Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (2) : 127-142    https://doi.org/10.1007/s11705-019-1883-3
REVIEW ARTICLE
Layer-like FAU-type zeolites: A comparative view on different preparation routes
Bastian Reiprich, Tobias Weissenberger, Wilhelm Schwieger, Alexandra Inayat()
Institute of Chemical Reaction Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany
 Download: PDF(4920 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The creation of intergrown layer-like zeolite crystals is one route to form hierarchical zeolites. Faujasite-type (FAU-type) zeolites are among the industrially most important zeolites and the implementation of hierarchical porosity is a promising way to optimise their catalytic and adsorptive performance. After a short general survey into routes for the preparation of hierarchical pore systems in FAU, we will review the currently existing strategies for the synthesis of FAU with layer-like morphology. Those strategies are mainly based on the presence of morphology modifying agents in the synthesis mixture. However, a very recent approach is the synthesis of layer-like FAU-type zeolite crystals assembled in an intergrown manner in the absence of such additives, just by finely adjusting the crystallization temperature. This additive-free preparation route for layer-like FAU, which appears very attractive from an ecological as well as economic point of view, is highlighted in this review. Concluding, a comparison, including powder X-ray diffraction, scanning and transmission electron microscopy, nitrogen physisorption and elemental analysis, between conventional FAU and three layer-like FAU obtained by different synthesis routes was carried out to show the structural, morphological and textural differences and similarities of these materials.

Keywords FAU      hierarchical zeolite      layer-like morphology     
Corresponding Author(s): Alexandra Inayat   
Just Accepted Date: 21 November 2019   Online First Date: 09 January 2020    Issue Date: 24 March 2020
 Cite this article:   
Bastian Reiprich,Tobias Weissenberger,Wilhelm Schwieger, et al. Layer-like FAU-type zeolites: A comparative view on different preparation routes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 127-142.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1883-3
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I2/127
Fig.1  Schematic overview of proposed classification terms for zeolites with 2D-morphology.
Fig.2  Scanning electron microscopy (SEM) images of a conventional FAU-type and a conventional EMT-type zeolite. Reprinted with permission from Ref. [60]. Copyright (2001) American Chemical Society.
Fig.3  SEM images of conventional FAU crystals (top-left) and layer-like FAU synthesised in the presence of organosilanes CH3–(CH2)n–N+(CH3)2–(CH3)3–Si(OCH3)3 with different alkyl chain lengths (n = 3, 7, 11, 15 and 17). Reprinted with permission of Royal Society of Chemistry, from Ref. [73], Copyright (2015); permission conveyed through Copyright Clearance Center, Inc.
Fig.4  SEM images of examples of layer-like FAU synthesised by additive-free preparation routes from recent literature. (a) Reprinted with permission from Ref. [84]. Copyright (2016) American Chemical Society. (b) Reprinted with permission from Ref. [85]. Published by The Royal Society of Chemistry. (c) Reprinted by permission from Springer Nature, Science China Materials, Ref. [86]. Copyright (2018). (d) Reprinted with permission from Ref. [87]. Copyright (2019) American Chemical Society. (e) Reprinted with permission of Royal Society of Chemistry, from Ref. [88], Copyright (2018); permission conveyed through Copyright Clearance Center, Inc. (f) Reprinted with permission of Royal Society of Chemistry, from Ref. [89], Copyright (2019); permission conveyed through Copyright Clearance Center, Inc.
Synthesis gel composition
Al2O3 : Na2O : SiO2 : H2O
Temp. /°C Time/ h FAU-type Surface area /(m2?g1) Micropore volume/ (cm3?g1) Mesopore volume/ (cm3?g1) Ref.
