d Ruddlesden-Popper membrane for oxygen separation" /> d Ruddlesden-Popper membrane for oxygen separation" /> d Ruddlesden-Popper membrane for oxygen separation" />
Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (3) : 405-414    https://doi.org/10.1007/s11705-019-1886-0
RESEARCH ARTICLE
A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation
Guoxing Chen1,3(), Marc Widenmeyer1,3, Binjie Tang3, Louise Kaeswurm3, Ling Wang3, Armin Feldhoff2, Anke Weidenkaff1,4
1. Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
2. Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, 30167 Hannover, Germany
3. Institute for Materials Science, Universität Stuttgart, 70569 Stuttgart, Germany
4. Fraunhofer Institute IWKS, 63457 Hanau, Germany
 Download: PDF(2122 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of novel dense mixed conducting ceramic membranes based on K2NiF4-type (La1–xCax)2 (Ni0.75Cu0.25)O4+δ was successfully prepared through a sol-gel route. Their chemical compatibility, oxygen permeability, CO and CO2 tolerance, and long-term CO2 resistance regarding phase composition and crystal structure at different atmospheres were studied. The results show that higher Ca contents in the material lead to the formation of CaCO3. A constant oxygen permeation flux of about 0.63 mL·min1·cm2 at 1173 K through a 0.65 mm thick membrane was measured for (La0.9Ca0.1)2 (Ni0.75Cu0.25)O4+δ, using either helium or pure CO2 as sweep gas. Steady oxygen fluxes with no sign of deterioration of this membrane were observed with increasing CO2 concentration. The membrane showed excellent chemical stability towards CO2 for more than 1360 h and phase stability in presence of CO for 4 h at high temperature. In addition, this membrane did not deteriorate in a high-energy CO2 plasma. The present work demonstrates that this (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ membrane is a promising chemically robust candidate for oxygen separation applications.

Keywords K2NiF4 structure      oxygen permeation membrane      CO2 and CO resistances      CO2 plasma resistance      long-term robustness     
Corresponding Author(s): Guoxing Chen,Marc Widenmeyer,Anke Weidenkaff   
Just Accepted Date: 08 August 2019   Online First Date: 12 November 2019    Issue Date: 28 April 2020
 Cite this article:   
Guoxing Chen,Marc Widenmeyer,Binjie Tang, et al. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation[J]. Front. Chem. Sci. Eng., 2020, 14(3): 405-414.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1886-0
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I3/405
Fig.1  (a) XRD patterns of (La1–xCax)2(Ni0.75Cu0.25)O4+δ (x = 0, 0.1, 0.2, 0.3, 0.4) powders and (b) magnification of the 103 main reflection. (1) x = 0; (2) x = 0.1; (3) x = 0.2; (4) x = 0.3; (5) x = 0.4. (c) unit cell parameters a and c vs. nominal Ca2+ content.
Fig.2  TG-curves of (La1-xCax)2(Ni0.75Cu0.25)O4+δ (x = 0, 0.1, 0.2, 0.3, 0.4) bulk samples at 10 K·min1 under flowing CO2 atmosphere. CO2 flow rate is 30 mL·min1.
Fig.3  XRD patterns of (La1–xCax)2(Ni0.75Cu0.25)O4+δ (x = 0, 0.1, 0.2, 0.3) bulk samples after exposure to pure CO2 for 500 h at 1173 K. The CO2 flow rate was 30 mL·min1.
Fig.4  XRD patterns of La2NiO4+δ and (La0.9Ca0.1)2 (Ni0.75Cu0.25)O4+δ bulk samples before and after exposure to pure CO for 4 h at 923 K. The CO flow rate was 50 mL·min1.
Fig.5  (a) In situ XRD patterns of (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ powder in air; (b) Close-up of the XRD patterns at 30°<2q<33°.
Fig.6  Rietveld refinements of XRD patterns for (La0.9Ca0.1)2 (Ni0.75Cu0.25)O4+δ powder in air at different temperatures: (a) at 303 K before heating, (b) at 1123 K and (c) at 303 K after heating.
