10.1063/1.356603
|
10 |
E C Neyts. PECVD growth of carbon nanotubes: From experiment to simulation. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures : Processing, Measurement, and Phenomena : An Official Journal of the American Vacuum Society, 2012, 30: 030803–030819
|
11 |
E C Neyts, K Ostrikov, M K Sunkara, A Bogaerts. Plasma catalysis: Synergistic effects at the nanoscale. Chemical Reviews, 2015, 115(24): 13408–13446
https://doi.org/10.1021/acs.chemrev.5b00362
|
12 |
H H Kim. Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects. Plasma Processes and Polymers, 2004, 1(2): 91–110
https://doi.org/10.1002/ppap.200400028
|
13 |
E C Neyts, A Bogaerts. Understanding plasma catalysis through modelling and simulation—a review. Journal of Physics. D, Applied Physics, 2014, 47(22): 224010–224027
https://doi.org/10.1088/0022-3727/47/22/224010
|
14 |
R Meana-Pañeda, Y Paukku, K Duanmu, P Norman, T E Schwartzentruber, D G Truhlar. Atomic oxygen recombination at surface defects on reconstructed (0001) α-quartz exposed to atomic and molecular oxygen. Journal of Physical Chemistry C, 2015, 119(17): 9287–9301
https://doi.org/10.1021/acs.jpcc.5b00120
|
15 |
E C Neyts, P Brault. Molecular dynamics simulations for plasma-surface interactions. Plasma Processes and Polymers, 2017, 14(1-2): 1600145–1600164
https://doi.org/10.1002/ppap.201600145
|
16 |
D Marinov, C Teixeira, V Guerra. Deterministic and Monte Carlo methods for simulation of plasma-surface interactions. Plasma Processes and Polymers, 2017, 14(1-2): 1600175–1600192
https://doi.org/10.1002/ppap.201600175
|
17 |
V Guerra, D Marinov. Dynamical Monte Carlo methods for plasma-surface reactions. Plasma Sources Science & Technology, 2016, 25(4): 045001–045016
https://doi.org/10.1088/0963-0252/25/4/045001
|
18 |
H M Cuppen, L J Karssemeijer, T Lamberts. The kinetic Monte Carlo method as a way to solve the master equation for interstellar grain chemistry. Chemical Reviews, 2013, 113(12): 8840–8871
https://doi.org/10.1021/cr400234a
|
19 |
P Norman, T E Schwartzentruber, H Leverentz, S Luo, R Meana-Paneda, Y Paukku, D G Truhlar. The structure of silica surfaces exposed to atomic oxygen. Journal of Physical Chemistry C, 2013, 117(18): 9311–9321
https://doi.org/10.1021/jp4019525
|
20 |
M Stamatakis. Kinetic modelling of heterogeneous catalytic systems. Journal of Physics Condensed Matter, 2015, 27(1): 013001–013028
https://doi.org/10.1088/0953-8984/27/1/013001
|
21 |
M Rutigliano, C Zazza, N Sanna, A Pieretti, G Mancini, V Barone, M Cacciatore. Oxygen adsorption on β-cristobalite polymorph: ab initio modeling and semiclassical time-dependent dynamics. Journal of Physical Chemistry A, 2009, 113(52): 15366–15375
https://doi.org/10.1021/jp9066026
|
22 |
J Guha, P Kurunczi, L Stafford, V M Donnelly, Y K Pu. In-situ surface recombination measurements of oxygen atoms on anodized aluminum in an oxygen plasma. Journal of Physical Chemistry C, 2008, 112(24): 8963–8968
https://doi.org/10.1021/jp800788a
|
23 |
V M Donnelly, J Guha, L Stafford. Critical review: Plasma-surface reactions and the spinning wall method. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2011, 29(1): 010801–010825
https://doi.org/10.1116/1.3517478
|
24 |
J Guha, V M Donnelly. Studies of chlorine-oxygen plasmas and evidence for heterogeneous formation of ClO and ClO2. Journal of Applied Physics, 2009, 105(11): 113307–113316
https://doi.org/10.1063/1.3129543
|
25 |