1 : 9.6 :14.4 : 175.3–334.2 25
38
60
24
24
48
Y 404–757 0.14–0.30 0.16–0.19 a) [92]
Gel 1 | 1 : 1 : 10 : 140
Gel 2 | 1: 5.3 : 2.2 : 122 : 1.8 K2O
Gel∑ | 1 : 3.7 : 5.1 : 128.8 : 1.1 K2O
G1: RT
G2: RT
G∑: 60
48
24
72
X 652 0.23 n.a. [90]
1 : 4.9–12 : 3.6–14 : 214–300 Ice bath
RT
60
1
24
n.a.
X, Y n.a. n.a. n.a. [84]
1 : 8.3 : 6.4 : 194.6–290.3 RT
100
50
100
4
1
96
2
X 756 0.24 n.a. [66]
1 : 31.3 : 27.5 : 531.3 RT
65
0.33
95
X n.a. n.a. n.a. [91]
1 : 14.4 : 9.8 : 590 RT
75
20
16
Y 687 0.24 0.14–0.15 [85]
1 : 13.6–36 : 3–8 : 545,5–1440 Ice bath
60
5
24
X, Y 544 0.26 0.13 a) [86]
1 : 10.7–18.3 : 10.4–22.6 : 815 RT
70
2
24
Y 729–866 0.21–0.33 0.25–0.58 a) [87]
n.a. n.a.
70
n.a.
48
X 541 0.26 0.11 a) [88]
1 : 4–7.3 : 3.5 : 180–300 Ice bath
RT
60
1
24
48
X 759–781 0.27–0.28 n.a. [89]
1 : 4 : 3 : 150–200 RT
50
24
72
X 445–708 0.17–0.26 0.07–0.20 This Work
Tab.1  Synthesis parameters and nitrogen physisorption analysis results for layer-like FAU zeolites prepared by the additive-free preparation route
Fig.5  Temperature profiles of additive-free syntheses of layer-like FAU, both X and Y, and for the synthesis of conventional zeolite X (reference), the different colours refer to the number of temperature steps. The dashed lines are an assumed temperature (see [88]) and duration (see [84]) due to a lack of information in the literature.
Fig.6  Comparison of different synthesis compositions of layer-like and conventional FAU, respectively. (a) H2O/Si (green), OH/Si (blue) and Si/Al (red) molar ratios of synthesis gel compositions and resulting Si/Al molar ratios (black) of the zeolite products; (b) Ternary diagramn (Al2O3-SiO2-Na2O) with one selected synthesis gel composition of each work in comparison with the IZA verified syntheses for zeolite X and Y. The dashed areas examplify synthesis gel compositions for zeolite Y, zeolite X and zeolite A, respectively [96].
Fig.7  SEM images and correlation of H2O/Al2O3 molar ratio of the synthesis gel and particle size and 2D-crystal thickness of layer-like zeolite X from this work. The synthesis composition of these layer-like FAU was Al2O3 : Na2O : SiO2 : H2O= 1 : 4 : 4 : 150–200.
Itam Synthesis composition Aging Crystallisation
Al2O3 Na2O SiO2 H2O Additive
X-standard 1 4 3 180 1 d @ 25°C 3 d @ 75°C
X-TPOAC 1 3.5 3 180 0.06 TPOAC 1 d @ 25°C 3 d @ 75°C
X-Li2CO3 1 3.7 3 180 0.60 Li2CO3 1 d @ 25°C 2 d @ 75°C
X-additive-free 1 4 3 180 1 d @ 25°C 3 d @ 50°C
Tab.2  Molar synthesis composition and conditions for conventional FAU and three layer-like FAU
Fig.8  SEM images of a conventional zeolite X (X-standard) and three layer-like FAU, synthesised by different preparation routes.
Fig.9  (a) XRD patterns; (b) nitrogen physisorption isotherms; (c) mesopore diameter distributions (DFT) of a conventional (X-standard) and three layer-like FAU (X-TPOAC, X-Li2CO3 and X-additive-free).
Property (method) X-standard X-TPOAC X-Li2CO3 X-additive-free
Surface area (BET)/(m2?g1) 889 452 789 708
Micropore vol. (DFT)/(cm3?g1) 0.36 0.15 0.31 0.26
Mesopore vol. (DFT)/(cm3?g1) 0.06 0.20 0.12 0.14
Mesopore diameter (DFT)/nm 6–11 3–8 3–8
Si/Al molar ratio (ICP-OES) 1.39 1.43 1.37 1.38
Particle diameter (SEM)/µm 1.9 7.5 2.3 1.7
Sheet thickness (SEM)/nm 50 65 95
Tab.3  Textural properties from nitrogen physisorption, chemical composition (Si/Al) from ICP-OES and morphological properties from SEM analysis
Fig.10  TEM images with two magnifications of three layer-like FAU, synthesised by different methods.
1 W Vermeiren, J P Gilson. Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161
https://doi.org/10.1007/s11244-009-9271-8
2 D Bathen, M Breitbach. Technische Adsorbentien. In: Adsorptionstechnik. Berlin: Springer International Publishing, 2001, 13–48
3 D W Mckee. Separation of an oxygen-nitrogen mixture. US Patent, 3 140 932, 1964-07-14
4 C V McDaniel, P K Maher. Stabilized zeolites. US Patent, 3 449 070, 1969-06-10
5 R W Baker, F G Ciapetta, C P Wilson Jr, P K Maher. Process for preparing molecular sieve containing cracking catalysts. US Patent, 3 425 956, 1969-02-04
6 R M Dobres. Hydrocracking catalyst and process. US Patent, 3 431 196, 1969-03-04
7 F H Seubold. Hydrocracking process and catalyst. US Patent, 2 983 670, 1961-05-09
8 R M Milton. Molecular sieve adsorbents. US Patent, 2 882 244, 1959-04-14
9 D W Breck. Crystalline zeolite Y. US Patent, 3 130 007, 1964-04-21
10 G H Kühl. Crystallization of low-silica faujasite (SiO2/Al2O3~ 2.0). Zeolites, 1987, 7(5): 451–457
https://doi.org/10.1016/0144-2449(87)90014-5
11 ExxonMobil Oil Corp. Manufacture of low silica faujasite. GB Patent, 1 580 928, 1980-12-10
12 S M Auerbach, N J Henson, A K Cheetham, H I Metiu. Transport theory for cationic zeolites: Diffusion of benzene in Na-Y. Journal of Physical Chemistry, 1995, 99(26): 10600–10608
https://doi.org/10.1021/j100026a025
13 A Corma. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews, 1995, 95(3): 559–614
https://doi.org/10.1021/cr00035a006
14 M F M Post. Diffusion in zeolite molecular sieves. In: Studies in Surface Science and Catalysis. 58th ed. Amsterdam: Elsevier, 1991, 391–443
15 D Mehlhorn, A Inayat, W Schwieger, R Valiullin, J Kärger. Probing mass transfer in mesoporous Faujasite-type zeolite nanosheet assemblies. ChemPhysChem, 2014, 15(8): 1681–1686
https://doi.org/10.1002/cphc.201301133
16 D Mehlhorn, R Valiullin, J Kärger, K Cho, R Ryoo. Intracrystalline diffusion in mesoporous zeolites. ChemPhysChem, 2012, 13(6): 1495–1499
https://doi.org/10.1002/cphc.201200048
17 C H Christensen, K Johannsen, E Toernqvist, I Schmidt, H Topsøe, C H Christensen. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today, 2007, 128(3-4): 117–122
https://doi.org/10.1016/j.cattod.2007.06.082
18 J C Groen, W Zhu, S Brouwer, S J Huynink, F Kapteijn, J A Moulijn, J Pérez-Ramírez. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. Journal of the American Chemical Society, 2007, 129(2): 355–360
https://doi.org/10.1021/ja065737o
19 J Kärger, R Valiullin. Mass transfer in mesoporous materials: The benefit of microscopic diffusion measurement. Chemical Society Reviews, 2013, 42(9): 4172–4197
https://doi.org/10.1039/c3cs35326e
20 D Verboekend, N Nuttens, R Locus, J Van Aelst, P Verolme, J Groen, J Pérez-Ramírez, B Sels. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: Milestones, challenges, and future directions. Chemical Society Reviews, 2016, 45(12): 3331–3352
https://doi.org/10.1039/C5CS00520E
21 B-L Su, C Sanchez, X-Y Yang. Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012, 1–678
22 D Verboekend, G Vilé, J Pérez-Ramírez. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928
https://doi.org/10.1002/adfm.201102411
23 D Verboekend, J Pérez-Ramírez. Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 2011, 1(6): 879–890
https://doi.org/10.1039/c1cy00150g
24 W Schwieger, A G Machoke, T Weissenberger, A Inayat, T Selvam, M Klumpp, A Inayat. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 2016, 45(12): 3353–3376
https://doi.org/10.1039/C5CS00599J
25 W Schwieger, A G Machoke, B Reiprich, T Weissenberger, T Selvam, M Hartmann. Hierarchical zeolites. In: Zeolites in Catalysis: Properties and Applications. Cambridge: The Royal Society of Chemistry, 2017, 103–145
26 W J Roth, B Gil, W Makowski, B Marszalek, P Eliášová. Layer like porous materials with hierarchical structure. Chemical Society Reviews, 2016, 45(12): 3400–3438
https://doi.org/10.1039/C5CS00508F
27 J Přech, P Pizarro, D Serrano, J Čejka. From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47(22): 8263–8306
https://doi.org/10.1039/C8CS00370J
28 M Choi, K Na, J Kim, Y Sakamoto, O Terasaki, R Ryoo. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
https://doi.org/10.1038/nature08288
29 A Inayat, I Knoke, E Spiecker, W Schwieger. Assemblies of mesoporous FAU-type zeolite nanosheets. Angewandte Chemie International Edition, 2012, 51(8): 1962–1965
https://doi.org/10.1002/anie.201105738
30 X Zhang, D Liu, D Xu, S Asahina, K A Cychosz, K V Agrawal, Y Al Wahedi, A Bhan, S Al Hashimi, O Terasaki, M Thommes, M Tsapatsis. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687
https://doi.org/10.1126/science.1221111
31 A I Lupulescu, J D Rimer. Tailoring silicalite-1 crystal morphology with molecular modifiers. Angewandte Chemie International Edition, 2012, 51(14): 3345–3349
https://doi.org/10.1002/anie.201107725
32 G Bergerhoff, H Koyama, W Nowacki. On the crystal structure of the minerals from the chabazite and faujasite groups. Cellular and Molecular Life Sciences, 1956, 12(11): 418–419 (in German)
https://doi.org/10.1007/BF02157360
33 G Bergerhoff, W H Baur, W Nowacki. Über die kristallstrukturen des faujasits. Neues Jahrbuch für Mineralogie Monatshefte, 1958, 198: 193–200
34 R Barrer. The separation of molecules with the help of crystal sieves. Brennstoff-Chemie, 1954, 35: 325–334 (in German)
35 D W Breck, E Flanigen. Synthesis and properties of union carbide zeolites L, X and Y. Molecular sieves, 1968: 47–60
36 G T Kerr. Chemistry of crystalline aluminosilicates. V. Preparation of aluminum-deficient faujasites. Journal of Physical Chemistry, 1968, 72(7): 2594–2596
https://doi.org/10.1021/j100853a058
37 P K Maher, C V McDaniel. Zeolite z-14us and method of preparation thereof. US Patent, 3 293 192, 1966-10-20
38 C McDaniel, P Maher. New ultrastable form of Faujasite. In: Molecular Sieves. London: Society of Chemical Industry, 1968, 186–194
39 R C Hansford, J W Ward. The nature of active sites on zeolites: VII. Relative activities of crystalline and amorphous alumino-silicates. Journal of Catalysis, 1969, 13(3): 316–320
https://doi.org/10.1016/0021-9517(69)90406-0
40 G T Kerr. Chemistry of crystalline aluminosilicates. VI. Preparation and properties of ultrastable hydrogen zeolite Y. Journal of Physical Chemistry, 1969, 73(8): 2780–2782
https://doi.org/10.1021/j100842a056
41 G T Kerr, J N Miale, R J Mikovsky. Hydrothermally stable catalysts of high activity and methods for their preparation. US Patent, 3 493 519, 1970-02-03
42 J Scherzer. Dealuminated faujasite-type structures with SiO2Al2O3 ratios over 100. Journal of Catalysis, 1978, 54(2): 285–288
https://doi.org/10.1016/0021-9517(78)90051-9
43 K Tsutsumi, H Kajiwara, H Takahashi. Characteristic studies on dealumination of faujasite-type zeolite. Bulletin of the Chemical Society of Japan, 1974, 47(4): 801–805
https://doi.org/10.1246/bcsj.47.801
44 U Lohse, G Engelhardt, V Patzelova. Adsorption of n-hexane on H-Y and on deep bed treated dealuminated Y zeolites. Zeolites, 1984, 4(2): 163–167
https://doi.org/10.1016/0144-2449(84)90055-1
45 A Zukal, V Patzelova, U Lohse. Secondary porous structure of dealuminated Y zeolites. Zeolites, 1986, 6(2): 133–136
https://doi.org/10.1016/S0144-2449(86)80011-2
46 U Lohse, H Stach, H Thamm, W Schirmer, A Isirikjan, N Regent, M Dubinin. Dealuminated molecular sieves of the type Y determination of the micron secondary pore volume by adsorption measurements. Zeitschrift fur Anorganische und Allgemeine Chemie, 1980, 460(1): 179–190 (in German)
https://doi.org/10.1002/zaac.19804600117
47 G Skeels, D Breck. Zeolite chemistry V-substitution of silicon for aluminum in zeolites via reaction with aqueous fluorosilicate. In: Proceedings of 6th International Zeolite Conference. London: Butterworth & Co., Ltd., 1984, 87
48 H K Beyer, I Belenykaja. A new method for the dealumination of faujasite-type zeolites. In: Studies in Surface Science and Catalysis. 5th ed. Amsterdam: Elsevier, 1980, 203–210
49 Z Qin, K A Cychosz, G Melinte, H El Siblani, J P Gilson, M Thommes, C Fernandez, S Mintova, O Ersen, V Valtchev. Opening the cages of faujasite-type zeolite. Journal of the American Chemical Society, 2017, 139(48): 17273–17276
https://doi.org/10.1021/jacs.7b10316
50 K P de Jong, J Zečević, H Friedrich, P E de Jongh, M Bulut, S Van Donk, R Kenmogne, A Finiels, V Hulea, F Fajula. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angewandte Chemie, 2010, 122(52): 10272–10276
https://doi.org/10.1002/ange.201004360
51 R Van Mao. Selective removal of silicon from zeolite frameworks using sodium carbonate. Journal of Materials Chemistry, 1994, 4(4): 605–610
https://doi.org/10.1039/jm9940400605
52 J García-Martínez, M Johnson, J Valla, K Li, J Y Ying. Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2012, 2(5): 987–994
https://doi.org/10.1039/c2cy00309k
53 Y Tao, H Kanoh, K Kaneko. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974–10976
https://doi.org/10.1021/jp0356822
54 H Chen, J Wydra, X Zhang, P S Lee, Z Wang, W Fan, M Tsapatsis. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393
https://doi.org/10.1021/ja2046815
55 J Zhang, S Bai, Z Chen, Y Wang, L Dong, H Zheng, F Cai, M Hong. Core-shell zeolite Y with ant-nest like hollow interior constructed by amino acids and enhanced catalytic activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(39): 20757–20764
https://doi.org/10.1039/C7TA05048H
56 J Zhao, Y Yin, Y Li, W Chen, B Liu. Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates. Chemical Engineering Journal, 2016, 284: 405–411
https://doi.org/10.1016/j.cej.2015.08.143
57 S Liu, X Cao, L Li, C Li, Y Ji, F S Xiao. Preformed zeolite precursor route for synthesis of mesoporous X zeolite. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 318(1): 269–274
https://doi.org/10.1016/j.colsurfa.2008.01.002
58 M Khaleel, A J Wagner, K A Mkhoyan, M Tsapatsis. On the rotational intergrowth of hierarchical FAU/EMT zeolites. Angewandte Chemie International Edition, 2014, 53(36): 9456–9461
https://doi.org/10.1002/anie.201402024
59 F Delprato, L Delmotte, J Guth, L Huve. Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates. Zeolites, 1990, 10(6): 546–552
https://doi.org/10.1016/S0144-2449(05)80310-0
60 M Matsukata, K Kizu, M Ogura, E Kikuchi. Synthesis of EMT zeolite by a steam-assisted crystallization method using crown ether as a structure-directing agent. Crystal Growth & Design, 2001, 1(6): 509–516
https://doi.org/10.1021/cg015546r
61 O Terasaki, T Ohsuna, V Alfredsson, J Bovin, D Watanabe, S W Carr, M W Anderson. Observation of spatially correlated intergrowths of faujasitic polytypes and the pure end members by high-resolution electron microscopy. Chemistry of Materials, 1993, 5(4): 452–458
https://doi.org/10.1021/cm00028a010
62 M M J Treacy, J M Newsam, R A Beyerlein, M E Leonowicz, D E W Vaughan. The structure of zeolite CSZ-1 interpreted as a rhombohedrally distorted variant of the faujasite framework. Journal of the Chemical Society. Chemical Communications, 1986, (15): 1211–1213
https://doi.org/10.1039/c39860001211
63 C Julius. ZSM-2 zeolite and preparation thereof. US Patent, 3 411 874, 1968-11-19
64 G T Kokotailo, J Ciric. Synthesis and structural features of zeolite ZSM-3. In: Molecular Sieve Zeolites-I. Washington, D.C.: American Chemical Society, 1974, 109–121
65 J Newsam, M Treacy, D Vaughan, K Strohmaier, W Mortier. The structure of zeolite ZSM-20: Mixed cubic and hexagonal stackings of faujasite sheets. Journal of the Chemical Society. Chemical Communications, 1989, (8): 493–495
https://doi.org/10.1039/c39890000493
66 B Wang, P K Dutta. Synthesis method for introducing mesoporosity in a faujasitic-like zeolite system from a sodium aluminosilicate gel composition. Microporous and Mesoporous Materials, 2017, 239: 195–208
https://doi.org/10.1016/j.micromeso.2016.10.008
67 M Choi, H S Cho, R Srivastava, C Venkatesan, D H Choi, R Ryoo. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723
https://doi.org/10.1038/nmat1705
68 K Cho, H S Cho, L C De Menorval, R Ryoo. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664–5673
https://doi.org/10.1021/cm902861y
69 G V Shanbhag, M Choi, J Kim, R Ryoo. Mesoporous sodalite: A novel, stable solid catalyst for base-catalyzed organic transformations. Journal of Catalysis, 2009, 264(1): 88–92
https://doi.org/10.1016/j.jcat.2009.03.014
70 L Liu, H Wang, R Wang, C Sun, S Zeng, S Jiang, D Zhang, L Zhu, Z Zhang. N-Methyl-2-pyrrolidone assisted synthesis of hierarchical ZSM-5 with house-of-cards-like structure. RSC Advances, 2014, 4(41): 21301–21305
https://doi.org/10.1039/C4RA02022G
71 A I Lupulescu, M Kumar, J D Rimer. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. Journal of the American Chemical Society, 2013, 135(17): 6608–6617
https://doi.org/10.1021/ja4015277
72 J Rimer, M Kumar, R Li, A Lupulescu, M Oleksiak. Tailoring the physicochemical properties of zeolite catalysts. Catalysis Science & Technology, 2014, 4(11): 3762–3771
https://doi.org/10.1039/C4CY00858H
73 G Rioland, S Albrecht, L Josien, L Vidal, T J Daou. The influence of the nature of organosilane surfactants and their concentration on the formation of hierarchical FAU-type zeolite nanosheets. New Journal of Chemistry, 2015, 39(4): 2675–2681
https://doi.org/10.1039/C4NJ02137A
74 L Wang, S Sang, S Meng, Y Zhang, Y Qi, Z Liu. Direct synthesis of Zn-ZSM-5 with novel morphology. Materials Letters, 2007, 61(8-9): 1675–1678
https://doi.org/10.1016/j.matlet.2006.07.097
75 A Inayat, C Schneider, W Schwieger. Organic-free synthesis of layer-like FAU-type zeolites. Chemical Communications, 2015, 51(2): 279–281
https://doi.org/10.1039/C4CC07947G
76 X Fu, X Sheng, Y Zhou, Z Fu, S Zhao, Z Zhang, Y Zhang. One-step synthesis of hierarchical aluminosilicates using alkoxy-functionalized ionic liquid as a novel template. New Journal of Chemistry, 2016, 40(7): 6036–6045
https://doi.org/10.1039/C5NJ02927A
77 N Hanif, M W Anderson, V Alfredsson, O Terasaki. The effect of stirring on the synthesis of intergrowths of zeolite Y polymorphs. Physical Chemistry Chemical Physics, 2000, 2(14): 3349–3357
https://doi.org/10.1039/b002314k
78 M W Anderson, K S Pachis, F Prébin, S W Carr, O Terasaki, T Ohsuna, V Alfreddson. Intergrowths of cubic and hexagonal polytypes of faujasitic zeolites. Journal of the Chemical Society. Chemical Communications, 1991, (23): 1660–1664
https://doi.org/10.1039/C39910001660
79 J P Arhancet, M E Davis. Systematic synthesis of zeolites that contain cubic and hexagonal stackings of faujasite sheets. Chemistry of Materials, 1991, 3(4): 567–569
https://doi.org/10.1021/cm00016a001
80 S L Burkett, M E Davis. Structure-directing effects in the crown ether-mediated syntheses of FAU and EMT zeolites. Microporous Materials, 1993, 1(4): 265–282
https://doi.org/10.1016/0927-6513(93)80070-B
81 L Belandria, C Gonzalez, F Aguirre, E Sosa, A Uzcátegui, G González, J Brito, S Gonzalez-Cortes, F Imbert. Synthesis, characterization of FAU/EMT intergrowths and its catalytic performance in n-pentane hydroisomerization reaction. Journal of Molecular Catalysis A Chemical, 2008, 281(1-2): 164–172
https://doi.org/10.1016/j.molcata.2007.09.011
82 H Lechert, H Kacirek. Investigations on the crystallization of X-type zeolites. Zeolites, 1991, 11(7): 720–728
https://doi.org/10.1016/S0144-2449(05)80178-2
83 A T B Ginter, C J Radke. Molecular sieves. In: Synthesis of Microporous Materials. New York: Van Nostrand Reinhold, 1992
84 M Khaleel, W Xu, D A Lesch, M Tsapatsis. Combining pre-and post-nucleation Trajectories for the synthesis of high FAU-content Faujasite nano-crystals from organic-free sols. Chemistry of Materials, 2016, 28(12): 4204–4213
https://doi.org/10.1021/acs.chemmater.6b00588
