Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (2) : 188-215    https://doi.org/10.1007/s11705-019-1872-6
REVIEW ARTICLE
Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes
Yujie Ban1, Meng Zhao1,2, Weishen Yang1()
1. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(7952 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A low-carbon economy calls for CO2 capture technologies. Membrane separations represent an energy-efficient and environment-friendly process compared with distillations and solvent absorptions. Metal-organic frameworks (MOFs), as a novel type of porous materials, are being generated at a rapid and growing pace, which provide more opportunities for high-efficiency CO2 capture. In this review, we illustrate a conceptional framework from material design and membrane separation application for CO2 capture, and emphasize two importance themes, namely (i) design and modification of CO2-philic MOF materials that targets secondary building units, pore structure, topology and hybridization and (ii) construction of crack-free membranes through chemical epitaxy growth of active building blocks, interfacial assembly, ultrathin two-dimensional nanosheet assembly and mixed-matrix integration strategies, which would give rise to the most promising membrane performances for CO2 capture, and be expected to overcome the bottleneck of permeability-selectivity limitations.

Keywords CO2 capture      CO2-philic MOFs      crack-free membranes     
Corresponding Author(s): Weishen Yang   
Just Accepted Date: 26 September 2019   Online First Date: 13 January 2020    Issue Date: 24 March 2020
 Cite this article:   
Yujie Ban,Meng Zhao,Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1872-6
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I2/188
Fig.1  Illustration of the conceptional framework from material design and separation application for CO2 capture, involving strategies towards design of CO2-philic MOFs and construction of crack-free membranes to achieve high-efficient CO2 capture. The images in the first column from top to bottom: reproduced with permission [13], copyright 2014, American Chemical Society; reproduced with permission [14], copyright 2015, Wiley-VCH; reproduced with permission [15], copyright 2015, American Chemical Society; reproduced with permission [16], copyright 2018, American Chemical Society. The images in the second column from top to bottom: reproduced with permission [17], copyright 2015, Wiley-VCH; reproduced with permission [18], copyright 2018, American Chemical Society; reproduced with permission [19], copyright 2017, Wiley-VCH; reproduced with permission [20], copyright 2018, Elsevier.
Fig.2  M2+ and M3+ combinations for CPM-200 [29]. Copyright 2016, American Chemical Society.
MOFs CO2 uptake capacity/(mmol·g–1) Condition Qst/(kJ·mol–1) CO2/CH4 CO2/N2 Method Ref.
HKUST-1 4.44 295 K, 1 bar 5.5 20.2 Henry’s law [26]
Mg-MOF-74 8.0 296 K, 1 bar 47 (41.4)a) [27,28]
Co-MOF-74 7.0 296 K, 1 bar 37 [27]
Zn-MOF-74 5.1 296 K, 1 bar [27]
Ni-MOF-74 5.8 296 K, 1 bar 41 [27]
Ti-MOF-74 (50.1)a) [28]
V-MOF-74 (47.3)a) [28]
CPM-200-Fe/Mg 5.68 298 K, 1 bar 34.3 201 (50:50) (273 K) IAST [29]
CPM-200-V/Mg 3.59 298 K, 1 bar 79.6 406 (50:50) (273 K) IAST [29]
HHU-5 4.78 298 K, 1 bar 25.6 6.2 (20:80)b) 21.2 (20:80)b) IAST [39]
IFMC-1 2.7 298 K, 1 bar 30.7 26.9 Capacity ratioc) [40]
Cu-TDPAT 5.89 298 K, 1 bar 42.2 79 (10:90)b) IAST [41]
bio-MOF-11 4.1 298 K, 1 bar 45 75 Henry’s law [45]
ZIF-78 2.7d) 298 K, 1 bar 10.6 50 Henry’s law [46]
ZIF-81 2.2d) 298 K, 1 bar 5.7 24 Henry’s law [46]
ZIF-79 1.6d) 298 K, 1 bar 5.4 23 Henry’s law [46]
ZIF-69 2.2d) 298 K, 1 bar 5.1 20 Henry’s law [46]
ZIF-68 1.7d) 298 K, 1 bar 5.0 18 Henry’s law [46]
ZIF-82 2.2d) 298 K, 1 bar 9.6 35 Henry’s law [46]
ZIF-70 1.1d) 298 K, 1 bar 5.2 17 Henry’s law [46]
Tab.1  CO2 adsorption capacity, heat and selectivity of typical MOFs
Fig.3  (a) Synthetic pathway for the functionalized organic linkers used in the synthesis of IRMOF-74-III. This methodology allowed us to prepare -CH3, -NH2, -CH2NHBoc and -CH2NMeBoc (5a–5d) functionalized linkers. On the right is shown a schematic representation of the IRMOF-74-III pore functionalized with the organic linkers 5a-5d and post-synthetic deprotection of Boc groups. Color code: C in gray, O in red, functional groups in purple, Mg as blue polyhedra. (b) Comparison of CO2 uptake at 25°C for IRMOF-74-III-CH3 (gray), -NH2 (green), -CH2NH2 (red), -CH2NHMe (blue), -CH2NHBoc (purple), and -H2NMeBoc (cyan). (c) Expansion of the low pressure range (<1 Torr). CO2 isotherms at 25°C for IRMOF-74-III-CH2NH2. (d) Breakthrough curves for IRMOF-74-III-CH3 under dry conditions (gray empty markers) and wet conditions (gray filled markers), and for IRMOF-74-III-CH2NH2 under dry conditions (red empty markers) and in the presence of water (red filled markers). Reproduced with permission [13], copyright 2014, American Chemical Society.
Fig.4  (a) Illustration of pore space partition through symmetry matching regulated ligand insertion viewed along the c axis [56]. Copyright 2015, American Chemical Society. (b) Illustration of the cavity-occupying concept for tailoring the molecular sieving properties of ZIF-8 by incorporation of RTILs. The cut-off size shifts from the aperture size of six-membered ring to the reduced effective cage size by confinement of [bmim][Tf2N] in a ZIF-8’s SOD cage [14]. Copyright 2015, Wiley-VCH.