D Marinov, O Guaitella, A Rousseau, Y Ionikh. Production of molecules on a surface under plasma exposure: Example of NO on pyrex. Journal of Physics. D, Applied Physics, 2010, 43(11): 115203–115209
https://doi.org/10.1088/0022-3727/43/11/115203
|
26 |
V Guerra, D Marinov, O Guaitella, A Rousseau. NO oxidation on plasma pretreated Pyrex: The case for a distribution of reactivity of adsorbed O atoms. Journal of Physics. D, Applied Physics, 2014, 47(22): 224012–224023
https://doi.org/10.1088/0022-3727/47/22/224012
|
27 |
O Guaitella, C Lazzaroni, D Marinov, A Rousseau. Evidence of atomic adsorption on TiO2 under plasma exposure and related C2H2 surface reactivity. Applied Physics Letters, 2010, 97(1): 011502–011504
https://doi.org/10.1063/1.3462295
|
28 |
D Marinov, O Guaitella, T de los Arcos, A von Keudell, A Rousseau. Adsorption and reactivity of nitrogen atoms on silica surface under plasma exposure. Journal of Physics. D, Applied Physics, 2014, 47(47): 475204–475214
https://doi.org/10.1088/0022-3727/47/47/475204
|
29 |
Y C Kim, M Boudart. Recombination of oxygen, nitrogen, and hydrogen atoms on silica: Kinetics and mechanism. Langmuir, 1991, 7(12): 2999–3005
https://doi.org/10.1021/la00060a016
|
30 |
V Guerra. Analytical model of heterogeneous atomic recombination on silicalike surfaces. IEEE Transactions on Plasma Science, 2007, 35(5): 1397–1412
https://doi.org/10.1109/TPS.2007.902028
|
31 |
L Stafford, J Guha, R Khare, S Mattei, O Boudreault, B Clain, V M Donnelly. Experimental and modeling study of O and Cl atoms surface recombination reactions in O2 and Cl2 plasmas. Pure and Applied Chemistry, 2010, 82(6): 1301–1315
https://doi.org/10.1351/PAC-CON-09-11-02
|
32 |
V Guerra, F M Dias, J Loureiro, P A Sá, P Supiot, C, Dupret T Popov. Time-dependence of the electron energy distribution function in the nitrogen afterglow. IEEE Transactions on Plasma Science, 2003, 31(4): 542–552
https://doi.org/10.1109/TPS.2003.815485
|
33 |
D T Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 1976, 22(4): 403–434
https://doi.org/10.1016/0021-9991(76)90041-3
|
34 |
P F Kurunczi, J Guha, V M Donnelly. Recombination reactions of oxygen atoms on an anodized aluminum plasma reactor wall, studied by a spinning wall method. Journal of Physical Chemistry B, 2005, 109(44): 20989–20998
https://doi.org/10.1021/jp054190h
|
35 |
L Stafford, J Guha, V M Donnelly. Recombination probability of oxygen atoms on dynamic stainless steel surfaces in inductively coupled O2 plasmas. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2008, 26(3): 455–461
https://doi.org/10.1116/1.2902953
|
36 |
J Guha, R Khare, L Stafford, V M Donnelly, S Sirard, E A Hudson. Effect of Cu contamination on recombination of O atoms on a plasma-oxidized silicon surface. Journal of Applied Physics, 2009, 105(11): 113309–113316
https://doi.org/10.1063/1.3143107
|
37 |
C Janssen, B Tuzson. Isotope evidence for ozone formation on surfaces. Journal of Physical Chemistry A, 2010, 114(36): 9709–9719
https://doi.org/10.1021/jp1017899
|
38 |
D Marinov, O Guaitella, J P Booth, A Rousseau. Direct observation of ozone formation on SiO2 surfaces in O2 discharges. Journal of Physics. D, Applied Physics, 2013, 46(3): 032001–032004
https://doi.org/10.1088/0022-3727/46/3/032001
|
39 |
D V Lopaev, E M Malykhin, S M Zyryanov. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone. Journal of Physics. D, Applied Physics, 2010, 44(1): 015202–015217
https://doi.org/10.1088/0022-3727/44/1/015202
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|