85 T Tang, L Zhang, H Dong, Z Fang, W Fu, Q Yu, T Tang. Organic template-free synthesis of zeolite Y nanoparticle assemblies and their application in the catalysis of the Ritter reaction. RSC Advances, 2017, 7(13): 7711–7717
https://doi.org/10.1039/C6RA27129D
86 X Jia, L Han, Y Ma, S Che. Additive-free synthesis of mesoporous FAU-type zeolite with intergrown structure. Science China Materials, 2018, 61(8): 1095–1100
https://doi.org/10.1007/s40843-017-9227-y
87 Y Du, Q Kong, Z Gao, Z Wang, J Zheng, B Qin, M Pan, W Li, R Li. Flower-like hierarchical Y with dramatically increased external surface: A potential catalyst contributing to improving pre-cracking for bulky reactant molecules. Industrial & Engineering Chemistry Research, 2018, 57(22): 7395–7403
https://doi.org/10.1021/acs.iecr.8b00751
88 L Liu, H Wang, Z Wang, L Zhu, L Huang, L Yu, J Fan, Y Yao, S Liu, J Zou, X Zeng. Evolving mechanism of organotemplate-free hierarchical FAU zeolites with house-of-card-like structures. Chemical Communications, 2018, 54(70): 9821–9824
https://doi.org/10.1039/C8CC05677C
89 S Gaber, D Gaber, I Ismail, S M Alhassan, M Khaleel. Additive-free synthesis of house-of-card faujasite zeolite by utilizing aluminosilicate gel memory. CrystEngComm, 2019, 21(11): 1685–1690
https://doi.org/10.1039/C8CE01804A
90 O G Nik, B Nohair, S Kaliaguine. Aminosilanes grafting on FAU/EMT zeolite: Effect on CO2 adsorptive properties. Microporous and Mesoporous Materials, 2011, 143(1): 221–229
https://doi.org/10.1016/j.micromeso.2011.03.002
91 S Ferdov. FAU-type zeolite nanosheets from additives-free system. Microporous and Mesoporous Materials, 2017, 242: 59–62
https://doi.org/10.1016/j.micromeso.2017.01.018
92 Y Huang, K Wang, D Dong, D Li, M R Hill, A J Hill, H Wang. Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes. Microporous and Mesoporous Materials, 2010, 127(3): 167–175
https://doi.org/10.1016/j.micromeso.2009.07.026
93 P Mather, J Pilato. Preparation of zeolites. US Patent, 3 808 326, 1974-04-30
94 S Khajavi, F Kapteijn, J C Jansen. Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation. Journal of Membrane Science, 2007, 299(1-2): 63–72
https://doi.org/10.1016/j.memsci.2007.04.027
95 J Weitkamp, R Schumacher. Synthesis, dealumination and physico-chemical characterization of zeolite EMT. In: Proceedings of 9th International Zeolite Conference. Boston: Butterworth-Heinemann, 1993, 353–360
96 D Breck. Zeolite Molecular Sieves: Structure, Chemistry, and Use. 99th ed. New York: John Wiley and Sons Inc., 1974, 1–784
97 P Scardi, M Leoni, K R Beyerlein. On the modelling of the powder pattern from a nanocrystalline material. Zeitschrift für Kristallographie. Crystalline Materials, 2011, 226(12): 924–933
https://doi.org/10.1524/zkri.2011.1448
98 M Thommes, K Kaneko, A V Neimark, J P Olivier, F Rodriguez-Reinoso, J Rouquerol, K S Sing. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9-10): 1051–1069
https://doi.org/10.1515/pac-2014-1117
[1] Olga A. Ponomareva, Polina A. Shaposhnik, Marina V. Belova, Boris A. Kolozhvari, Irina I. Ivanova. Novel method for the preparation of Cs-containing FAU(Y) catalysts for aniline methylation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 70-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed