|
|
Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes |
Yujie Ban1, Meng Zhao1,2, Weishen Yang1( ) |
1. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China 2. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract A low-carbon economy calls for CO2 capture technologies. Membrane separations represent an energy-efficient and environment-friendly process compared with distillations and solvent absorptions. Metal-organic frameworks (MOFs), as a novel type of porous materials, are being generated at a rapid and growing pace, which provide more opportunities for high-efficiency CO2 capture. In this review, we illustrate a conceptional framework from material design and membrane separation application for CO2 capture, and emphasize two importance themes, namely (i) design and modification of CO2-philic MOF materials that targets secondary building units, pore structure, topology and hybridization and (ii) construction of crack-free membranes through chemical epitaxy growth of active building blocks, interfacial assembly, ultrathin two-dimensional nanosheet assembly and mixed-matrix integration strategies, which would give rise to the most promising membrane performances for CO2 capture, and be expected to overcome the bottleneck of permeability-selectivity limitations.
|
Keywords
CO2 capture
CO2-philic MOFs
crack-free membranes
|
Corresponding Author(s):
Weishen Yang
|
Just Accepted Date: 26 September 2019
Online First Date: 13 January 2020
Issue Date: 24 March 2020
|
|
1 |
E A G Schuur, A D McGuire, C Schädel, G Grosse, J W Harden, D J Hayes, G Hugelius, C D Koven, P Kuhry, D M Lawrence, et al. Climate change and the permafrost carbon feedback. Nature, 2015, 520(7546): 171–179
https://doi.org/10.1038/nature14338
|
2 |
M Aghaie, N Rezaei, S Zendehboudi. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renewable & Sustainable Energy Reviews, 2018, 96: 502–525
https://doi.org/10.1016/j.rser.2018.07.004
|
3 |
C A Trickett, A Helal, B A Al Maythalony, Z H Yamani, K E Cordova, O M Yaghi. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials, 2017, 2(8): 17045
https://doi.org/10.1038/natrevmats.2017.45
|
4 |
K Yu, W A Mitch, N Dai. Nitrosamines and nitramines in amine-based carbon dioxide capture systems: Fundamentals, engineering implications, and knowledge gaps. Environmental Science & Technology, 2017, 51(20): 11522–11536
https://doi.org/10.1021/acs.est.7b02597
|
5 |
X Huang, J Zhang, X Chen. [Zn(bim)2]·(H2O)1.67: A metal-organic open-framework with sodalite topology. Chinese Science Bulletin, 2003, 48(15): 1531–1534
|
6 |
A Phan, C J Doonan, F J Uribe-Romo, C B Knobler, M O’Keeffe, O M Yaghi. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research, 2010, 43(1): 58–67
https://doi.org/10.1021/ar900116g
|
7 |
S S Y Chui, S M F Lo, J P H Charmant, A G Orpen, I D Williams. A chemically functionalizable nanoporous material [Cu3(TMA)2 (H2O)3]n. Science, 1999, 283(5405): 1148–1150
https://doi.org/10.1126/science.283.5405.1148
|
8 |
E Mohamed, K Jaheon, R Nathaniel, V David, W Joseph, O K Michael, O M Yaghi. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295(5554): 469–472
https://doi.org/10.1126/science.1067208
|
9 |
F Millange, C Serre, G Férey. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x. Chemical Communications, 2002, 8(8): 822–823
https://doi.org/10.1039/b201381a
|
10 |
J H Cavka, S Jakobsen, U Olsbye , N Guillou , C Lamberti , S Bordiga, K P Lillerud. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851
https://doi.org/10.1021/ja8057953
|
11 |
H Reinsch, M A van der Veen, B Gil, B Marszalek, B Verbiest, D de Vos, N Stock. Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chemistry of Materials, 2013, 25(1): 17–26
https://doi.org/10.1021/cm3025445
|
12 |
D S Sholl, R P Lively . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
https://doi.org/10.1038/532435a
|
13 |
A M Fracaroli, H Furukawa, M Suzuki, M Dodd, S Okajima, F Gándara, J A Reimer, O M Yaghi. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. Journal of the American Chemical Society, 2014, 136(25): 8863–8866
https://doi.org/10.1021/ja503296c
|
14 |
Y Ban, Z Li, Y Li, Y Peng, H Jin, W Jiao, A Guo, P Wang, Q Yang, C Zhong, W Yang. Confinement of ionic liquids in nanocages: Tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture. Angewandte Chemie International Edition, 2015, 54(51): 15483–15487
https://doi.org/10.1002/anie.201505508
|
15 |
D Alezi, A M P Peedikakkal, L J Weselinski, V Guillerm, Y Belmabkhout, A J Cairns, Z Chen, L Wojtas, M Eddaoudi. Quest for highly connected metal-organic framework platforms: Rare-earth polynuclear clusters versatility meets net topology needs. Journal of the American Chemical Society, 2015, 137(16): 5421–5430
https://doi.org/10.1021/jacs.5b00450
|
16 |
M Zeeshan, V Nozari, M B Yagci, T Isik, U Unal, V Ortalan, S Keskin, A Uzun. Core-shell type ionic liquid/metal organic framework composite: An exceptionally high CO2/CH4 selectivity. Journal of the American Chemical Society, 2018, 140(32): 10113–10116
https://doi.org/10.1021/jacs.8b05802
|
17 |
Y Liu, J H Pan, N Wang, F Steinbach, X Liu, J Caro. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal–organic frameworks. Angewandte Chemie International Edition, 2015, 54(10): 3028–3032
https://doi.org/10.1002/anie.201411550
|
18 |
H T Kwon, H K Jeong. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. Journal of the American Chemical Society, 2013, 135(29): 10763–10768
https://doi.org/10.1021/ja403849c
|
19 |
Y Peng, Y Li, Y Ban, W Yang. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie International Edition, 2017, 56(33): 9757–9761
https://doi.org/10.1002/anie.201703959
|
20 |
A Guo, Y Ban, K Yang, W Yang. Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation. Journal of Membrane Science, 2018, 562: 76–84
https://doi.org/10.1016/j.memsci.2018.05.032
|
21 |
Y Li, X Zhang, J Lan, P Xu, J Sun. Porous Zn(Bmic)(AT) MOF with abundant amino groups and open metal sites for efficient capture and transformation of CO2. Inorganic Chemistry, 2019, 58(20): 13917–13926
https://doi.org/10.1021/acs.inorgchem.9b01762
|
22 |
Y Abdoli, M Razavian , S Fatemi. Bimetallic Ni–Co-based metal–organic framework: An open metal site adsorbent for enhancing CO2 capture. Applied Organometallic Chemistry, 2019, 33(8): e5004 doi:10.1002aoc.5004
|
23 |
W L Queen, C M Brown, D K Britt, P Zajdel, M R Hudson, O M Yaghi. Site-specific CO2 adsorption and zero thermal expansion in an anisotropic pore network. Journal of Physical Chemistry C, 2011, 115(50): 24915–24919
https://doi.org/10.1021/jp208529p
|
24 |
I Strauss, A Mundstock, D Hinrichs, R Himstedt, A Knebel, C Reinhardt, D Dorfs, J Caro. The interaction of guest molecules with Co-MOF-74: A vis/NIR and raman approach. Angewandte Chemie International Edition, 2018, 57(25): 7434–7439
https://doi.org/10.1002/anie.201801966
|
25 |
W Wong-Ng, I Levin, J A Kaduk, L Espinal, H Wu. CO2 capture and positional disorder in Cu3(1,3,5-benzenetricarboxylate)2: An in situ laboratory X-ray powder diffraction study. Journal of Alloys and Compounds, 2016, 656: 200–205
https://doi.org/10.1016/j.jallcom.2015.09.078
|
26 |
Q M Wang, D Shen, M Bülow, M L Lau, S Deng, F R Fitch, N O Lemcoff, J Semanscin. Metallo-organic molecular sieve for gas separation and purification. Microporous and Mesoporous Materials, 2002, 55(2): 217–230
https://doi.org/10.1016/S1387-1811(02)00405-5
|
27 |
S R Caskey, A G Wong-Foy, A J Matzger. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 2008, 130(33): 10870–10871
https://doi.org/10.1021/ja8036096
|
28 |
J Park, H Kim, S S Han, Y Jung. Tuning metal-organic frameworks with open-metal sites and its origin for enhancing CO2 affinity by metal substitution. Journal of Physical Chemistry Letters, 2012, 3(7): 826–829
https://doi.org/10.1021/jz300047n
|
29 |
Q G Zhai, X Bu, C Mao, X Zhao, P Feng. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks. Journal of the American Chemical Society, 2016, 138(8): 2524–2527
https://doi.org/10.1021/jacs.5b13491
|
30 |
P Q Liao, W X Zang, J P Zhang , X M Chen. Efficient purification of ethene by an ethane-trapping metal-organic framework. Nature Communications, 2015, 6 : 8697
https://doi.org/10.1038/ncomms9697
|
31 |
D D Zhou, P Chen, C Wang, S S Wang, Y Du, H Yan, Z M Ye, C T He, R K Huang, Z W Mo, N Y Huang, J P Zhang. Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nature Materials, 2019, 18: 994-998
https://doi.org/10.1038/s41563-019-0427-z
|
32 |
J P Zhang, X M Chen. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. Journal of the American Chemical Society, 2008, 130(18): 6010–6017
https://doi.org/10.1021/ja800550a
|
33 |
P Q Liao, H Chen, D D Zhou, S Liu, C He, Z Rui, H Ji, J Zhang, X M Chen. Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy & Environmental Science, 2015, 8(3): 1011-1016
https://doi.org/10.1039/C4EE02717E
|
34 |
P Q Liao, A X Zhu, W X Zhang, J P Zhang, X M Chen. Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours. Nature Communications, 2015, 6 : 6350
https://doi.org/10.1038/ncomms7350
|
35 |
J P Zhang, X M Chen. Crystal engineering of binary metal imidazolate and triazolate frameworks. Chemical Communications, 2006, (16): 1689–1699
https://doi.org/10.1039/b516367f
|
36 |
X L Qi, R B Lin, Q Chen, J B Lin, J P Zhang, X M Chen. A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chemical Science, 2011, 2(11): 2214–2218
https://doi.org/10.1039/C1SC00421B
|
37 |
X C Huang, Y Y Lin, J P Zhang, X M Chen. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition, 2006, 45(10): 1557–1559
https://doi.org/10.1002/anie.200503778
|
38 |
X J Wang, P Z Li, Y Chen, Q Zhang, H Zhang, X X Chan, R Ganguly, Y Li, J Jiang, Y Zhao. A rationally designed nitrogen-rich metal-organic framework and its exceptionally high CO2 and H2 uptake capability. Scientific Report, 2013, 3: 1149 doi:10.1038/srep01149
|
39 |
Z Lu, F Meng, L Du, W Jiang, H Cao, J Duan, H Huang, H He. A free tetrazolyl decorated metal-organic framework exhibiting high and selective CO2 adsorption. Inorganic Chemistry, 2018, 57(22): 14018–14022
https://doi.org/10.1021/acs.inorgchem.8b02031
|
40 |
J S Qin, D Y Du, W L Li, J P Zhang, S L Li, Z M Su, X L Wang, Q Xu, K Z Shao, Y Q Lan. N-rich zeolite-like metal-organic framework with sodalite topology: High CO2 uptake, selective gas adsorption and efficient drug delivery. Chemical Science (Cambridge), 2012, 3(6): 2114–2118
https://doi.org/10.1039/c2sc00017b
|
41 |
B Li, Z Zhang, Y Li, K Yao, Y Zhu, Z Deng, F Yang, X Zhou, G Li, H Wu, N Nijem, Y J Chabal, Z Lai, Y Han, Z Shi, S Feng, J Li. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. Angewandte Chemie International Edition, 2012, 51(6): 1412–1415
https://doi.org/10.1002/anie.201105966
|
42 |
R Luebke, J F Eubank, A J Cairns, Y Belmabkhout, L Wojtas, M Eddaoudi. The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. Chemical Communications, 2012, 48(10): 1455–1457
https://doi.org/10.1039/C1CC15962C
|
43 |
J An, R P Fiorella, S J Geib, N L Rosi. Synthesis, structure, assembly, and modulation of the CO2 adsorption properties of a zinc-adeninate macrocycle. Journal of the American Chemical Society, 2009, 131(24): 8401–8403
https://doi.org/10.1021/ja901869m
|
44 |
J An, S J Geib, N L Rosi. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. Journal of the American Chemical Society, 2009, 131(24): 8376–8377
https://doi.org/10.1021/ja902972w
|
45 |
J An, S J Geib, N L Rosi. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. Journal of the American Chemical Society, 2010, 132(1): 38–39
https://doi.org/10.1021/ja909169x
|
46 |
.Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi O M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. Journal of the American Chemical Society, 2009, 131(11): 3875–3877 doi.org/10.1021/ja809459e
|
47 |
R S Forgan, R A Smaldone, J J Gassensmith, H Furukawa, D B Cordes, Q Li, C E Wilmer, Y Y Botros, R Q Snurr, A M Z Slawin, J F Stoddart. Nanoporous carbohydrate metal–organic frameworks. Journal of the American Chemical Society, 2012, 134(1): 406–417
https://doi.org/10.1021/ja208224f
|
48 |
B Seoane, S Castellanos, A Dikhtiarenko, F Kapteijn, J Gascon. Multi-scale crystal engineering of metal organic frameworks. Coordination Chemistry Reviews, 2016, 307: 147–187
https://doi.org/10.1016/j.ccr.2015.06.008
|
49 |
Y Ban, Y Peng, Y Zhang, H Jin, W Jiao, A Guo, P Wang, Y Li, W Yang. Dual-ligand zeolitic imidazolate framework crystals and oriented films derived from metastable mono-ligand ZIF-108. Microporous and Mesoporous Materials, 2016, 219: 190–198
https://doi.org/10.1016/j.micromeso.2015.08.013
|
50 |
P Z Li, X J Wang, R H D Tan, Q Zhang, R Zou, Y Zhao. Rationally “clicked” post-modification of a highly stable metal-organic framework and its high improvement on CO2-selective capture. RSC Advances, 2013, 3(36): 15566–15570
https://doi.org/10.1039/c3ra43246g
|
51 |
C X Chen, Q F Qiu, C C Cao, M Pan, H P Wang, J J Jiang, Z W Wei, K Zhu, G Li, C Y Su. Stepwise engineering of pore environments and enhancement of CO2/R22 adsorption capacity through dynamic spacer installation and functionality modification. Chemical Communications, 2017, 53(83): 11403–11406
https://doi.org/10.1039/C7CC06352K
|
52 |
Y Yan, M Juríček, F X Coudert, N A Vermeulen, S Grunder, A Dailly, W Lewis, A J Blake, J F Stoddart, M Schröder. Non-interpenetrated metal–organic frameworks based on copper(II) paddlewheel and oligoparaxylene-isophthalate linkers: Synthesis, structure, and gas adsorption. Journal of the American Chemical Society, 2016, 138(10): 3371–3381
https://doi.org/10.1021/jacs.5b12312
|
53 |
M H Yu, P Zhang, R Feng, Z Q Yao, Y C Yu, T L Hu, X H Bu. Construction of a multi-cage-based MOF with a unique network for efficient CO2 capture. ACS Applied Materials & Interfaces, 2017, 9(31): 26177–26183
https://doi.org/10.1021/acsami.7b06491
|
54 |
Q G Zhai, X Bu, C Mao, X Zhao, L Daemen, Y Cheng, A J Ramirez-Cuesta, P Feng. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nature Communications, 2016, 7(1): 13645
https://doi.org/10.1038/ncomms13645
|
55 |
Q G Zhai, X Bu, X Zhao, D S Li, P Feng. Pore space partition in metal-organic frameworks. Accounts of Chemical Research, 2017, 50(2): 407–417
https://doi.org/10.1021/acs.accounts.6b00526
|
56 |
X Zhao, X Bu, Q G Zhai, H Tran, P Feng. Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on carbon dioxide uptake. Journal of the American Chemical Society, 2015, 137(4): 1396–1399
https://doi.org/10.1021/ja512137t
|
57 |
A Schneemann, V Bon, I Schwedler, I Senkovska, S Kaskel, R A Fischer. Flexible metal-organic frameworks. Chemical Society Reviews, 2014, 43(16): 6062–6096
https://doi.org/10.1039/C4CS00101J
|
58 |
S Bourrelly, P L Llewellyn, C Serre, F Millange, T Loiseau, G Férey. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. Journal of the American Chemical Society, 2005, 127(39): 13519–13521
https://doi.org/10.1021/ja054668v
|
59 |
F X Coudert, C Mellot-Draznieks, A H Fuchs, A Boutin. Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal-organic frameworks. Journal of the American Chemical Society, 2009, 131(32): 11329–11331
https://doi.org/10.1021/ja904123f
|
60 |
Y Q Lan, H L Jiang, S L Li, Q Xu. Mesoporous metal-organic frameworks with size-tunable cages: Selective CO2 uptake, encapsulation of Ln3+ cations for luminescence, and column-chromatographic dye separation. Advanced Materials, 2011, 23(43): 5015–5020
https://doi.org/10.1002/adma.201102880
|
61 |
P L Llewellyn, S Bourrelly, C Serre, A Vimont, M Daturi, L Hamon, G De Weireld, J S Chang, D Y Hong, Y Kyu Hwang, S Hwa Jhung, G Férey. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. Langmuir, 2008, 24(14): 7245–7250
https://doi.org/10.1021/la800227x
|
62 |
B Zheng, Z Yang, J Bai, Y Li, S Li. High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal-organic frameworks. Chemical Communications, 2012, 48(56): 7025–7027
https://doi.org/10.1039/c2cc17593b
|
63 |
Y Mao, D Chen, P Hu, Y Guo, Y Ying, W Ying, X Peng. Hierarchical mesoporous metal-organic frameworks for enhanced CO2 capture. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(43): 15127–15132
https://doi.org/10.1002/chem.201502515
|
64 |
D Liu, D Zou, H Zhu, J Zhang. Mesoporous metal-organic frameworks: Synthetic strategies and emerging applications. Small, 2018, 14(37): 1801454
https://doi.org/10.1002/smll.201801454
|
65 |
R Anderson, J Rodgers, E Argueta, A Biong, D A Gomez-Gualdron. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: From molecular simulation to machine learning. Chemistry of Materials, 2018, 30(18): 6325–6337
https://doi.org/10.1021/acs.chemmater.8b02257
|
66 |
D X Xue, A J Cairns, Y Belmabkhout, L Wojtas, Y Liu, M H Alkordi, M Eddaoudi. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake. Journal of the American Chemical Society, 2013, 135(20): 7660–7667
https://doi.org/10.1021/ja401429x
|
67 |
R Luebke, Y Belmabkhout, Ł J Weseliński, A J Cairns, M Alkordi, G Norton, Ł Wojtas, K Adil, M Eddaoudi. Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw-MOFs. Chemical Science (Cambridge), 2015, 6(7): 4095–4102
https://doi.org/10.1039/C5SC00614G
|
68 |
R Zhong, X Yu, W Meng, J Liu, C Zhi, R Zou. Amine-grafted MIL-101(Cr) via double-solvent incorporation for synergistic enhancement of CO2 uptake and selectivity. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16493–16502
https://doi.org/10.1021/acssuschemeng.8b03597
|
69 |
Y Lin, H Lin, H Wang, Y Suo, B Li, C Kong, L Chen. Enhanced selective CO2 adsorption on polyamine/MIL-101(Cr) composites. Journal of Materials Chemistry A, 2014, 2(35): 14658‒14665
https://doi.org/10.1039/C4TA05760K
|
70 |
R Kumar, D Raut, U Ramamurty, C N R Rao. Remarkable improvement in the mechanical properties and CO2 uptake of MOFs brought about by covalent linking to graphene. Angewandte Chemie International Edition, 2016, 55(27): 7857–7861
https://doi.org/10.1002/anie.201603320
|
71 |
Y Ban, Y Li, Y Peng, H Jin, W Jiao, X Liu, W Yang. Metal-substituted zeolitic imidazolate framework ZIF-108: Gas-sorption and membrane separation properties. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(36): 11402–11409
https://doi.org/10.1002/chem.201402287
|
72 |
Y Cheng, Y Ying, L Zhai, G Liu, J Dong, Y Wang, M P Christopher, S Long, Y Wang, D Zhao. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. Journal of Membrane Science, 2019, 573: 97–106
https://doi.org/10.1016/j.memsci.2018.11.060
|
73 |
F Li, D Wang, Q J Xing, G Zhou, S S Liu, Y Li, L L Zheng, P Ye, J P Zou. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2019, 243: 621–628
https://doi.org/10.1016/j.apcatb.2018.10.043
|
74 |
Y Peng, M Zhao, B Chen, Z Zhang, Y Huang, F Dai, Z Lai, X Cui, C Tan, H Zhang. Hybridization of MOFs and COFs: A new strategy for construction of MOF@COF core-shell hybrid materials. Advanced Materials, 2018, 30(3): 1705454
https://doi.org/10.1002/adma.201705454
|
75 |
F M Zhang, J L Sheng, Z D Yang, X J Sun, H L Tang, M Lu, H Dong, F C Shen, J Liu, Y Q Lan. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angewandte Chemie International Edition, 2018, 57(37): 12106–12110
https://doi.org/10.1002/anie.201806862
|
76 |
P Q Liao, N Y Huang, W X Zhang, J P Zhang, X M Chen. Controlling guest conformation for efficient purification of butadiene. Science, 2017, 356(6343): 1193–1196
https://doi.org/10.1126/science.aam7232
|
77 |
C T He, Z M Ye, Y T Xu, D D Zhou, H L Zhou, D Chen, J P Zhang, X M Chen. Hyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole moment. Chemical Science (Cambridge), 2017, 8(11): 7560–7565
https://doi.org/10.1039/C7SC03067C
|
78 |
C Altintas, S Keskin. Molecular simulations of MOF membranes and performance predictions of MOF/polymer mixed matrix membranes for CO2/CH4 separations. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2739–2750
https://doi.org/10.1021/acssuschemeng.8b05832
|
79 |
Z Qiao, C Peng, J Zhou, J Jiang. High-throughput computational screening of 137953 metal-organic frameworks for membrane separation of a CO2/N2/CH4 mixture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(41): 15904–15912
https://doi.org/10.1039/C6TA06262H
|
80 |
T Watanabe, D S Sholl. Accelerating applications of metal–organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir, 2012, 28(40): 14114–14128
https://doi.org/10.1021/la301915s
|
81 |
Y G Chung, D A Gómez-Gualdrón, P Li, K T Leperi, P Deria, H Zhang, N A Vermeulen, J F Stoddart, F You, J T Hupp, O K Farha, R Q Snurr. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Science Advances, 2016, 2(10): e1600909
https://doi.org/10.1126/sciadv.1600909
|
82 |
H Guo, G Zhu, I J Hewitt, S Qiu. “Twin copper source” growth of metal-organic gramework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. Journal of the American Chemical Society, 2009, 131(5): 1646–1647
https://doi.org/10.1021/ja8074874
|
83 |
Z Kang, M Xue, L Fan, L Huang, L Guo, G Wei, B Chen, S Qiu. Highly selective sieving of small gas molecules by using an ultra-microporous metal-organic framework membrane. Energy & Environmental Science, 2014, 7(12): 4053–4060
https://doi.org/10.1039/C4EE02275K
|
84 |
Y Hu, X Dong, J Nan, W Jin, X Ren, N Xu, Y M Lee. Metal-organic framework membranes fabricated via reactive seeding. Chemical Communications, 2011, 47(2): 737–739
https://doi.org/10.1039/C0CC03927F
|
85 |
S Zhou, Y Wei, L Zhuang, L X Ding, H Wang. Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(5): 1948–1951
https://doi.org/10.1039/C6TA09469D
|
86 |
A Huang, H Bux, F Steinbach, J Caro. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angewandte Chemie International Edition, 2010, 49(29): 4958–4961
https://doi.org/10.1002/anie.201001919
|
87 |
A Huang, W Dou, J Caro. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. Journal of the American Chemical Society, 2010, 132(44): 15562–15564
https://doi.org/10.1021/ja108774v
|
88 |
M C McCarthy, V Varela-Guerrero, G V Barnett, H K Jeong. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir, 2010, 26(18): 14636–14641
https://doi.org/10.1021/la102409e
|
89 |
A Bétard, H Bux, S Henke, D Zacher, J Caro, R A Fischer. Fabrication of a CO2-selective membrane by stepwise liquid-phase deposition of an alkylether functionalized pillared-layered metal-organic framework [Cu2L2P]n on a macroporous support. Microporous and Mesoporous Materials, 2012, 150: 76–82
https://doi.org/10.1016/j.micromeso.2011.09.006
|
90 |
S Fan, S Wu, J Liu, D Liu. Fabrication of MIL-120 membranes supported by α-Al2O3 hollow ceramic fibers for H2 separation. RSC Advances, 2015, 5(67): 54757–54761
https://doi.org/10.1039/C5RA09792D
|
91 |
J A Bohrman, M A Carreon. Synthesis and CO2/CH4 separation performance of Bio-MOF-1 membranes. Chemical Communications, 2012, 48(42): 5130–5132
https://doi.org/10.1039/c2cc31821k
|
92 |
H Bux, A Feldhoff, J Cravillon, M Wiebcke, Y S Li, J Caro. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chemistry of Materials, 2011, 23(8): 2262–2269
https://doi.org/10.1021/cm200555s
|
93 |
X Dong, Y S Lin. Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation. Chemical Communications, 2013, 49(12): 1196–1198
https://doi.org/10.1039/c2cc38512k
|
94 |
Y S Li, H Bux, A Feldhoff, G L Li, W S Yang, J Caro. Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes. Advanced Materials, 2010, 22(30): 3322–3326
https://doi.org/10.1002/adma.201000857
|
95 |
Y Liu, E Hu, E A Khan, Z Lai. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1): 36–40
https://doi.org/10.1016/j.memsci.2010.02.023
|
96 |
Y Mao, W Cao, J Li, Y Liu, Y Ying, L Sun, X Peng. Enhanced gas separation through well-intergrown MOF membranes: Seed morphology and crystal growth effects. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(38): 11711–11716
https://doi.org/10.1039/c3ta12402a
|
97 |
Y Li, H Liu, H Wang, J Qiu, X Zhang. GO-guided direct growth of highly oriented metal organic framework nanosheet membranes for H2/CO2 separation. Chemical Science (Cambridge), 2018, 9(17): 4132–4141
https://doi.org/10.1039/C7SC04815G
|
98 |
Y Sun, Y Liu, J Caro, X Guo, C Song, Y Liu. In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity. Angewandte Chemie International Edition, 2018, 57(49): 16088–16093
https://doi.org/10.1002/anie.201810088
|
99 |
H T Kwon, H K Jeong, A S Lee, H S An, J S Lee. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. Journal of the American Chemical Society, 2015, 137(38): 12304–12311
https://doi.org/10.1021/jacs.5b06730
|
100 |
X Feng, X Ding, D Jiang. Covalent organic frameworks. Chemical Society Reviews, 2012, 41(18): 6010–6022
https://doi.org/10.1039/c2cs35157a
|
101 |
J Fu, S Das, G Xing, T Ben, V Valtchev, S Qiu. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. Journal of the American Chemical Society, 2016, 138(24): 7673–7680
https://doi.org/10.1021/jacs.6b03348
|
102 |
X Ma, P Kumar, N Mittal, A Khlyustova, P Daoutidis, K A Mkhoyan, M Tsapatsis. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science, 2018, 361(6406): 1008–1011
https://doi.org/10.1126/science.aat4123
|
103 |
Y Li, W Yang. Microwave synthesis of zeolite membranes: A review. Journal of Membrane Science, 2008, 316(1): 3–17
https://doi.org/10.1016/j.memsci.2007.08.054
|
104 |
H Bux, F Liang, Y Li, J Cravillon, M Wiebcke, J Caro. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001
https://doi.org/10.1021/ja907359t
|
105 |
H T Kwona, H K Jeong. Improving propylene/propane separation performance of zeolitic-imidazolate framework ZIF-8 membranes. Chemical Engineering Science, 2015, 124: 20–26
https://doi.org/10.1016/j.ces.2014.06.021
|
106 |
J Yao, D Dong, D Li, L He, G Xu, H Wang. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chemical Communications, 2011, 47(9): 2559–2561
https://doi.org/10.1039/C0CC04734A
|
107 |
H T Kwon, H K Jeong. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chemical Communications, 2013, 49(37): 3854–3856 doi:10.1039/C3CC41039K
|
108 |
M J Lee, H T Kwon, H K Jeong. High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angewandte Chemie International Edition, 2018, 57(1): 156–161
https://doi.org/10.1002/anie.201708924
|
109 |
E Barankova, X Tan, L F Villalobos, E Litwiller, K V Peinemann. A metal chelating porous polymeric support: The missing link for a defect-free metal-organic framework composite membrane. Angewandte Chemie International Edition, 2017, 56(11): 2965–2968
https://doi.org/10.1002/anie.201611927
|
110 |
A J Brown, N A Brunelli, K Eum, F Rashidi, J R Johnson, W J Koros, C W Jones, S Nair. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345(6192): 72–75
https://doi.org/10.1126/science.1251181
|
111 |
K Eum, A Rownaghi, D Choi, R R Bhave, C W Jones, S Nair. Fluidic processing of high-performance ZIF-8 membranes on polymeric hollow fibers: Mechanistic insights and microstructure control. Advanced Functional Materials, 2016, 26(28): 5011–5018
https://doi.org/10.1002/adfm.201601550
|
112 |
Y Peng, Y Li, Y Ban, H Jin, W Jiao, X Liu, W Yang. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
https://doi.org/10.1126/science.1254227
|
113 |
L Hao, P Li, T Yang, T S Chung. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436: 221–231
https://doi.org/10.1016/j.memsci.2013.02.034
|
114 |
O Tzialla, C Veziri, X Papatryfon, K G Beltsios, A Labropoulos, B Iliev, G Adamova, T J S Schubert, M C Kroon, M Francisco, L F Zubeir, G E Romanos, G N Karanikolos. Zeolite imidazolate framework–ionic liquid hybrid membranes for highly selective CO2 separation. Journal of Physical Chemistry C, 2013, 117(36): 18434–18440
https://doi.org/10.1021/jp4051287
|
115 |
J E Bara, E S Hatakeyama, D L Gin, R D Noble. Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polymers for Advanced Technologies, 2008, 19(10): 1415–1420
https://doi.org/10.1002/pat.1209
|
116 |
M A Aroon, A F Ismail, T Matsuura, M M Montazer-Rahmati. Performance studies of mixed matrix membranes for gas separation: A review. Separation and Purification Technology, 2010, 75(3): 229–242
https://doi.org/10.1016/j.seppur.2010.08.023
|
117 |
B Seoane, J Coronas, I Gascon, M E Benavides, O Karvan, J Caro, F Kapteijn, J Gascon. Metal–organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture. Chemical Society Reviews, 2015, 44(8): 2421–2454
https://doi.org/10.1039/C4CS00437J
|
118 |
T Rodenas, I Luz, G Prieto, B Seoane, H Miro, A Corma, F Kapteijn, F X Llabrés i Xamena, J Gascon. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2014, 14(1): 48–55
https://doi.org/10.1038/nmat4113
|
119 |
H Fan, Q Shi, H Yan, S Ji, J Dong, G Zhang. Simultaneous spray self-assembly of highly loaded ZIF-8–PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angewandte Chemie International Edition, 2014, 53(22): 5578–5582
https://doi.org/10.1002/anie.201309534
|
120 |
S R Venna, M Lartey, T Li, A Spore, S Kumar, H B Nulwala, D R Luebke, N L Rosi, E Albenze. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry A, 2015, 3(9): 5014–5022
https://doi.org/10.1039/C4TA05225K
|
121 |
M W Anjum, F Vermoortele, A L Khan, B Bueken, D E De Vos, I F J Vankelecom. Modulated UiO-66-based mixed-matrix membranes for CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(45): 25193–25201
https://doi.org/10.1021/acsami.5b08964
|
122 |
O G Nik, X Y Chen, S Kaliaguine. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2012, 413: 48–61
https://doi.org/10.1016/j.memsci.2012.04.003
|
123 |
T Yang, Y Xiao, T S Chung. Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy & Environmental Science, 2011, 4(10): 4171–4180
https://doi.org/10.1039/c1ee01324f
|
124 |
B Zornoza, A Martinez-Joaristi, P Serra-Crespo, C Tellez, J Coronas, J Gascon, F Kapteijn. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chemical Communications, 2011, 47(33): 9522–9524
https://doi.org/10.1039/c1cc13431k
|
125 |
J Sánchez-Laínez, B Zornoza, S Friebe, J Caro, S Cao, A Sabetghadam, B Seoane, J Gascon, F Kapteijn, C Le Guillouzer, G Clet, M Daturi, C Téllez, J Coronas. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. Journal of Membrane Science, 2016, 515: 45–53
https://doi.org/10.1016/j.memsci.2016.05.039
|
126 |
A Sabetghadam, B Seoane, D Keskin, N Duim, T Rodenas, S Shahid, S Sorribas, C L Guillouzer, G Clet, C Tellez, M Daturi, J Coronas, F Kapteijn, J Gascon. Metal organic framework crystals in mixed-matrix membranes: Impact of the filler morphology on the gas separation performance. Advanced Functional Materials, 2016, 26(18): 3154–3163
https://doi.org/10.1002/adfm.201505352
|
127 |
Y Zhang, X Feng, H Li, Y Chen, J Zhao, S Wang, L Wang, B Wang. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. Angewandte Chemie International Edition, 2015, 127(14): 4333–4337
https://doi.org/10.1002/ange.201500207
|
128 |
T H Bae, J S Lee, W Qiu, W J Koros, C W Jones, S Nair. A high-performance gas-separation membrane containing submicrometer-sized metal–organic framework crystals. Angewandte Chemie International Edition, 2010, 49(51): 9863–9866
https://doi.org/10.1002/anie.201006141
|
129 |
M J C Ordoñez, K J Balkus Jr, J P Ferraris, I H Musselman. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010, 361(1): 28–37
https://doi.org/10.1016/j.memsci.2010.06.017
|
130 |
T Yang, T S Chung. High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. International Journal of Hydrogen Energy, 2013, 38(1): 229–239
https://doi.org/10.1016/j.ijhydene.2012.10.045
|
131 |
J Shen, G Liu, K Huang, Q Li, K Guan, Y Li, W Jin. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513: 155–165
https://doi.org/10.1016/j.memsci.2016.04.045
|
132 |
X Liu, H Jin, Y Li, H Bux, Z Hu, Y Ban, W Yang. Metal-organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation. Journal of Membrane Science, 2013, 428: 498–506
https://doi.org/10.1016/j.memsci.2012.10.028
|
133 |
N Kornienko, Y Zhao, C S Kley, C Zhu, D Kim, S Lin, C J Chang, O M Yaghi, P Yang. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. Journal of the American Chemical Society, 2015, 137(44): 14129–14135
https://doi.org/10.1021/jacs.5b08212
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|