Temperature /K Cell volume /Å3 a c /Å x2
303 371.99(1) 5.4032(1) 12.7414(3) 2.90
373 373.03(1) 5.4073(1) 12.7576(3) 2.85
473 374.50(2) 5.4135(1) 12.7791(3) 2.97
573 376.05(2) 5.4201(1) 12.8008(3) 2.99
673 377.64(2) 5.4266(1) 12.8242(3) 3.01
773 379.22(2) 5.4339(2) 12.8432(4) 3.05
873 380.84(2) 5.4412(2) 12.8629(4) 2.98
973 382.45(2) 5.4486(2) 12.8828(4) 2.84
1073 384.07(2) 5.4558(2) 12.9030(4) 2.88
1123 384.92(2) 5.4596(2) 12.9138(4) 2.94
1073 384.09(2) 5.4559(2) 12.9032(4) 2.86
973 382.47(2) 5.4486(2) 12.8832(4) 3.02
873 380.83(2) 5.4412(2) 12.8631(4) 3.06
773 379.21(2) 5.4337(2) 12.8434(4) 3.12
673 379.21(2) 5.4263(1) 12.8241(4) 3.25
573 376.09(2) 5.4196(1) 12.8043(3) 3.18
473 374.48(2) 5.4128(1) 12.7815(3) 3.11
373 372.98(1) 5.4068(1) 12.7589(3) 3.05
303 372.01(1) 5.4030(1) 12.7435(3) 2.99
Tab.1  Refined structural parameters of (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ in a space group I4/mmm at different temperatures
Fig.7  Temperature dependence of the unit cell volume and the c/a ratio of (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ powder.
Fig.8  Oxygen permeation fluxes through a (La0.9Ca0.1)2 (Ni0.75Cu0.25)O4+δ membrane in different gas atmosphere gradients. Sweep gas flow rate: He or CO2 = 29 mL·min1, Ne=1 mL·min1; feed gas flow rate: synthetic air (80 vol-% N2, 20 vol-% O2) or a mixture of CO2 and synthetic air=150 mL·min1; membrane thickness: 0.65 mm.
Fig.9  XRD patterns of the (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ membrane after exposure to pure CO2 at 1173 K for various times. The CO2 flow rate was 30 mL·min1. The dashed lines mark the area, where the strongest reflection of CaCO3 is expected.
Fig.10  SEM images and EDS elemental distributions of the (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ bulk sample after exposure to pure CO2 at 1173 K for 1360 h.
Fig.11  XRD patterns of the (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ bulk sample after different CO2 plasma treatments. Treatment 1: 30 min at 1073 K; Treatment 2: 30 min at 1273 K; Treatment 3: 6 ´ 5 min at 1073 K with 5 min breaks in between; Treatment 4: 6 ´ 5 min at 1273 K with 5 min breaks in between. The dashed lines mark the area, where the strongest reflection of CaCO3 is expected.