Fig.5  (a) Schematic showing the new pek-type pillaring topology observed in pek-MOF-1; (b) schematic showing the aea-type pillaring topology observed in the aea-MOF-1 [15]. Copyright 2015, American Chemical Society.
Fig.6  Schematic diagram of grafting MIL-101(Cr) with three different amines [68]. Copyright 2018, American Chemical Society.
Fig.7  (a) Proposed core-shell type [HEMIM][DCA]/ZIF-8 structure; (b) TEM images of [HEMIM][DCA]/ZIF-8 composite. Region in red-box in panel (i) is magnified in panel (ii). Panels (iii) and (iv) present higher magnification images at different locations focusing on the IL shell, respectively, where numbers on images represent the corresponding IL shell thickness at that location. (c) Ideal adsorption selectivity and IAST-predicted selectivities of ZIF-8 and [HEMIM][DCA]/ZIF-8 composite at room temperature. Reproduced with permission [16], copyright 2018, American Chemical Society.
Fig.8  Schematic representation of the synthesis of covalently linked grapheme/MOF composites [70]. Copyright 2016, Wiley-VCH.
Fig.9  HRTEM/EDX analysis of the mixed-metal materials Co-ZIF-108 (a) and Cu-ZIF-108 (b) [71]. Copyright 2014, Wiley-VCH.
Fig.10  (a) Schematic diagram of the preparation of Ni2(L-Asp)2P (P= bipy or pz) membranes on nickel screens. Ni, cyan; C, gray; N, blue; O, red; the H atoms are omitted for clarity. (b) Large-area top-view SEM images of compound 1 and JUC-150 membranes showed on the left. Reproduced with permission [83], copyright 2014, The Royal Society of Chemistry.
Fig.11  (a) Schematic illustration of the preparation procedure of highly oriented Zn2(bim)4 nanosheet membranes by epitaxy growth of ZnO as nanometer-level ABBs with assistance of GO [97]. Copyright 2018, The Royal Society of Chemistry. (b) Procedure for the preparation of highly c-oriented NH2-MIL-125 (Ti) membranes by epitaxy growth of NH2-MIL-125 (Ti) as nanometer-level ABBs (red spheres: Ti4+ ions; black rods: NH2-BDC (H2BDC= terephthalic acid)) [98]. Copyright 2018, Wiley-VCH.
Fig.12  (a) Synthesis of dual-ligand ZIF-78 with GME topology from mono-ligand ZIF-108 with SOD topology as ABBs; (b) hetero-structural epitaxy growth based on ZIF-108 as nanometer-level ABBs into the oriented ZIF-78 film. Reproduced with permission [49], copyright 2016, Elsevier.
Fig.13  (a) Epitaxy growth based on LDH as micrometer-level ABBs into ZIF-8 membranes [17]. Copyright 2015, Wiley-VCH. (b) Epitaxy growth based on COF-300 as micrometer-level ABBs into Zn2(bdc)2(dabco) membranes [101]. Copyright 2016, American Chemical Society. (c) Epitaxy growth based on ZnO as micrometer-level ABBs into ZIF-8 membrane under ligand-vapor treatment [102]. Copyright 2018, American Association for the Advancement of Science.
Fig.14  Scheme depicting the interfacial assembly method coupling with microfluidic processing for MOF membranes in hollow fibers. (a) Side view of a series of fibers mounted in designed reactor. (b) The Zn2+ ions are supplied in a 1-octanol solution (light red) flowing through the bore of the fiber, whereas the methylimidazole linkers are supplied on the outer (shell) side of the fiber in an aqueous solution (light blue). (c) Magnified view of fiber support during synthesis. In this example, the membrane forms on the inner surface of the fiber by reaction of the two precursors to form a polycrystalline ZIF-8 layer (dark blue) [110]. Copyright 2014, American Association for the Advancement of Science.
Fig.15  Top-down fabrication of MOF nanosheets [112]. Copyright 2014, American Association for the Advancement of Science.
Fig.16  Morphology and H2/CO2 separation performance of ultrathin MOF membranes by nanosheet assembly [112]. Copyright 2014, American Association for the Advancement of Science.
Fig.17  (a) Four-layered stacking diagram of Zn2(bim)3 precursors along the c-axis. Zn, green; N, orange; C, gray; H, white; O, red. The Zn coordination polyhedra are displayed in green, the layers with benzimidazole ligands along the c-axis are depicted in purple, and the others in yellow. (b) Two-layered Zn2(bim)3 structure highlighting the AB stacking mode. (c) Single-layered nanosheet with the benzo-rings upwards, highlighting the triply-linked coordination of Zn nodes with benzimdazole ligands (H atoms are omitted for clarity). Zn, green; N, orange; C, gray. (d) Binary gas separation performance of equimolar H2/CO2 through the Zn2(bim)3 nanosheet membranes prepared at different temperatures via hot-drop coating method. Reproduced with permission [19], copyright 2017, Wiley-VCH.
Fig.18  Illustration of interphase structure of membranes with matrix phase separately integrated with (a) MOF and (b) traditional inorganic particles.
Fig.19  Scheme demonstrating the favorable interactions between the Matrimid® polymer and modified UiO-66-NH2 [120]. Copyright 2015, The Royal Society of Chemistry.
Fig.20  (a) Post-synthetic modification of UiO-66-NH2 with methacrylic anhydride and subsequent polymerization with butyl methacrylate (BMA) by irradiation with UV light [127]. Copyright 2015, Wiley-VCH. (b) Formation of the ZIF-8–PDMS nanohybrid composite membrane by the simultaneous spray self-assembly technique [119]. Copyright 2014, Wiley-VCH.
Fig.21  (A) Schematic illustration of the fabrication procedure of the ZIF-8-PMPS MMMs by the ‘‘plugging-filling’’ method. (B) SEM images of (a) top and (b) cross-sectional images of stainless-steel substrate with mesh pores; (c) top images of ZIF-8 nanoparticles plugged into the substrate; (d) top and (e) cross-sectional SEM images of ZIF-8-PMPS MMMs; (f)–(i) EDXS-mappings of (d) and (e) (Zn signal: purple; Fe signal: yellow; Si signal: cyan). Reproduced with permission [132], copyright 2012, Elsevier.
1 E A G Schuur, A D McGuire, C Schädel, G Grosse, J W Harden, D J Hayes, G Hugelius, C D Koven, P Kuhry, D M Lawrence, et al. Climate change and the permafrost carbon feedback. Nature, 2015, 520(7546): 171–179
https://doi.org/10.1038/nature14338
2 M Aghaie, N Rezaei, S Zendehboudi. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renewable & Sustainable Energy Reviews, 2018, 96: 502–525
https://doi.org/10.1016/j.rser.2018.07.004
3 C A Trickett, A Helal, B A Al Maythalony, Z H Yamani, K E Cordova, O M Yaghi. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials, 2017, 2(8): 17045
https://doi.org/10.1038/natrevmats.2017.45
4 K Yu, W A Mitch, N Dai. Nitrosamines and nitramines in amine-based carbon dioxide capture systems: Fundamentals, engineering implications, and knowledge gaps. Environmental Science & Technology, 2017, 51(20): 11522–11536
https://doi.org/10.1021/acs.est.7b02597
5 X Huang, J Zhang, X Chen. [Zn(bim)2]·(H2O)1.67: A metal-organic open-framework with sodalite topology. Chinese Science Bulletin, 2003, 48(15): 1531–1534
6 A Phan, C J Doonan, F J Uribe-Romo, C B Knobler, M O’Keeffe, O M Yaghi. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research, 2010, 43(1): 58–67
https://doi.org/10.1021/ar900116g
7 S S Y Chui, S M F Lo, J P H Charmant, A G Orpen, I D Williams. A chemically functionalizable nanoporous material [Cu3(TMA)2 (H2O)3]n. Science, 1999, 283(5405): 1148–1150
https://doi.org/10.1126/science.283.5405.1148
8 E Mohamed, K Jaheon, R Nathaniel, V David, W Joseph, O K Michael, O M Yaghi. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295(5554): 469–472
https://doi.org/10.1126/science.1067208
9 F Millange, C Serre, G Férey. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x. Chemical Communications, 2002, 8(8): 822–823
https://doi.org/10.1039/b201381a
10 J H Cavka, S Jakobsen, U Olsbye , N Guillou , C Lamberti , S Bordiga, K P Lillerud. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851
https://doi.org/10.1021/ja8057953
11 H Reinsch, M A van der Veen, B Gil, B Marszalek, B Verbiest, D de Vos, N Stock. Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chemistry of Materials, 2013, 25(1): 17–26
https://doi.org/10.1021/cm3025445
12 D S Sholl, R P Lively . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
https://doi.org/10.1038/532435a
13 A M Fracaroli, H Furukawa, M Suzuki, M Dodd, S Okajima, F Gándara, J A Reimer, O M Yaghi. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. Journal of the American Chemical Society, 2014, 136(25): 8863–8866
https://doi.org/10.1021/ja503296c
14 Y Ban, Z Li, Y Li, Y Peng, H Jin, W Jiao, A Guo, P Wang, Q Yang, C Zhong, W Yang. Confinement of ionic liquids in nanocages: Tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture. Angewandte Chemie International Edition, 2015, 54(51): 15483–15487
https://doi.org/10.1002/anie.201505508
15 D Alezi, A M P Peedikakkal, L J Weselinski, V Guillerm, Y Belmabkhout, A J Cairns, Z Chen, L Wojtas, M Eddaoudi. Quest for highly connected metal-organic framework platforms: Rare-earth polynuclear clusters versatility meets net topology needs. Journal of the American Chemical Society, 2015, 137(16): 5421–5430
https://doi.org/10.1021/jacs.5b00450
16 M Zeeshan, V Nozari, M B Yagci, T Isik, U Unal, V Ortalan, S Keskin, A Uzun. Core-shell type ionic liquid/metal organic framework composite: An exceptionally high CO2/CH4 selectivity. Journal of the American Chemical Society, 2018, 140(32): 10113–10116
https://doi.org/10.1021/jacs.8b05802
17 Y Liu, J H Pan, N Wang, F Steinbach, X Liu, J Caro. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal–organic frameworks. Angewandte Chemie International Edition, 2015, 54(10): 3028–3032
https://doi.org/10.1002/anie.201411550
18 H T Kwon, H K Jeong. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. Journal of the American Chemical Society, 2013, 135(29): 10763–10768
https://doi.org/10.1021/ja403849c
19 Y Peng, Y Li, Y Ban, W Yang. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie International Edition, 2017, 56(33): 9757–9761
https://doi.org/10.1002/anie.201703959
20 A Guo, Y Ban, K Yang, W Yang. Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation. Journal of Membrane Science, 2018, 562: 76–84
https://doi.org/10.1016/j.memsci.2018.05.032
21 Y Li, X Zhang, J Lan, P Xu, J Sun. Porous Zn(Bmic)(AT) MOF with abundant amino groups and open metal sites for efficient capture and transformation of CO2. Inorganic Chemistry, 2019, 58(20): 13917–13926
https://doi.org/10.1021/acs.inorgchem.9b01762
22 Y Abdoli, M Razavian , S Fatemi. Bimetallic Ni–Co-based metal–organic framework: An open metal site adsorbent for enhancing CO2 capture. Applied Organometallic Chemistry, 2019, 33(8): e5004 doi:10.1002aoc.5004
23 W L Queen, C M Brown, D K Britt, P Zajdel, M R Hudson, O M Yaghi. Site-specific CO2 adsorption and zero thermal expansion in an anisotropic pore network. Journal of Physical Chemistry C, 2011, 115(50): 24915–24919
https://doi.org/10.1021/jp208529p
24 I Strauss, A Mundstock, D Hinrichs, R Himstedt, A Knebel, C Reinhardt, D Dorfs, J Caro. The interaction of guest molecules with Co-MOF-74: A vis/NIR and raman approach. Angewandte Chemie International Edition, 2018, 57(25): 7434–7439
https://doi.org/10.1002/anie.201801966
25 W Wong-Ng, I Levin, J A Kaduk, L Espinal, H Wu. CO2 capture and positional disorder in Cu3(1,3,5-benzenetricarboxylate)2: An in situ laboratory X-ray powder diffraction study. Journal of Alloys and Compounds, 2016, 656: 200–205
https://doi.org/10.1016/j.jallcom.2015.09.078
26 Q M Wang, D Shen, M Bülow, M L Lau, S Deng, F R Fitch, N O Lemcoff, J Semanscin. Metallo-organic molecular sieve for gas separation and purification. Microporous and Mesoporous Materials, 2002, 55(2): 217–230
https://doi.org/10.1016/S1387-1811(02)00405-5
27 S R Caskey, A G Wong-Foy, A J Matzger. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 2008, 130(33): 10870–10871
https://doi.org/10.1021/ja8036096
28 J Park, H Kim, S S Han, Y Jung. Tuning metal-organic frameworks with open-metal sites and its origin for enhancing CO2 affinity by metal substitution. Journal of Physical Chemistry Letters, 2012, 3(7): 826–829
https://doi.org/10.1021/jz300047n
29 Q G Zhai, X Bu, C Mao, X Zhao, P Feng. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks. Journal of the American Chemical Society, 2016, 138(8): 2524–2527
https://doi.org/10.1021/jacs.5b13491
30 P Q Liao, W X Zang, J P Zhang , X M Chen. Efficient purification of ethene by an ethane-trapping metal-organic framework. Nature Communications, 2015, 6 : 8697
https://doi.org/10.1038/ncomms9697
31 D D Zhou, P Chen, C Wang, S S Wang, Y Du, H Yan, Z M Ye, C T He, R K Huang, Z W Mo, N Y Huang, J P Zhang. Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nature Materials, 2019, 18: 994-998
https://doi.org/10.1038/s41563-019-0427-z
32 J P Zhang, X M Chen. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. Journal of the American Chemical Society, 2008, 130(18): 6010–6017
https://doi.org/10.1021/ja800550a
33 P Q Liao, H Chen, D D Zhou, S Liu, C He, Z Rui, H Ji, J Zhang, X M Chen. Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy & Environmental Science, 2015, 8(3): 1011-1016
https://doi.org/10.1039/C4EE02717E
34 P Q Liao, A X Zhu, W X Zhang, J P Zhang, X M Chen. Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours. Nature Communications, 2015, 6 : 6350
https://doi.org/10.1038/ncomms7350
35 J P Zhang, X M Chen. Crystal engineering of binary metal imidazolate and triazolate frameworks. Chemical Communications, 2006, (16): 1689–1699
https://doi.org/10.1039/b516367f
36 X L Qi, R B Lin, Q Chen, J B Lin, J P Zhang, X M Chen. A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chemical Science, 2011, 2(11): 2214–2218
https://doi.org/10.1039/C1SC00421B
37 X C Huang, Y Y Lin, J P Zhang, X M Chen. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition, 2006, 45(10): 1557–1559
https://doi.org/10.1002/anie.200503778
38 X J Wang, P Z Li, Y Chen, Q Zhang, H Zhang, X X Chan, R Ganguly, Y Li, J Jiang, Y Zhao. A rationally designed nitrogen-rich metal-organic framework and its exceptionally high CO2 and H2 uptake capability. Scientific Report, 2013, 3: 1149 doi:10.1038/srep01149
39 Z Lu, F Meng, L Du, W Jiang, H Cao, J Duan, H Huang, H He. A free tetrazolyl decorated metal-organic framework exhibiting high and selective CO2 adsorption. Inorganic Chemistry, 2018, 57(22): 14018–14022
https://doi.org/10.1021/acs.inorgchem.8b02031
40 J S Qin, D Y Du, W L Li, J P Zhang, S L Li, Z M Su, X L Wang, Q Xu, K Z Shao, Y Q Lan. N-rich zeolite-like metal-organic framework with sodalite topology: High CO2 uptake, selective gas adsorption and efficient drug delivery. Chemical Science (Cambridge), 2012, 3(6): 2114–2118
https://doi.org/10.1039/c2sc00017b
41 B Li, Z Zhang, Y Li, K Yao, Y Zhu, Z Deng, F Yang, X Zhou, G Li, H Wu, N Nijem, Y J Chabal, Z Lai, Y Han, Z Shi, S Feng, J Li. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. Angewandte Chemie International Edition, 2012, 51(6): 1412–1415
https://doi.org/10.1002/anie.201105966
42 R Luebke, J F Eubank, A J Cairns, Y Belmabkhout, L Wojtas, M Eddaoudi. The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. Chemical Communications, 2012, 48(10): 1455–1457
https://doi.org/10.1039/C1CC15962C
43 J An, R P Fiorella, S J Geib, N L Rosi. Synthesis, structure, assembly, and modulation of the CO2 adsorption properties of a zinc-adeninate macrocycle. Journal of the American Chemical Society, 2009, 131(24): 8401–8403
https://doi.org/10.1021/ja901869m
44 J An, S J Geib, N L Rosi. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. Journal of the American Chemical Society, 2009, 131(24): 8376–8377
https://doi.org/10.1021/ja902972w
45 J An, S J Geib, N L Rosi. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. Journal of the American Chemical Society, 2010, 132(1): 38–39
https://doi.org/10.1021/ja909169x
46 .Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi O M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. Journal of the American Chemical Society, 2009, 131(11): 3875–3877 doi.org/10.1021/ja809459e
47 R S Forgan, R A Smaldone, J J Gassensmith, H Furukawa, D B Cordes, Q Li, C E Wilmer, Y Y Botros, R Q Snurr, A M Z Slawin, J F Stoddart. Nanoporous carbohydrate metal–organic frameworks. Journal of the American Chemical Society, 2012, 134(1): 406–417
https://doi.org/10.1021/ja208224f
48 B Seoane, S Castellanos, A Dikhtiarenko, F Kapteijn, J Gascon. Multi-scale crystal engineering of metal organic frameworks. Coordination Chemistry Reviews, 2016, 307: 147–187
https://doi.org/10.1016/j.ccr.2015.06.008
49 Y Ban, Y Peng, Y Zhang, H Jin, W Jiao, A Guo, P Wang, Y Li, W Yang. Dual-ligand zeolitic imidazolate framework crystals and oriented films derived from metastable mono-ligand ZIF-108. Microporous and Mesoporous Materials, 2016, 219: 190–198
https://doi.org/10.1016/j.micromeso.2015.08.013
50 P Z Li, X J Wang, R H D Tan, Q Zhang, R Zou, Y Zhao. Rationally “clicked” post-modification of a highly stable metal-organic framework and its high improvement on CO2-selective capture. RSC Advances, 2013, 3(36): 15566–15570
https://doi.org/10.1039/c3ra43246g
51 C X Chen, Q F Qiu, C C Cao, M Pan, H P Wang, J J Jiang, Z W Wei, K Zhu, G Li, C Y Su. Stepwise engineering of pore environments and enhancement of CO2/R22 adsorption capacity through dynamic spacer installation and functionality modification. Chemical Communications, 2017, 53(83): 11403–11406
https://doi.org/10.1039/C7CC06352K
52 Y Yan, M Juríček, F X Coudert, N A Vermeulen, S Grunder, A Dailly, W Lewis, A J Blake, J F Stoddart, M Schröder. Non-interpenetrated metal–organic frameworks based on copper(II) paddlewheel and oligoparaxylene-isophthalate linkers: Synthesis, structure, and gas adsorption. Journal of the American Chemical Society, 2016, 138(10): 3371–3381
https://doi.org/10.1021/jacs.5b12312
53 M H Yu, P Zhang, R Feng, Z Q Yao, Y C Yu, T L Hu, X H Bu. Construction of a multi-cage-based MOF with a unique network for efficient CO2 capture. ACS Applied Materials & Interfaces, 2017, 9(31): 26177–26183
https://doi.org/10.1021/acsami.7b06491
54 Q G Zhai, X Bu, C Mao, X Zhao, L Daemen, Y Cheng, A J Ramirez-Cuesta, P Feng. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nature Communications, 2016, 7(1): 13645
https://doi.org/10.1038/ncomms13645
55 Q G Zhai, X Bu, X Zhao, D S Li, P Feng. Pore space partition in metal-organic frameworks. Accounts of Chemical Research, 2017, 50(2): 407–417
https://doi.org/10.1021/acs.accounts.6b00526
56 X Zhao, X Bu, Q G Zhai, H Tran, P Feng. Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on carbon dioxide uptake. Journal of the American Chemical Society, 2015, 137(4): 1396–1399
https://doi.org/10.1021/ja512137t
57 A Schneemann, V Bon, I Schwedler, I Senkovska, S Kaskel, R A Fischer. Flexible metal-organic frameworks. Chemical Society Reviews, 2014, 43(16): 6062–6096
https://doi.org/10.1039/C4CS00101J
58 S Bourrelly, P L Llewellyn, C Serre, F Millange, T Loiseau, G Férey. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. Journal of the American Chemical Society, 2005, 127(39): 13519–13521
https://doi.org/10.1021/ja054668v
59 F X Coudert, C Mellot-Draznieks, A H Fuchs, A Boutin. Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal-organic frameworks. Journal of the American Chemical Society, 2009, 131(32): 11329–11331
https://doi.org/10.1021/ja904123f
60 Y Q Lan, H L Jiang, S L Li, Q Xu. Mesoporous metal-organic frameworks with size-tunable cages: Selective CO2 uptake, encapsulation of Ln3+ cations for luminescence, and column-chromatographic dye separation. Advanced Materials, 2011, 23(43): 5015–5020
https://doi.org/10.1002/adma.201102880
61 P L Llewellyn, S Bourrelly, C Serre, A Vimont, M Daturi, L Hamon, G De Weireld, J S Chang, D Y Hong, Y Kyu Hwang, S Hwa Jhung, G Férey. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. Langmuir, 2008, 24(14): 7245–7250
https://doi.org/10.1021/la800227x
62 B Zheng, Z Yang, J Bai, Y Li, S Li. High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal-organic frameworks. Chemical Communications, 2012, 48(56): 7025–7027
https://doi.org/10.1039/c2cc17593b
63 Y Mao, D Chen, P Hu, Y Guo, Y Ying, W Ying, X Peng. Hierarchical mesoporous metal-organic frameworks for enhanced CO2 capture. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(43): 15127–15132
https://doi.org/10.1002/chem.201502515
64 D Liu, D Zou, H Zhu, J Zhang. Mesoporous metal-organic frameworks: Synthetic strategies and emerging applications. Small, 2018, 14(37): 1801454
https://doi.org/10.1002/smll.201801454
65 R Anderson, J Rodgers, E Argueta, A Biong, D A Gomez-Gualdron. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: From molecular simulation to machine learning. Chemistry of Materials, 2018, 30(18): 6325–6337
https://doi.org/10.1021/acs.chemmater.8b02257
66 D X Xue, A J Cairns, Y Belmabkhout, L Wojtas, Y Liu, M H Alkordi, M Eddaoudi. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake. Journal of the American Chemical Society, 2013, 135(20): 7660–7667
https://doi.org/10.1021/ja401429x
67 R Luebke, Y Belmabkhout, Ł J Weseliński, A J Cairns, M Alkordi, G Norton, Ł Wojtas, K Adil, M Eddaoudi. Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw-MOFs. Chemical Science (Cambridge), 2015, 6(7): 4095–4102
https://doi.org/10.1039/C5SC00614G
68 R Zhong, X Yu, W Meng, J Liu, C Zhi, R Zou. Amine-grafted MIL-101(Cr) via double-solvent incorporation for synergistic enhancement of CO2 uptake and selectivity. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16493–16502
https://doi.org/10.1021/acssuschemeng.8b03597
69 Y Lin, H Lin, H Wang, Y Suo, B Li, C Kong, L Chen. Enhanced selective CO2 adsorption on polyamine/MIL-101(Cr) composites. Journal of Materials Chemistry A, 2014, 2(35): 14658‒14665
https://doi.org/10.1039/C4TA05760K
70 R Kumar, D Raut, U Ramamurty, C N R Rao. Remarkable improvement in the mechanical properties and CO2 uptake of MOFs brought about by covalent linking to graphene. Angewandte Chemie International Edition, 2016, 55(27): 7857–7861
https://doi.org/10.1002/anie.201603320
71 Y Ban, Y Li, Y Peng, H Jin, W Jiao, X Liu, W Yang. Metal-substituted zeolitic imidazolate framework ZIF-108: Gas-sorption and membrane separation properties. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(36): 11402–11409
https://doi.org/10.1002/chem.201402287
72 Y Cheng, Y Ying, L Zhai, G Liu, J Dong, Y Wang, M P Christopher, S Long, Y Wang, D Zhao. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. Journal of Membrane Science, 2019, 573: 97–106
https://doi.org/10.1016/j.memsci.2018.11.060
73 F Li, D Wang, Q J Xing, G Zhou, S S Liu, Y Li, L L Zheng, P Ye, J P Zou. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2019, 243: 621–628
https://doi.org/10.1016/j.apcatb.2018.10.043
74 Y Peng, M Zhao, B Chen, Z Zhang, Y Huang, F Dai, Z Lai, X Cui, C Tan, H Zhang. Hybridization of MOFs and COFs: A new strategy for construction of MOF@COF core-shell hybrid materials. Advanced Materials, 2018, 30(3): 1705454
https://doi.org/10.1002/adma.201705454
75 F M Zhang, J L Sheng, Z D Yang, X J Sun, H L Tang, M Lu, H Dong, F C Shen, J Liu, Y Q Lan. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angewandte Chemie International Edition, 2018, 57(37): 12106–12110
https://doi.org/10.1002/anie.201806862
76 P Q Liao, N Y Huang, W X Zhang, J P Zhang, X M Chen. Controlling guest conformation for efficient purification of butadiene. Science, 2017, 356(6343): 1193–1196
https://doi.org/10.1126/science.aam7232
77 C T He, Z M Ye, Y T Xu, D D Zhou, H L Zhou, D Chen, J P Zhang, X M Chen. Hyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole moment. Chemical Science (Cambridge), 2017, 8(11): 7560–7565
https://doi.org/10.1039/C7SC03067C
78 C Altintas, S Keskin. Molecular simulations of MOF membranes and performance predictions of MOF/polymer mixed matrix membranes for CO2/CH4 separations. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2739–2750
https://doi.org/10.1021/acssuschemeng.8b05832
79 Z Qiao, C Peng, J Zhou, J Jiang. High-throughput computational screening of 137953 metal-organic frameworks for membrane separation of a CO2/N2/CH4 mixture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(41): 15904–15912
https://doi.org/10.1039/C6TA06262H
80 T Watanabe, D S Sholl. Accelerating applications of metal–organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir, 2012, 28(40): 14114–14128
https://doi.org/10.1021/la301915s
81 Y G Chung, D A Gómez-Gualdrón, P Li, K T Leperi, P Deria, H Zhang, N A Vermeulen, J F Stoddart, F You, J T Hupp, O K Farha, R Q Snurr. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Science Advances, 2016, 2(10): e1600909
https://doi.org/10.1126/sciadv.1600909
82 H Guo, G Zhu, I J Hewitt, S Qiu. “Twin copper source” growth of metal-organic gramework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. Journal of the American Chemical Society, 2009, 131(5): 1646–1647
https://doi.org/10.1021/ja8074874
83 Z Kang, M Xue, L Fan, L Huang, L Guo, G Wei, B Chen, S Qiu. Highly selective sieving of small gas molecules by using an ultra-microporous metal-organic framework membrane. Energy & Environmental Science, 2014, 7(12): 4053–4060
https://doi.org/10.1039/C4EE02275K
84 Y Hu, X Dong, J Nan, W Jin, X Ren, N Xu, Y M Lee. Metal-organic framework membranes fabricated via reactive seeding. Chemical Communications, 2011, 47(2): 737–739
https://doi.org/10.1039/C0CC03927F
85 S Zhou, Y Wei, L Zhuang, L X Ding, H Wang. Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(5): 1948–1951
https://doi.org/10.1039/C6TA09469D
86 A Huang, H Bux, F Steinbach, J Caro. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angewandte Chemie International Edition, 2010, 49(29): 4958–4961
https://doi.org/10.1002/anie.201001919
87 A Huang, W Dou, J Caro. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. Journal of the American Chemical Society, 2010, 132(44): 15562–15564
https://doi.org/10.1021/ja108774v
88 M C McCarthy, V Varela-Guerrero, G V Barnett, H K Jeong. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir, 2010, 26(18): 14636–14641
https://doi.org/10.1021/la102409e
89 A Bétard, H Bux, S Henke, D Zacher, J Caro, R A Fischer. Fabrication of a CO2-selective membrane by stepwise liquid-phase deposition of an alkylether functionalized pillared-layered metal-organic framework [Cu2L2P]n on a macroporous support. Microporous and Mesoporous Materials, 2012, 150: 76–82
https://doi.org/10.1016/j.micromeso.2011.09.006
90 S Fan, S Wu, J Liu, D Liu. Fabrication of MIL-120 membranes supported by α-Al2O3 hollow ceramic fibers for H2 separation. RSC Advances, 2015, 5(67): 54757–54761
https://doi.org/10.1039/C5RA09792D
91 J A Bohrman, M A Carreon. Synthesis and CO2/CH4 separation performance of Bio-MOF-1 membranes. Chemical Communications, 2012, 48(42): 5130–5132
https://doi.org/10.1039/c2cc31821k
92 H Bux, A Feldhoff, J Cravillon, M Wiebcke, Y S Li, J Caro. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chemistry of Materials, 2011, 23(8): 2262–2269
https://doi.org/10.1021/cm200555s
93 X Dong, Y S Lin. Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation. Chemical Communications, 2013, 49(12): 1196–1198
https://doi.org/10.1039/c2cc38512k
94 Y S Li, H Bux, A Feldhoff, G L Li, W S Yang, J Caro. Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes. Advanced Materials, 2010, 22(30): 3322–3326
https://doi.org/10.1002/adma.201000857
95 Y Liu, E Hu, E A Khan, Z Lai. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1): 36–40
https://doi.org/10.1016/j.memsci.2010.02.023
96 Y Mao, W Cao, J Li, Y Liu, Y Ying, L Sun, X Peng. Enhanced gas separation through well-intergrown MOF membranes: Seed morphology and crystal growth effects. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(38): 11711–11716
https://doi.org/10.1039/c3ta12402a
97 Y Li, H Liu, H Wang, J Qiu, X Zhang. GO-guided direct growth of highly oriented metal organic framework nanosheet membranes for H2/CO2 separation. Chemical Science (Cambridge), 2018, 9(17): 4132–4141
https://doi.org/10.1039/C7SC04815G
98 Y Sun, Y Liu, J Caro, X Guo, C Song, Y Liu. In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity. Angewandte Chemie International Edition, 2018, 57(49): 16088–16093
https://doi.org/10.1002/anie.201810088
99 H T Kwon, H K Jeong, A S Lee, H S An, J S Lee. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. Journal of the American Chemical Society, 2015, 137(38): 12304–12311
https://doi.org/10.1021/jacs.5b06730
100 X Feng, X Ding, D Jiang. Covalent organic frameworks. Chemical Society Reviews, 2012, 41(18): 6010–6022
https://doi.org/10.1039/c2cs35157a
101 J Fu, S Das, G Xing, T Ben, V Valtchev, S Qiu. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. Journal of the American Chemical Society, 2016, 138(24): 7673–7680
https://doi.org/10.1021/jacs.6b03348
102 X Ma, P Kumar, N Mittal, A Khlyustova, P Daoutidis, K A Mkhoyan, M Tsapatsis. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science, 2018, 361(6406): 1008–1011
https://doi.org/10.1126/science.aat4123
103 Y Li, W Yang. Microwave synthesis of zeolite membranes: A review. Journal of Membrane Science, 2008, 316(1): 3–17
https://doi.org/10.1016/j.memsci.2007.08.054
104 H Bux, F Liang, Y Li, J Cravillon, M Wiebcke, J Caro. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001
https://doi.org/10.1021/ja907359t
105 H T Kwona, H K Jeong. Improving propylene/propane separation performance of zeolitic-imidazolate framework ZIF-8 membranes. Chemical Engineering Science, 2015, 124: 20–26
https://doi.org/10.1016/j.ces.2014.06.021
106 J Yao, D Dong, D Li, L He, G Xu, H Wang. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chemical Communications, 2011, 47(9): 2559–2561
https://doi.org/10.1039/C0CC04734A
107 H T Kwon, H K Jeong. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chemical Communications, 2013, 49(37): 3854–3856 doi:10.1039/C3CC41039K
108 M J Lee, H T Kwon, H K Jeong. High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angewandte Chemie International Edition, 2018, 57(1): 156–161
https://doi.org/10.1002/anie.201708924
109 E Barankova, X Tan, L F Villalobos, E Litwiller, K V Peinemann. A metal chelating porous polymeric support: The missing link for a defect-free metal-organic framework composite membrane. Angewandte Chemie International Edition, 2017, 56(11): 2965–2968
https://doi.org/10.1002/anie.201611927
110 A J Brown, N A Brunelli, K Eum, F Rashidi, J R Johnson, W J Koros, C W Jones, S Nair. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345(6192): 72–75
https://doi.org/10.1126/science.1251181
111 K Eum, A Rownaghi, D Choi, R R Bhave, C W Jones, S Nair. Fluidic processing of high-performance ZIF-8 membranes on polymeric hollow fibers: Mechanistic insights and microstructure control. Advanced Functional Materials, 2016, 26(28): 5011–5018
https://doi.org/10.1002/adfm.201601550
112 Y Peng, Y Li, Y Ban, H Jin, W Jiao, X Liu, W Yang. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
https://doi.org/10.1126/science.1254227
113 L Hao, P Li, T Yang, T S Chung. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436: 221–231
https://doi.org/10.1016/j.memsci.2013.02.034
114 O Tzialla, C Veziri, X Papatryfon, K G Beltsios, A Labropoulos, B Iliev, G Adamova, T J S Schubert, M C Kroon, M Francisco, L F Zubeir, G E Romanos, G N Karanikolos. Zeolite imidazolate framework–ionic liquid hybrid membranes for highly selective CO2 separation. Journal of Physical Chemistry C, 2013, 117(36): 18434–18440
https://doi.org/10.1021/jp4051287
115 J E Bara, E S Hatakeyama, D L Gin, R D Noble. Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polymers for Advanced Technologies, 2008, 19(10): 1415–1420
https://doi.org/10.1002/pat.1209
116 M A Aroon, A F Ismail, T Matsuura, M M Montazer-Rahmati. Performance studies of mixed matrix membranes for gas separation: A review. Separation and Purification Technology, 2010, 75(3): 229–242
https://doi.org/10.1016/j.seppur.2010.08.023
117 B Seoane, J Coronas, I Gascon, M E Benavides, O Karvan, J Caro, F Kapteijn, J Gascon. Metal–organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture. Chemical Society Reviews, 2015, 44(8): 2421–2454
https://doi.org/10.1039/C4CS00437J
118 T Rodenas, I Luz, G Prieto, B Seoane, H Miro, A Corma, F Kapteijn, F X Llabrés i Xamena, J Gascon. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2014, 14(1): 48–55
https://doi.org/10.1038/nmat4113
119 H Fan, Q Shi, H Yan, S Ji, J Dong, G Zhang. Simultaneous spray self-assembly of highly loaded ZIF-8–PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angewandte Chemie International Edition, 2014, 53(22): 5578–5582
https://doi.org/10.1002/anie.201309534
120 S R Venna, M Lartey, T Li, A Spore, S Kumar, H B Nulwala, D R Luebke, N L Rosi, E Albenze. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry A, 2015, 3(9): 5014–5022
https://doi.org/10.1039/C4TA05225K
121 M W Anjum, F Vermoortele, A L Khan, B Bueken, D E De Vos, I F J Vankelecom. Modulated UiO-66-based mixed-matrix membranes for CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(45): 25193–25201
https://doi.org/10.1021/acsami.5b08964
122 O G Nik, X Y Chen, S Kaliaguine. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2012, 413: 48–61
https://doi.org/10.1016/j.memsci.2012.04.003
123 T Yang, Y Xiao, T S Chung. Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy & Environmental Science, 2011, 4(10): 4171–4180
https://doi.org/10.1039/c1ee01324f
124 B Zornoza, A Martinez-Joaristi, P Serra-Crespo, C Tellez, J Coronas, J Gascon, F Kapteijn. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chemical Communications, 2011, 47(33): 9522–9524
https://doi.org/10.1039/c1cc13431k
125 J Sánchez-Laínez, B Zornoza, S Friebe, J Caro, S Cao, A Sabetghadam, B Seoane, J Gascon, F Kapteijn, C Le Guillouzer, G Clet, M Daturi, C Téllez, J Coronas. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. Journal of Membrane Science, 2016, 515: 45–53
https://doi.org/10.1016/j.memsci.2016.05.039
126 A Sabetghadam, B Seoane, D Keskin, N Duim, T Rodenas, S Shahid, S Sorribas, C L Guillouzer, G Clet, C Tellez, M Daturi, J Coronas, F Kapteijn, J Gascon. Metal organic framework crystals in mixed-matrix membranes: Impact of the filler morphology on the gas separation performance. Advanced Functional Materials, 2016, 26(18): 3154–3163
https://doi.org/10.1002/adfm.201505352
127 Y Zhang, X Feng, H Li, Y Chen, J Zhao, S Wang, L Wang, B Wang. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. Angewandte Chemie International Edition, 2015, 127(14): 4333–4337
https://doi.org/10.1002/ange.201500207
128 T H Bae, J S Lee, W Qiu, W J Koros, C W Jones, S Nair. A high-performance gas-separation membrane containing submicrometer-sized metal–organic framework crystals. Angewandte Chemie International Edition, 2010, 49(51): 9863–9866
https://doi.org/10.1002/anie.201006141
129 M J C Ordoñez, K J Balkus Jr, J P Ferraris, I H Musselman. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010, 361(1): 28–37
https://doi.org/10.1016/j.memsci.2010.06.017
130 T Yang, T S Chung. High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. International Journal of Hydrogen Energy, 2013, 38(1): 229–239
https://doi.org/10.1016/j.ijhydene.2012.10.045
131 J Shen, G Liu, K Huang, Q Li, K Guan, Y Li, W Jin. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513: 155–165
https://doi.org/10.1016/j.memsci.2016.04.045
132 X Liu, H Jin, Y Li, H Bux, Z Hu, Y Ban, W Yang. Metal-organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation. Journal of Membrane Science, 2013, 428: 498–506
https://doi.org/10.1016/j.memsci.2012.10.028
133 N Kornienko, Y Zhao, C S Kley, C Zhu, D Kim, S Lin, C J Chang, O M Yaghi, P Yang. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. Journal of the American Chemical Society, 2015, 137(44): 14129–14135
https://doi.org/10.1021/jacs.5b08212
[1] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[2] Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas[J]. Front. Chem. Sci. Eng., 2018, 12(2): 209-225.
[3] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[4] Elaheh Mehrvarz, Ali A. Ghoreyshi, Mohsen Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2capture enhancement[J]. Front. Chem. Sci. Eng., 2017, 11(2): 252-265.
[5] A. A. Olajire. CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry[J]. Front Chem Sci Eng, 2013, 7(3): 366-380.
[6] Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013, 7(3): 297-302.
[7] D. N. SAULOV, C. R. CHODANKA, M. J. CLEARY, A. Y. KLIMENKO. Coupling the porous conditional moment closure with the random pore model: applications to gasification and CO2 capture[J]. Front Chem Sci Eng, 2012, 6(1): 84-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed