|
|
Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots |
Yonghyun Kim1, Huiwen Liu2, Yi Liu2, Boa Jin1, Hao Zhang2, Wenjing Tian2( ), Chan Im1( ) |
1. Department of Chemistry, Konkuk University, Seoul 05029, Korea 2. State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China |
|
|
Abstract Cesium lead halide perovskite (CsPbX3, X= Cl, Br, I) quantum dots (QDs) and their partly Mn2+-substituted QDs (CsPb1–xMnxX3) attract considerable attention owing to their unique photoluminescence (PL) efficiencies. The two types of QDs, having different PL decay dynamics, needed to be further investigated in a form of aggregates to understand their solid-state-induced exciton dynamics in conjunction with their behaviors upon degradation to achieve practical applications of those promising QDs. However, thus far, these QDs have not been sufficiently investigated to obtain deep insights related to the long-term stability of their PL properties as aggregated solid-states. Therefore, in this study, we comparatively examined CsPbX3- and CsPb1–xMnxX3-type QDs stocked for>50 d under dark ambient conditions by using excitation wavelength-dependent PL quantum yield and time-resolved PL spectroscopy. These investigations were performed with powder samples in addition to solutions to determine the influence of the inter-QD interaction of the aged QD aggregates on their radiative decays. It turns out that the Mn2+-substituted QDs exhibited long-lasting PL quantum efficiencies, while the unsubstituted CsPbX3-type QDs exhibited a drastic reduction of their PL efficiencies. And the obtained PL traces were clearly sensitive to the sample status. This is discussed with the possible interaction depending on the size and distance of the QD aggregates.
|
Keywords
quantum dots
cesium lead halide perovskite
time-resolved photoluminescence
PL quantum yield
QD aggregates
|
Corresponding Author(s):
Wenjing Tian,Chan Im
|
Online First Date: 28 May 2020
Issue Date: 12 January 2021
|
|
1 |
W S Yang, J H Noh, N J Jeon, Y C Kim, S Ryu, J Seo, S Seok. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234–1237
https://doi.org/10.1126/science.aaa9272
|
2 |
M Saliba, T Matsui, J Y Seo, K Domanski, J P Correa, M K Nazeeruddin, S M Zakeeruddin, W Tress, A Abate, A Hagfeldt, et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy & Environmental Science, 2016, 9(6): 1989–1997
https://doi.org/10.1039/C5EE03874J
|
3 |
W Chen, X Bao, Q Zhu, D Zhu, M Qiu, M Sun, R Yang. Simple planar perovskite solar cells with a dopant-free benzodithiophene conjugated polymer as hole transporting material. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(39): 10070–10073
https://doi.org/10.1039/C5TC01856K
|
4 |
J Pan, L N Quan, Y Zhao, W Peng, B Murali, S P Sarmah, M Yuan, L Sinatra, N M Alyami, J Liu, et al. Highly efficient perovskite-QD LEDs by surface engineering. Advanced Materials, 2016, 28: 8718–8725
https://doi.org/10.1002/adma.201600784
|
5 |
Z K Tan, R S Moghaddam, M L Lai, P Docampo, R Higler, F Deschler, M Price, A Sadhanala, L M Pazos, D Credgington, et al. Bright LEDs based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
https://doi.org/10.1038/nnano.2014.149
|
6 |
H C Yoon, H Kang, S Lee, J H Oh, H Yang, Y R Do. Study of perovskite quantum dot down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Applied Materials & Interfaces, 2016, 8(28): 18189–18200
https://doi.org/10.1021/acsami.6b05468
|
7 |
A Swarnkar, R Chulliyil, V K Ravi, M Irfanullah, A Chowdhury, A Nag. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angewandte Chemie International Edition, 2015, 54(51): 15424–15428
https://doi.org/10.1002/anie.201508276
|
8 |
Y Tong, E Bladt, M F Aygüler, A Manzi, K Z Milowska, V A Hintermayr, P Docampo, S Bals, A S Urban, L Polavarapu, J Feldmann. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angewandte Chemie International Edition, 2016, 55(44): 13887–13892
https://doi.org/10.1002/anie.201605909
|
9 |
M Kulbak, D Cahen, G Hodes. How important is the organic part of lead halide perovskite photovoltaic cells? efficient CsPbBr3 cells. Journal of Physical Chemistry Letters, 2015, 6(13): 2452–2456
https://doi.org/10.1021/acs.jpclett.5b00968
|
10 |
J Chen, D Liu, M J Al-Marri, L Nuuttila, H Lehtivuori, K Zheng. Photo-stability of CsPbBr3 perovskite Quantum Dots for optoelectronic application. Science China Materials, 2016, 59(9): 719–727
https://doi.org/10.1007/s40843-016-5123-1
|
11 |
Q A Akkerman, S G Motti, A R Srimath Kandada, E Mosconi, V D’Innocenzo, G Bertoni, S Marras, B A Kamino, L Miranda, F D de Angelis, A Petrozza, M Prato, L Manna. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. Journal of the American Chemical Society, 2016, 138(3): 1010–1016
https://doi.org/10.1021/jacs.5b12124
|
12 |
Q A Akkerman, V D’Innocenzo, S Accornero, A Scarpellini, A Petrozza, M Prato, L Manna. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. Journal of the American Chemical Society, 2015, 137(32): 10276–10281
https://doi.org/10.1021/jacs.5b05602
|
13 |
X Li, F Cao, D Yu, J Chen, Z Sun, Y Shen, Y Zhu, L Wang, Y Wei, Y Wu, H Zeng. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small, 2017, 13(9): 1603996
https://doi.org/10.1002/smll.201603996
|
14 |
W Chen, X Xin, Z Zang, X Tang, C Li, W Hu, M Zhou, J Du. Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application. Journal of Solid State Chemistry, 2017, 255: 115–120
https://doi.org/10.1016/j.jssc.2017.06.006
|
15 |
H C Wang, Z Bao, H Y Tsai, A C Tang, R S Liu. Perovskite quantum dots and their application in LEDs. Small, 2018, 14(1): 1702433
https://doi.org/10.1002/smll.201702433
|
16 |
P Song, B Qiao, D Song, Z Liang, D Gao, J Cao, Z Shen, Z Xu, S Zhao. Colour- and structure-stable CsPbBr3-CsPb2Br5 compounded Quantum Dots with tuneable blue and green light emission. Journal of Alloys and Compounds, 2018, 767: 98–105
https://doi.org/10.1016/j.jallcom.2018.07.073
|
17 |
X Zhang, W Wang, B Xu, S Liu, H Dai, D Bian, S Chen, K Wang, X W Sun. Thin film perovskite LED based on CsPbBr3 powders and interfacial engineering. Nano Energy, 2017, 37: 40–45
https://doi.org/10.1016/j.nanoen.2017.05.005
|
18 |
J Li, H Dong, B Xu, S Zhang, Z Cai, J Wang, L Zhang. CsPbBr3 perovskite Quantum Dots: Saturable absorption properties and passively Q-switched visible lasers. Photonics Research, 2017, 5(5): 457–460
https://doi.org/10.1364/PRJ.5.000457
|
19 |
L C Chen, K L Lee, C Y Huang, J C Lin, Z L Tseng. Preparation and characteristics of MAPbBr3 perovskite quantum dots on NiOx film and application for high transparent solar cells. Micromachines, 2018, 9(5): 205
https://doi.org/10.3390/mi9050205
|
20 |
D Liu, Z Hu, W Hu, P Wangyang, K Yu, M Wen, Z Zu, J Liu, M Wang, W Chen, M Zhou, X Tang, Z Zang. Two-step method for preparing all-inorganic CsPbBr3 perovskite film and its photoelectric detection application. Materials Letters, 2017, 186: 243–246
https://doi.org/10.1016/j.matlet.2016.10.015
|
21 |
X Sheng, Y Liu, Y Wang, Y Li, X Wang, X Wang, Z Dai, J Bao, X Xu. Cesium lead halide perovskite quantum dots as a PL probe for metal ions. Advanced Materials, 2017, 29(37): 1700150
https://doi.org/10.1002/adma.201700150
|
22 |
Y Liu, X Tang, T Zhu, M Deng, I P Ikechukwu, W Huang, G Yin, Y Bai, D Qu, X Huang, F Qiu. All-inorganic CsPbBr3 perovskite Quantum Dots as a PL probe for ultrasensitive Cu2+ detection. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(17): 4793–4799
https://doi.org/10.1039/C8TC00249E
|
23 |
H Liu, Z Wu, H Gao, J Shao, H Zou, D Yao, Y Liu, H Zhang, B Yang. One-step preparation of cesium lead halide CsPbX3 (X= Cl, Br, and I) perovskite nanocrystals by microwave irradiation. ACS Applied Materials & Interfaces, 2017, 9(49): 42919–42927
https://doi.org/10.1021/acsami.7b14677
|
24 |
H Liu, Z Wu, J Shao, D Yao, H Gao, Y Liu, W Yu, H Zhang, B Yang. CsPbxMn1–xCl3 perovskite quantum dots with high Mn substitution ratio. ACS Nano, 2017, 11(2): 2239–2247
https://doi.org/10.1021/acsnano.6b08747
|
25 |
M Leng, Y Yang, K Zeng, Z Chen, Z Tan, S Li, J Li, B Xu, D Li, M P Hautzinger, et al. All-inorganic bismuth-based perovskite QDs with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28: 1704446-1–1704446-11
|
26 |
T C Jellicoe, J M Richter, H F J Glass, M Tabachnyk, R Brady, S E Dutton, A Rao, R H Friend, D Credgington, N C Greenham, M L Böhm. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. Journal of the American Chemical Society, 2016, 138(9): 2941–2944
https://doi.org/10.1021/jacs.5b13470
|
27 |
H C Woo, J W Choi, J Shin, S H Chin, M H Ann, C L Lee. Temperature-dependent photoluminescence of CH3NH3PbBr3 perovskite quantum dots and bulk counterparts. Journal of Physical Chemistry Letters, 2018, 9(14): 4066–4074
https://doi.org/10.1021/acs.jpclett.8b01593
|
28 |
Y Wang, Y Yang, P Wang, X Bai. Concentration- and temperature-dependent photoluminescence of CsPbBr3 perovskite QDs. Optik (Stuttgart), 2017, 139: 56–60
https://doi.org/10.1016/j.ijleo.2017.03.117
|
29 |
J Zhang, S Ma, H Fang, B Xu, H Sun, C Im, W Tian. Insights into the origin of aggregation enhanced emission of 9,10-distyrylanthracene derivatives. Materials Chemistry Frontiers, 2017, 1(7): 1422–1429
https://doi.org/10.1039/C7QM00032D
|
30 |
C Im, J M Lupton, P Schouwink, S Heun, H Becker, H Bässler. Fluorescence dynamics of phenyl-substituted polyphenylenevinylene–trinitrofluorenone blend systems. Journal of Chemical Physics, 2002, 117(3): 1395–1402
https://doi.org/10.1063/1.1484102
|
31 |
J Song, Y Lee, B Jin, J An, H Park, H Park, M Lee, C Im. Connecting charge transfer kinetics to device parameters of a narrow-bandgap polymer-based solar cell. Physical Chemistry Chemical Physics, 2016, 18(38): 26550–26561
https://doi.org/10.1039/C6CP04688F
|
32 |
D Hertel, Y V Romanovskii, B Schweitzer, U Scherf, H Bassler. The origin of the delayed emission in films of a ladder-type poly(para-phenylene). Synthetic Metals, 2001, 116(1-3): 139–143
https://doi.org/10.1016/S0379-6779(00)00473-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|