1 G De Guido, M Compagnoni, L A Pellegrini, I Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion. Frontiers of Chemical Science and Engineering, 2018, 12(2): 315–325
https://doi.org/10.1007/s11705-017-1698-z
2 G Chen, T Godfroid, V Georgieva, N Britun, M P Delplancke-Ogletree, R Snyders. Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge. Applied Catalysis B: Environmental, 2017, 214: 114–125
https://doi.org/10.1016/j.apcatb.2017.05.032
3 Y Zheng, J Wang, B Yu, W Zhang, J Chen, J Qiao, J Zhang. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology. Chemical Society Reviews, 2017, 46(5): 1427–1463
https://doi.org/10.1039/C6CS00403B
4 N Britun, T Silva, G Chen, T Godfroid, J van der Mullen, R Snyders. Plasma-assisted CO2 conversion: Optimizing performance via microwave power modulation. Journal of Physics. D, Applied Physics, 2018, 51(14): 144002
https://doi.org/10.1088/1361-6463/aab1ad
5 G Chen, V Georgieva, T Godfroid, R Snyders, M P Delplancke-Ogletree. Plasma assisted catalytic decomposition of CO2. Applied Catalysis B: Environmental, 2016, 190: 115–124
https://doi.org/10.1016/j.apcatb.2016.03.009
6 G Chen, N Britun, T Godfroid, V Georgieva, R Snyders, M P Delplancke-Ogletree. An overview of CO2 conversion in a microwave discharge: The role of plasma-catalysis. Journal of Physics. D, Applied Physics, 2017, 50(8): 084001
https://doi.org/10.1088/1361-6463/aa5616
7 W Bongers, H Bouwmeester, B Wolf, F Peeters, S Welzel, D Van den Bekerom, D Den Harder, A Goede, M Graswinckel, P W Groen, et al. Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Processes and Polymers, 2017, 14(6): 1600126
https://doi.org/10.1002/ppap.201600126
8 J Sunarso, S Baumann, J M Serra, W A Meulenberg, S Liu, Y S Lin, J D Da Costa. Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320(1-2): 13–41
https://doi.org/10.1016/j.memsci.2008.03.074
9 C Zhang, J Sunarso, S Liu. Designing CO2-resistant oxygen-selective mixed ionic–electronic conducting membranes: Guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46(10): 2941–3005
https://doi.org/10.1039/C6CS00841K
10 K Li, H Zhao, Y Lu, Y Ma, Z Du, Z Zhang. High CO2 tolerance oxygen permeation membranes BaFe0.95–xCa0.05TixO3–δ. Journal of Membrane Science, 2018, 550: 302–312
https://doi.org/10.1016/j.memsci.2018.01.007
11 H Stadler, F Beggel, M Habermehl, B Persigehl, R Kneer, M Modigell, P Jeschke. Oxyfuel coal combustion by efficient integration of oxygen transport membranes. International Journal of Greenhouse Gas Control, 2011, 5(1): 7–15
https://doi.org/10.1016/j.ijggc.2010.03.004
12 T Schiestel, M Kilgus, S Peter, K J Caspary, H Wang, J Caro. Hollow fibre perovskite membranes for oxygen separation. Journal of Membrane Science, 2005, 258(1-2): 1–4
https://doi.org/10.1016/j.memsci.2005.03.035
13 I V Khromushin, T I Aksenova, Z R Zhotabaev. Mechanism of gas–solid exchange processes for some perovskites. Solid State Ionics, 2003, 162-163: 37–40
https://doi.org/10.1016/S0167-2738(03)00231-5
14 J X Yi, S J Feng, Y B Zuo, W Liu, C S Chen. Oxygen permeability and stability of Sr0.95Co0.8Fe0.2O3−δ in a CO2 and H2O containing atmosphere. Chemistry of Materials, 2005, 17(23): 5856–5861
https://doi.org/10.1021/cm051636y
15 J H Tong, W S Yang, B C Zhu, R Cai. Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation. Journal of Membrane Science, 2002, 203(1-2): 175–189
https://doi.org/10.1016/S0376-7388(02)00005-4
16 G Chen, W Liu, M Widenmeyer, P Ying, M Dou, W Xie, C Bubeck, L Wang, M Fyta, A Feldhoff, A Weidenkaff. High flux and CO2-resistance of La0.6Ca0.4Co1–xFexO3−δ oxygen-transporting membranes. Journal of Membrane Science, 2019, 590: 117082
https://doi.org/10.1016/j.memsci.2019.05.007
17 J E Tenelshof, H J M Bouwmeester, H Verweij. Oxygen transport through La1−xSrxFeO3−δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ionics, 1996, 89(1-2): 81–92
https://doi.org/10.1016/0167-2738(96)00255-X
18 H Luo, K Efimov, H Jiang, A Feldhoff, H Wang, J Caro. CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angewandte Chemie International Edition, 2011, 50(3): 759–763
https://doi.org/10.1002/anie.201003723
19 H Luo, H Jiang, T Klande, F Liang, Z Cao, H Wang, J Caro. Rapid glycine-nitrate combustion synthesis of the CO2-stable dual phase membrane 40Mn1.5Co1.5O4−δ-60Ce0.9Pr0.1O2−δ for CO2 capture via an oxy-fuel process. Journal of Membrane Science, 2012, 423-424: 450–458
https://doi.org/10.1016/j.memsci.2012.08.046
20 H Cheng, N Zhang, X Xiong, X Lu, H Zhao, S Li, Z Zhou. Synthesis, Oxygen permeation, and CO2-tolerance properties of Ce0.8Gd0.2O2−δ-Ba0.95La0.05Fe1–xNbxO3−δ dual-phase membranes. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 1982–1992
https://doi.org/10.1021/acssuschemeng.5b00693
21 Z Wang, W Sun, Z Zhu, T Liu, W Liu. A novel cobalt-free, CO2-stable, and reduction-tolerant dual-phase oxygen-permeable membrane. ACS Applied Materials & Interfaces, 2013, 5(21): 11038–11043
https://doi.org/10.1021/am403272z
22 X Bi, X Meng, P Liu, N Yang, Z Zhu, R Ran, S Liu. A novel CO2-resistant ceramic dual-phase hollow fiber membrane for oxygen separation. Journal of Membrane Science, 2017, 522: 91–99
https://doi.org/10.1016/j.memsci.2016.09.008
23 Z Cao, X Zhu, W Li, B Xu, L Yang, W Yang. Asymmetric dual-phase membranes prepared via tape-casting and co-lamination for oxygen permeation. Materials Letters, 2015, 147: 88–91
https://doi.org/10.1016/j.matlet.2015.02.033
24 J Garcia-Fayos, M Balaguer, S Baumann, J M Serra. Dual-phase membrane based on LaCo0.2Ni0.4Fe0.4O3−x-Ce0.8Gd0.2O2−x composition for oxygen permeation under CO2/SO2-rich gas environments. Journal of Membrane Science, 2018, 548: 117–124
https://doi.org/10.1016/j.memsci.2017.11.006
25 S Gupta, M K Mahapatra, P Singh. Lanthanum chromite based perovskites for oxygen transport membrane. Materials Science and Engineering R Reports, 2015, 90: 1–36
https://doi.org/10.1016/j.mser.2015.01.001
26 H Wang, C Tablet, A Feldhoff, J Caro. Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 2005, 262(1-2): 20–26
https://doi.org/10.1016/j.memsci.2005.03.046
27 T Li, T Kamhangdatepon, B Wang, U W Hartley, K Li. New bio-inspired design for high-performance and highly robust La0.6Sr0.4Co0.2Fe0.8O3–δ membranes for oxygen permeation. Journal of Membrane Science, 2019, 578: 203–208
https://doi.org/10.1016/j.memsci.2019.02.042
28 K Efimov, T Klande, N Juditzki, A Feldhoff. Ca-containing CO2-tolerant perovskite materials for oxygen separation. Journal of Membrane Science, 2012, 389: 205–215
https://doi.org/10.1016/j.memsci.2011.10.030
29 M Arnold, H Wang, A Feldhoff. Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 2007, 293(1-2): 44–52
https://doi.org/10.1016/j.memsci.2007.01.032
30 F Liang, H Jiang, H Luo, J Caro, A Feldhoff. Phase stability and permeation behavior of a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3−δ tube membrane in high-purity oxygen production. Chemistry of Materials, 2011, 23(21): 4765–4772
https://doi.org/10.1021/cm2018086
31 C Y Yoo, H J Bouwmeester. Oxygen surface exchange kinetics of SrTi1−xFexO3−δ mixed conducting oxides. Physical Chemistry Chemical Physics, 2012, 14(33): 11759–11765
https://doi.org/10.1039/c2cp41923h
32 J F Vente, S McIntosh, W G Haije, H J Bouwmeester. Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes. Journal of Solid State Electrochemistry, 2006, 10(8): 581–588
https://doi.org/10.1007/s10008-006-0130-2
33 Z Zhang, D Chen, F Dong, X Xu, Y Hao, Z Shao. Understanding the doping effect toward the design of CO2-tolerant Perovskite membranes with enhanced oxygen permeability. Journal of Membrane Science, 2016, 59: 11–21
https://doi.org/10.1016/j.memsci.2016.07.043
34 Z Zhang, X Xu, J Zhang, D Chen, D Zeng, S Liu, W Zhou, Z Shao. Silver-doped strontium niobium cobaltite as a new perovskite-type ceramic membrane for oxygen separation. Journal of Membrane Science, 2018, 563: 617–624
https://doi.org/10.1016/j.memsci.2018.05.061
35 Z Zhang, W Zhou, Y Chen, D Chen, J Chen, S Liu, W Jin, Z Shao. Novel approach for developing dual-phase ceramic membranes for oxygen separation through beneficial phase reaction. ACS Applied Materials & Interfaces, 2015, 7(41): 22918–22926
https://doi.org/10.1021/acsami.5b05812
36 Y He, L Shi, F Wu, W Xie, S Wang, D Yan, P Liu, M R Li, J Caro, H Luo. A novel dual phase membrane 40 wt-% Nd0.6Sr0.4CoO3–δ-60wt-% Ce0.9 Nd0.1O2–δ: Design, synthesis and properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(1): 84–92
https://doi.org/10.1039/C7TA07842K
37 H Luo, K Klande, Z Cao, F Liang, H Wang, J A Caro. CO2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(21): 7780–7787
https://doi.org/10.1039/C3TA14870J
38 L Minervini, R W Grimes, J A Kilner, K E Sickafus. Oxygen migration in La2NiO4+δ. Journal of Materials Chemistry, 2000, 10(10): 2349–2354
https://doi.org/10.1039/b004212i
39 D Lee, H Lee. Controlling oxygen mobility in Ruddlesden–Popper oxides. Materials (Basel), 2017, 10(4): 368
https://doi.org/10.3390/ma10040368
40 M Yashima, M Enoki, T Wakita, R Ali, Y Matsushita, F Izumi, T Ishihara. Structural disorder and diffusional pathway of oxide ions in a doped Pr2NiO4-based mixed conductor. Journal of the American Chemical Society, 2008, 130(9): 2762–2763
https://doi.org/10.1021/ja711478h
41 T Klande, K Efimov, S Cusenza, K D Becker, A Feldhoff. Effect of doping, microstructure, and CO2 on La2NiO4+δ-based oxygen-transporting materials. Journal of Solid State Chemistry, 2011, 184(12): 3310–3318
https://doi.org/10.1016/j.jssc.2011.10.019
42 J Xue, Q Liao, W Chen, H J Bouwmeester, H Wang, A Feldhoff. A new CO2-resistant Ruddlesden–Popper oxide with superior oxygen transport: A-site deficient (Pr0.9La0.1)1.9(Ni0.74Cu0.21Ga0.05)O4+δ. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(37): 19107–19114
https://doi.org/10.1039/C5TA02514A
43 Y Chen, Q Liao, Y Wei, Z Li, H A Wang. CO2-stable K2NiF4-type oxide (Nd0.9La0.1)2(Ni0.74Cu0.21Al0.05)O4+δ for oxygen separation. Industrial & Engineering Chemistry Research, 2013, 52(25): 8571–8578
https://doi.org/10.1021/ie4008369
44 J Xue, A Schulz, H Wang, A Feldhoff. The phase stability of the Ruddlesden-Popper type oxide (Pr0.9 La0.1)2.0Ni0.74Cu0.21Ga0.05O4+δ in an oxidizing environment. Journal of Membrane Science, 2016, 497: 357–364
https://doi.org/10.1016/j.memsci.2015.09.026
45 R D Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. Section A, Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976, 32(5): 751–767
https://doi.org/10.1107/S0567739476001551
46 G Chen, T Silva, V Georgieva, T Godfroid, N Britun, R Snyders, M P Delplancke-Ogletree. Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge. International Journal of Hydrogen Energy, 2015, 40(9): 3789–3796
https://doi.org/10.1016/j.ijhydene.2015.01.084
[1] FCE-19038-OF-CG_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed