Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (1) : 35-48    https://doi.org/10.1007/s11705-020-1937-6
REVIEW ARTICLE
Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization
Tong Zhang1,2,3(), Shan-Jiang Wang1,3, Xiao-Yang Zhang1,2,3, Ming Fu1, Yi Yang1, Wen Chen1, Dan Su2,3
1. Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
2. Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
3. Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou Research Institute of Southeast University, Suzhou 215123, China
 Download: PDF(2518 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nanostructure-based broadband absorbers are prominently attractive in various research fields such as nanomaterials, nanofabrication, nanophotonics and energy utilization. A highly efficient light absorption in wider wavelength ranges makes such absorbers useful in many solar energy harvesting applications. In this review, we present recent advances of broadband absorbers which absorb light by nanostructures. We start from the mechanism and design strategies of broadband absorbers based on different materials such as carbon-based, plasmonic or dielectric materials and then reviewed recent progress of solar energy thermal utilization dependent on the superior photo-heat conversion capacity of broadband absorbers which may significantly influence the future development of solar energy utilization, seawater purification and photoelectronic device design.

Keywords nanostructured broadband absorbers      solar energy harvesting      thermal utilization     
Corresponding Author(s): Tong Zhang   
Just Accepted Date: 14 May 2020   Online First Date: 13 July 2020    Issue Date: 12 January 2021
 Cite this article:   
Tong Zhang,Shan-Jiang Wang,Xiao-Yang Zhang, et al. Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization[J]. Front. Chem. Sci. Eng., 2021, 15(1): 35-48.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1937-6
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I1/35
Fig.1  (a) Abundant porous structures and super hydrophilic characteristics based on carbon aerogels. Reprinted with permission from Ref. [52]. Copyright 2016, American Chemical Society; (b) Super black coatings composed of carbonized polymeric porous spheres. Reprinted with permission from Ref. [61]. Copyright 2019, American Chemical Society; (c) 3D, porous and superwetting CNT aerogels. Reprinted with permission from Ref. [54]. Copyright 2019, Wiley-VCH.
Fig.2  (a) MIM structures based broadband absorbers. Reprinted with permission from Ref. [74]. Copyright 2011, Wiley-VCH; (b) Randomly distributed Ag nanoplates aggregation based absorbers. Reprinted with permission from Ref. [93]. Copyright 2018, the Royal Society of Chemistry; (c) Au nanostars embedded on silica gel for broadband absorption. Reprinted with permission from Ref. [97]. Copyright 2018, Wiley-VCH.
Types of absorbers Range of wavelength Light absorption Photothermal conversion efficiency Ref.
CB/PVDF-HFP 300–2500 nm >90% 88.9% under 1 sun [45]
CB/AAO 2.5–15.3 mm ~97.5% not given [47]
CNT/GO 200–1200 nm >97% 85.6% under 1 sun [49]
Carbon aerogels 430–675 nm >99.8% not given [52]
CNT aerogels 250–2500 nm ~99% 86.8% under 1 sun [54]
Paper-based GO/Silicone 250–2500 nm visible>90% infrared>80% 89.7% under 1 sun [56]
GO/wood 500–1100 nm >80% 83% under 12 sun [57]
MIM structure with plasmonic metamaterials 300–2000 nm 91.3% 77.3% under 100 sun [80]
MIM structure with 2D tungsten arrays 300–2000 nm 90% not given but with 800 K thermal stability [108]
Sputtered gold membrane 400–2500 nm ~91% 57% under 20 sun [89]
Copper cauliflower 200–800 nm ~98% >60% under 1 sun [79]
Porous p-PEGDA-PANi hydrogel 250–2500 nm 98.5% 91.5% under 1 sun [105]
3D aluminium NPs/AAM 500–2500 nm >96% 88.4% under 4 sun and 91% under 6 sun [19]
Gold NPs/AAO 0.4–10 mm ~99% >90% under 4 sun [66]
Tab.1  Examples of different types of absorbers, range of wavelength, light absorption and photothermal conversion efficiencies.
Fig.3  Applications of nanostructured broadband absorbers. (a) Reprinted with permission from Ref. [118]. Copyright 2017, American Association for the Advancement of Science; (b) Reprinted with permission from Ref. [115]. Copyright 2018, the Royal Society of Chemistry; (c) Reprinted with permission from Ref. [116]. Copyright 2015, American Chemical Society; (d) Reprinted with permission from Ref. [120]. Copyright 2015, Springer Nature; (e) Reprinted with permission from Ref. [119]. Copyright 2018, American Chemical Society; (f) Reprinted with permission from Ref. [37]. Copyright 2018, the Royal Society of Chemistry.
Fig.4  Experimental investigations of thermal stability of silver nanostructures at different temperatures. Reprinted with permission from Ref. [93]. Copyright 2018, the Royal Society of Chemistry.
Fig.5  (a) Transmission-type icephobicity and defrost based on transparent broadband absorbers. Reprinted with permission from Ref. [119]. Copyright 2018, American Chemical Society; (b) Superhydrophobic anti-icing surfaces based on the reflective type. Reprinted with permission from Ref. [140]. Copyright 2018, American Association for the Advancement of Science.
1 N I Landy, S Sajuyigbe, J J Mock, D R Smith, W J Padilla. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
https://doi.org/10.1103/PhysRevLett.100.207402
2 H T Chen. Interference theory of metamaterial perfect absorbers. Optics Express, 2012, 20(7): 7165–7172
https://doi.org/10.1364/OE.20.007165
3 Y Ra’di, C R Simovski, S A Tretyakov. Thin perfect absorbers for electromagnetic waves: theory, design and realizations. Physical Review Applied, 2015, 3(3): 037001
https://doi.org/10.1103/PhysRevApplied.3.037001
4 H Hajian, A Ghobadi, B Butun, E Ozbay. Active metamaterial nearly perfect light absorbers: a review. Journal of the Optical Society of America. B, Optical Physics, 2019, 36(8): F131–F143
https://doi.org/10.1364/JOSAB.36.00F131
5 X Yang, Z Sun, T Low, H Hu, X D Guo, F J García de Abajo, P Avouris, Q Dai. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Advanced Materials, 2018, 30(20): 1704896
https://doi.org/10.1002/adma.201704896
6 Y Zhai, G Chen, J Ji, X Ma, Z Wu, Y Li, Q Wang. Large-scale, broadband absorber based on three-dimensional aluminum nanospike arrays substrate for surface plasmon induced hot electrons photodetection. Nanotechnology, 2019, 30(37): 375201
https://doi.org/10.1088/1361-6528/ab2158
7 L Zhu, M Gao, C K N Peh, G W Ho. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343
https://doi.org/10.1039/C7MH01064H
8 M Q Yang, M Gao, M Hong, G W Ho. Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Advanced Materials, 2018, 30(47): 1802894
https://doi.org/10.1002/adma.201802894
9 J Y Rhee, Y J Yoo, K W Kim, Y J Kim, Y P Lee. Metamaterial-based perfect absorbers. Journal of Electromagnetic Waves and Applications, 2014, 28(13): 1541–1580
https://doi.org/10.1080/09205071.2014.944273
10 Y Liu, P Bhattarai, Z Dai, X Chen. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48(7): 2053–2108
https://doi.org/10.1039/C8CS00618K
11 D Jaque, L Martínez Maestro, B del Rosal, P Haro-Gonzalez, A Benayas, J L Plaza, E Martín Rodríguez, J García Solé. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16): 9494–9530
https://doi.org/10.1039/C4NR00708E
12 A Baranwal, A Srivastava, P Kumar, V K Bajpai, P K Maurya, P Chandra. Prospects of nanostructure materials and their composites as antimicrobial agents. Frontiers in Microbiology, 2018, 9: 422
https://doi.org/10.3389/fmicb.2018.00422
13 K Aydin, V E Ferry, R M Briggs, H A Atwater. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2011, 2(1): 517
https://doi.org/10.1038/ncomms1528
14 C Ng, J J Cadusch, S Dligatch, A Roberts, T J Davis, P Mulvaney, D E Gómez. Hot carrier extraction with plasmonic broadband absorbers. ACS Nano, 2016, 10(4): 4704–4711
https://doi.org/10.1021/acsnano.6b01108
15 G Lu, F Wu, M Zheng, C Chen, X Zhou, C Diao, F Liu, G Du, C Xue, H Jiang, H Chen. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials. Optics Express, 2019, 27(4): 5326–5336
https://doi.org/10.1364/OE.27.005326
16 A K Azad, W J M Kort-Kamp, M Sykora, N R Weisse-Bernstein, T S Luk, A J Taylor, D A R Dalvit, H T Chen. Metasurface broadband solar absorber. Scientific Reports, 2016, 6(1): 20347
https://doi.org/10.1038/srep20347
17 X Li, H Huang, H Bin, Z Peng, C Zhu, L Xue, Z G Zhang, O Z Zhang, H Ade, Y Li. Synthesis and photovoltaic properties of a series of narrow bandgap organic semiconductor acceptors with their absorption edge reaching 900 nm. Chemistry of Materials, 2017, 29(23): 10130–10138
https://doi.org/10.1021/acs.chemmater.7b03928
18 N J Hogan, A S Urban, C Ayala-Orozco, A Pimpinelli, P Nordlander, N J Halas. Nanoparticles heat through light localization. Nano Letters, 2014, 14(8): 4640–4645
https://doi.org/10.1021/nl5016975
19 L Zhou, Y Tan, J Wang, W Xu, Y Yuan, W Cai, S Zhu, J Zhu. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398
https://doi.org/10.1038/nphoton.2016.75
20 A Ghobadi, H Hajian, M Gokbayrak, B Butun, E Ozbay. Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber. Nanophotonics, 2019, 8(5): 823–832
https://doi.org/10.1515/nanoph-2018-0217
21 M Zhu, Y Li, F Chen, X Zhu, J Dai, Y Li, Z Yang, X Yan, J Song, Y Wang, E Hitz, W Luo, M Lu, B Yang, L Hu. Plasmonic wood for high-efficiency solar steam generation. Advanced Energy Materials, 2018, 8(4): 1701028
https://doi.org/10.1002/aenm.201701028
22 I E Khodasevych, L Wang, A Mitchell, G Rosengarten. Micro-and nanostructured surfaces for selective solar absorption. Advanced Optical Materials, 2015, 3(7): 852–881
https://doi.org/10.1002/adom.201500063
23 S Buller, J Strunk. Nanostructure in energy conversion. Journal of Energy Chemistry, 2016, 25(2): 171–190
https://doi.org/10.1016/j.jechem.2016.01.025
24 N Zhang, C Han, X Fu, Y J Xu. Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: exerting plasmonic effect and beyond. Chem, 2018, 4(8): 1832–1861
https://doi.org/10.1016/j.chempr.2018.05.005
25 S J Wang, D Su, T Zhang. Research progress of surface plasmons mediated photothermal effects. Acta Physica Sinica, 2019, 68(14): 144401
26 G Thuillier, M Hersé, D Labs, T Foujols, W Peetermans, D Gillotay, P C Simon, H Mandel. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Solar Physics, 2003, 214(1): 1–22
https://doi.org/10.1023/A:1024048429145
27 G Thuillier, M Hersé, P C Simon, D Labs, H Mandel, D Gillotay, W Petermans. The absolute solar spectral irradiance from 200 to 2500nm as measured by the SOLSPEC spectrometer with the ATLAS and EURECA missions. Physics and Chemistry of the Earth. Part C: Solar-terrestrial and Planetary Science, 2000, 25(5-6): 375–377
https://doi.org/10.1016/S1464-1917(00)00035-0
28 Z Deng, J Zhou, L Miao, C Liu, Y Peng, L Sun, S Tanemura. The emergence of solar thermal utilization: solar-driven steam generation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 7691–7709
https://doi.org/10.1039/C7TA01361B
29 V D Dao, H S Choi. Carbon-based sunlight absorbers in solar-driven steam generation devices. Global Challenges, 2018, 2(2): 1700094
https://doi.org/10.1002/gch2.201700094
30 P Wang. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089
https://doi.org/10.1039/C8EN00156A
31 X Wang, F Wang, Y Sang, H Liu. Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion. Advanced Energy Materials, 2017, 7(23): 1700473
https://doi.org/10.1002/aenm.201700473
32 T Zhang, S J Wang, X Y Zhang, D Su, Y Yang, J Y Wu, Y Y Xu, N Zhao. Progress in the utilization efficiency improvement of hot carriers in plasmon-mediated heterostructure photocatalysis. Applied Sciences (Basel, Switzerland), 2019, 9(10): 2093
https://doi.org/10.3390/app9102093
33 W Li, J G Valentine. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics, 2017, 6(1): 177–191
https://doi.org/10.1515/nanoph-2015-0154
34 C Ji, K T Lee, T Xu, J Zhou, H J Park, L J Guo. Engineering light at the nanoscale: structural color filters and broadband perfect absorbers. Advanced Optical Materials, 2017, 5(20): 1700368
https://doi.org/10.1002/adom.201700368
35 D G Baranov, Y Xiao, I A Nechepurenko, A Krasnok, A Alù, M A Kats. Nanophotonic engineering of far-field thermal emitters. Nature Materials, 2019, 18(9): 920–930
https://doi.org/10.1038/s41563-019-0363-y
36 P Yu, L V Besteiro, Y Huang, J Wu, L Fu, H H Tan, C Jagadish, G P Wiederrecht, A O Govorov, Z Wang. Broadband metamaterial absorbers. Advanced Optical Materials, 2019, 7(3): 1800995
https://doi.org/10.1002/adom.201800995
37 J U Kim, S Lee, S J Kang, T Kim. Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion. Nanoscale, 2018, 10(46): 21555–21574
https://doi.org/10.1039/C8NR06024J
38 M Gao, L Zhu, C K Peh, J W Ho. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 2019, 12(3): 841–864
https://doi.org/10.1039/C8EE01146J
39 Y Wang, N Xu, D Li, J Zhu. Thermal properties of two dimensional layered materials. Advanced Functional Materials, 2017, 27(19): 1604134
https://doi.org/10.1002/adfm.201604134
40 R Long, Y Li, L Song, Y Xiong. Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis. Small, 2015, 11(32): 3873–3889
https://doi.org/10.1002/smll.201403777
41 S K Cushing, N Wu. Progress and perspectives of plasmon-enhanced solar energy conversion. Journal of Physical Chemistry Letters, 2016, 7(4): 666–675
https://doi.org/10.1021/acs.jpclett.5b02393
42 G Sharma, B Thakur, M Naushad, A Kumar, F J Stadler, S M Alfadul, G T Mola. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environmental Chemistry Letters, 2018, 16(1): 113–146
https://doi.org/10.1007/s10311-017-0671-x
43 R H Fan, B Xiong, R W Peng, M Wang. Constructing metastructures with broadband electromagnetic functionality. Advanced Materials, 2019, DOI: http://doi.org/10.1002/adma.201904646
44 A Ghobadi, H Hajian, B Butun, E Ozbay. Strong interference in planar, multilayer perfect absorbers: achieving high-operational performances in visible and near-infrared regimes. IEEE Nanotechnology Magazine, 2019, 13(4): 1–16
https://doi.org/10.1109/MNANO.2019.2916113
45 Y Li, X Jin, Y Zheng, W Li, F Zheng, W Wang, T Lin, Z Zhu. Tunable water delivery in carbon-coated fabrics for high efficiency solar vapor generation. ACS Applied Materials & Interfaces, 2019, 11(50): 46938–46946
https://doi.org/10.1021/acsami.9b17360
46 Z Liu, H Song, D Ji, C Li, A Cheney, Y Liu, N Zhang, X Zeng, B Chen, J Gao, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Global Challenges, 2017, 1(2): 1600003
https://doi.org/10.1002/gch2.201600003
47 H Li, L Wu, H Zhang, W Dai, J Hao, H Wu, F Ren, C Liu. Self-assembly of carbon black/AAO templates on nanoporous Si for broadband infrared absorption. ACS Applied Materials & Interfaces, 2020, 12(3): 4081–4087
https://doi.org/10.1021/acsami.9b19107
48 Z P Yang, L Ci, J A Bur, S Y Lin, P M Ajayan. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Letters, 2008, 8(2): 446–451
https://doi.org/10.1021/nl072369t
49 Y Li, T Gao, Z Yang, C Chen, W Luo, J Song, E Hitz, C Jia, Y Zhou, B Liu, B Yang, L Hu. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Advanced Materials, 2017, 29(26): 1700981
https://doi.org/10.1002/adma.201700981
50 A Lamy-Mendes, R F Silva, L Durães. Advances in carbon nanostructure-silica aerogel composites: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(4): 1340–1369
https://doi.org/10.1039/C7TA08959G
51 F Yang, Y Zhang, X Yang, M Zhong, Z Yi, X Liu, X Kang, J Luo, J Li, C Y Wang, et al. Enhanced photothermal effect in ultralow-density carbon aerogels with microporous structures for facile optical ignition applications. ACS Applied Materials & Interfaces, 2019, 11(7): 7250–7260
https://doi.org/10.1021/acsami.8b17803
52 W Sun, A Du, Y Feng, J Shen, S Huang, J Tang, B Zhou. Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano, 2016, 10(10): 9123–9128
https://doi.org/10.1021/acsnano.6b02039
53 P Xie, W Sun, Y Liu, A Du, Z Zhang, G Wu, R Fan. Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon, 2018, 129: 598–606
https://doi.org/10.1016/j.carbon.2017.12.009
54 P Mu, Z Zhang, W Bai, J He, H Sun, Z Zhu, W Liang, A Li. Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Advanced Energy Materials, 2019, 9(1): 1802158
https://doi.org/10.1002/aenm.201802158
55 J V Anguita, M Ahmad, S Haq, J P Allam, S R Silva. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers. Science Advances, 2016, 2(2): e1501238
https://doi.org/10.1126/sciadv.1501238
56 Z Wang, Q Ye, X Liang, J Xu, C Chang, C Song, W Shang, J Wu, P Tao, T Deng. Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(31): 16359–16368
https://doi.org/10.1039/C7TA03262E
57 K K Liu, Q Jiang, S Tadepalli, R Raliya, P Biswas, R R Naik, S Singamaneni. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Applied Materials & Interfaces, 2017, 9(8): 7675–7681
https://doi.org/10.1021/acsami.7b01307
58 F Liu, L Wang, R Bradley, B Zhao, W Wu. Highly efficient solar seawater desalination with environmentally friendly hierarchical porous carbons derived from halogen-containing polymers. RSC Advances, 2019, 9(50): 29414–29423
https://doi.org/10.1039/C9RA05637H
59 F Liu, B Zhao, W Wu, H Yang, Y Ning, Y Lai, R Bradley. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation. Advanced Functional Materials, 2018, 28(47): 1803266
https://doi.org/10.1002/adfm.201803266
60 J Guo, D Li, H Zhao, W Zou, Z Yang, Z Qian, S Yang, M Yang, N Zhao, J Xu. Cast-and-use super black coating based on polymer-derived hierarchical porous carbon spheres. ACS Applied Materials & Interfaces, 2019, 11(17): 15945–15951
https://doi.org/10.1021/acsami.9b04779
61 J Guo, D Li, H Zhao, W Zou, Z Yang, Z Qian, S Yang, M Yang, N Zhao, J Xu. Cast-and-use super black coating based on polymer-derived hierarchical porous carbon spheres. ACS Applied Materials & Interfaces, 2019, 11(17): 15945–15951
https://doi.org/10.1021/acsami.9b04779
62 L L Wang, G Zhu, Y Wei, J Zeng, X Yu, Q Li, H Xie. Integrating nitrogen-doped graphitic carbon with Au nanoparticles for excellent solar energy absorption properties. Solar Energy Materials and Solar Cells, 2018, 184: 1–8
https://doi.org/10.1016/j.solmat.2018.04.028
63 F Liu, Y Lai, B Zhao, R Bradley, W Wu. Photothermal materials for efficient solar powered steam generation. Frontiers of Chemical Science and Engineering, 2019, 13(4): 636–653
https://doi.org/10.1007/s11705-019-1824-1
64 Q Bao, K P Loh. Graphene photonics, plasmonics and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694
https://doi.org/10.1021/nn300989g
65 Z Mo, H Xu, Z Chen, X She, Y Song, J Wu, P Yan, L Xu, Y Lei, S Yuan, H Li. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Applied Catalysis B: Environmental, 2018, 225: 154–161
https://doi.org/10.1016/j.apcatb.2017.11.041
66 L Zhou, Y Tan, D Ji, B Zhu, P Zhang, J Xu, Q Gan, Z Yu, J Zhu. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2016, 2(4): e1501227
https://doi.org/10.1126/sciadv.1501227
67 X Y Zhang, J J Xu, J Y Wu, F Shan, X D Ma, Y Z Chen, T Zhang. Seeds triggered massive synthesis and multi-step room temperature post-processing of silver nanoink-application for paper electronics. RSC Advances, 2017, 7(1): 8–19
https://doi.org/10.1039/C6RA27163D
68 G H Chan, J Zhao, E M Hicks, G C Schatz, R P Van Duyne. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Letters, 2007, 7(7): 1947–1952
https://doi.org/10.1021/nl070648a
69 X Y Zhang, H L Zhou, F Shan, X M Xue, D Su, Y R Liu, Y Z Chen, J Y Wu, T Zhang. Synthesis of silver nanoplate based two-dimension plasmonic platform from 25 nm to 40 mm: growth mechanism and optical characteristic investigation in situ. RSC Advances, 2017, 7(88): 55680–55690
https://doi.org/10.1039/C7RA10952K
70 T K Sau, C J Murphy. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004, 20(15): 6414–6420
https://doi.org/10.1021/la049463z
71 Y Zhou, S H Yu, C Y Wang, X G Li, Y R Zhu, Z Y Chen. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Advanced Materials, 1999, 11(10): 850–852
https://doi.org/10.1002/(SICI)1521-4095(199907)11:10<850::AID-ADMA850>3.0.CO;2-Z
72 X Y Zhang, A Hu, T Zhang, W Lei, X J Xue, Y Zhou, W W Duley. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano, 2011, 5(11): 9082–9092
https://doi.org/10.1021/nn203336m
73 A M Brown, R Sundararaman, P Narang, W A Goddard III, H A Atwater. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano, 2016, 10(1): 957–966
https://doi.org/10.1021/acsnano.5b06199
74 M K Hedayati, M Javaherirahim, B Mozooni, R Abdelaziz, A Tavassolizadeh, V S K Chakravadhanula, V Zaporojtchenko, T Strunkus, F Faupel, M Elbahri. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Advanced Materials, 2011, 23(45): 5410–5414
https://doi.org/10.1002/adma.201102646
75 H Zhang, C Guan, J Luo, Y Yuan, N Song, Y Zhang, J Fang, H Liu. Facile film-nanoctahedron assembly route to plasmonic metamaterial absorbers at visible frequencies. ACS Applied Materials & Interfaces, 2019, 11(22): 20241–20248
https://doi.org/10.1021/acsami.9b01088
76 Z Liu, X Liu, S Huang, P Pan, J Chen, G Liu, G Gu. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Applied Materials & Interfaces, 2015, 7(8): 4962–4968
https://doi.org/10.1021/acsami.5b00056
77 M Meudt, T Jakob, A Polywka, L Stegers, S Kropp, S Runke, M Zang, M Clemens, P Görrn. Plasmonic black metasurface by transfer printing. Advanced Materials Technologies, 2018, 3(11): 1800124
https://doi.org/10.1002/admt.201800124
78 K J Berean, V Sivan, I Khodasevych, A Boes, E Della Gaspera, M R Field, K Kalantar-Zadeh, A Mitchell, G Rosengarten. Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption. Advanced Optical Materials, 2016, 4(8): 1247–1254
https://doi.org/10.1002/adom.201600166
79 P Fan, H Wu, M Zhong, H Zhang, B Bai, G Jin. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion. Nanoscale, 2016, 8(30): 14617–14624
https://doi.org/10.1039/C6NR03662G
80 Y Li, D Li, D Zhou, C Chi, S Yang, B Huang. Efficient, scalable, and high-temperature selective solar absorbers based on hybrid-strategy plasmonic metamaterials. Solar RRL, 2018, 2(8): 1800057
https://doi.org/10.1002/solr.201800057
81 W Yu, Y Lu, X Chen, H Xu, J Shao, X Chen, Y Sun, J Hao, N Dai. Large-area, broadband, wide-angle plasmonic metasurface absorber for midwavelength infrared atmospheric transparency window. Advanced Optical Materials, 2019, 7(20): 1900841
https://doi.org/10.1002/adom.201900841
82 J Hao, J Wang, X Liu, W J Padilla, L Zhou, M Qiu. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104
https://doi.org/10.1063/1.3442904
83 M K Hedayati, F Faupel, M Elbahri. Tunable broadband plasmonic perfect absorber at visible frequency. Applied Physics. A, Materials Science & Processing, 2012, 109(4): 769–773
https://doi.org/10.1007/s00339-012-7344-1
84 K Matsumori, R Fujimura. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions. Optics Letters, 2018, 43(12): 2981–2984
https://doi.org/10.1364/OL.43.002981
85 X Liu, T Starr, A F Starr, W J Padilla. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403
https://doi.org/10.1103/PhysRevLett.104.207403
86 Y Lu, W Dong, Z Chen, A Pors, Z Wang, S I Bozhevolnyi. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Scientific Reports, 2016, 6(1): 30650
https://doi.org/10.1038/srep30650
87 B Mulla, C Sabah. Multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics, 2016, 11(5): 1313–1321
https://doi.org/10.1007/s11468-015-0177-y
88 B Desiatov, I Goykhman, N Mazurski, J Shappir, J B Khurgin, U Levy. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica, 2015, 2(4): 335–338
https://doi.org/10.1364/OPTICA.2.000335
89 K Bae, G Kang, S K Cho, W Park, K Kim, W J Padilla. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015, 6(1): 10103
https://doi.org/10.1038/ncomms10103
90 Y Cui, K H Fung, J Xu, H Ma, Y Jin, S He, N X Fang. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Letters, 2012, 12(3): 1443–1447
https://doi.org/10.1021/nl204118h
91 D Wu, C Liu, Y Liu, L Yu, Z Yu, L Chen, R Ma, H Ye. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Optics Letters, 2017, 42(3): 450–453
https://doi.org/10.1364/OL.42.000450
92 K H W Ho, A Shang, F Shi, T W Lo, P H Yeung, Y S Yu, X Zhang, K Wong, D Y Lei. Plasmonic Au/TiO2-dumbbell-on-film nanocavities for high-efficiency hot-carrier generation and extraction. Advanced Functional Materials, 2018, 28(34): 1800383
https://doi.org/10.1002/adfm.201800383
93 X Y Zhang, F Shan, H L Zhou, D Su, X M Xue, J Y Wu, Y Z Chen, N Zhao, T Zhang. Silver nanoplate aggregation based multifunctional black metal absorbers for localization, photothermic harnessing enhancement and omnidirectional light antireflection. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(5): 989–999
https://doi.org/10.1039/C7TC04486K
94 F Shan, X Y Zhang, X C Fu, L J Zhang, D Su, S J Wang, J Y Wu, T Zhang. Investigation of simultaneously existed Raman scattering enhancement and inhibiting fluorescence using surface modified gold nanostars as SERS probes. Scientific Reports, 2017, 7(1): 6813
https://doi.org/10.1038/s41598-017-07311-8
95 X Y Zhang, T Zhang, S Q Zhu, L D Wang, X Liu, Q L Wang, Y J Song. Fabrication and spectroscopic investigation of branched silver nanowires and nanomeshworks. Nanoscale Research Letters, 2012, 7(1): 596
https://doi.org/10.1186/1556-276X-7-596
96 I H Karampelas, K Liu, F Alali, E P Furlani. Plasmonic nanoframes for photothermal energy conversion. Journal of Physical Chemistry C, 2016, 120(13): 7256–7264
https://doi.org/10.1021/acs.jpcc.5b12743
97 M Gao, C K Peh, H T Phan, L Zhu, G W Ho. Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Advanced Energy Materials, 2018, 8(25): 1800711
https://doi.org/10.1002/aenm.201800711
98 L D Wang, T Zhang, X Y Zhang, R Z Li, S Q Zhu, L N Wang. Synthesis of ultra-thin gold nanosheets composed of steadily linked dense nanoparticle arrays using magnetron sputtering. Nanoscience and Nanotechnology Letters, 2013, 5(2): 257–260
https://doi.org/10.1166/nnl.2013.1520
99 R M K Piragash, A Venkatesh, V H S Moorthy. Wet-chemical etching: a novel nanofabrication route to prepare broadband random plasmonic metasurfaces. Plasmonics, 2019, 14(2): 365–374
https://doi.org/10.1007/s11468-018-0813-4
100 M Li, U Guler, Y Li, A Rea, E K Tanyi, Y Kim, M A Noginov, Y Song, A Boltasseva, V M Shalaev, N A Kotov. Plasmonic biomimetic nanocomposite with spontaneous subwavelength structuring as broadband absorbers. ACS Energy Letters, 2018, 3(7): 1578–1583
https://doi.org/10.1021/acsenergylett.8b00583
101 C C Chang, J Nogan, Z P Yang, W J M Kort-Kamp, W Ross, T S Luk, D A R Dalvit, A K Azad, H T Chen. Highly plasmonic titanium nitride by room-temperature sputtering. Scientific Reports, 2019, 9(1): 15287
https://doi.org/10.1038/s41598-019-51236-3
102 A Nagarajan, K Vivek, M Shah, V G Achanta, G Gerini. A broadband plasmonic metasurface superabsorber at optical frequencies: analytical design framework and demonstration. Advanced Optical Materials, 2018, 6(16): 1800253
https://doi.org/10.1002/adom.201800253
103 A Kharitonov, S Kharintsev. Tunable optical materials for multi-resonant plasmonics: from TiN to TiON. Optical Materials Express, 2020, 10(2): 513–531
https://doi.org/10.1364/OME.382160
104 A Bhattacharjee, M Ahmaruzzaman. CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase. RSC Advances, 2016, 6(47): 41348–41363
https://doi.org/10.1039/C6RA03624D
105 X Yin, Y Zhang, Q Guo, X Cai, J Xiao, Z Ding, J Yang. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Applied Materials & Interfaces, 2018, 10(13): 10998–11007
https://doi.org/10.1021/acsami.8b01629
106 R C Devlin, M Khorasaninejad, W T Chen, J Oh, F Capasso. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10473–10478
https://doi.org/10.1073/pnas.1611740113
107 S Wang, F Chen, R Ji, M Hou, F Yi, W Zheng, T Zhang, W Lu. Large-area low-cost dielectric perfect absorber by one-step sputtering. Advanced Optical Materials, 2019, 7(9): 1801596
https://doi.org/10.1002/adom.201801596
108 S Han, J H Shin, P H Jung, H Lee, B J Lee. Broadband solar thermal absorber based on optical metamaterials for high-temperature applications. Advanced Optical Materials, 2016, 4(8): 1265–1273
https://doi.org/10.1002/adom.201600236
109 Q Gan, F J Bartoli, Z H Kafafi. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Advanced Materials, 2013, 25(17): 2385–2396
https://doi.org/10.1002/adma.201203323
110 G Song, Y Yuan, J Liu, Q Liu, W Zhang, J Fang, J Gu, D Ma, D Zhang. Biomimetic superstructures assembled from Au nanostars and nanospheres for efficient solar evaporation. Advanced Sustainable Systems, 2019, 3(6): 1900003
https://doi.org/10.1002/adsu.201900003
111 H D Kiriarachchi, F S Awad, A A Hassan, J A Bobb, A Lin, M S El-Shall. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale, 2018, 10(39): 18531–18539
https://doi.org/10.1039/C8NR05916K
112 K Wang, Z Xing, M Du, S Zhang, Z Li, K Pan, W Zhou. Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flower-like Bi5O7I nanosheets as tandem heterojunctions for enhanced photothermal-photocatalytic performance. Catalysis Science & Technology, 2019, 9(23): 6714–6722
https://doi.org/10.1039/C9CY01945F
113 W Dong, Y Qiu, J Yang, R E Simpson, T Cao. Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings. Journal of Physical Chemistry C, 2016, 120(23): 12713–12722
https://doi.org/10.1021/acs.jpcc.6b01080
114 M Wang, J Zhang, P Wang, C Li, X Xu, Y Jin. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Research, 2018, 11(7): 3854–3863
https://doi.org/10.1007/s12274-017-1959-7
115 P Wang. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089
https://doi.org/10.1039/C8EN00156A
116 Y Liu, J Lou, M Ni, C Song, J Wu, N P Dasgupta, P Tao, W Shang, T Deng. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 2016, 8(1): 772–779
https://doi.org/10.1021/acsami.5b09996
117 X Yang, D Wang. Photocatalysis: from fundamental principles to materials and applications. ACS Applied Energy Materials, 2018, 1(12): 6657–6693
https://doi.org/10.1021/acsaem.8b01345
118 Y Zhai, Y Ma, S N David, D Zhao, R Lou, G Tan, R Yang, X Yin. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 2017, 355(6329): 1062–1066
https://doi.org/10.1126/science.aai7899
119 E Mitridis, T M Schutzius, A Sicher, C U Hail, H Eghlidi, D Poulikakos. Metasurfaces leveraging solar energy for icephobicity. ACS Nano, 2018, 12(7): 7009–7017
https://doi.org/10.1021/acsnano.8b02719
120 J Huang, C Liu, Y Zhu, S Masala, E Alarousu, Y Han, A Fratalocchi. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nature Nanotechnology, 2016, 11(1): 60121
https://doi.org/10.1038/nnano.2015.228
121 G Ni, G Li, S V Boriskina, H Li, W Yang, T J Zhang, G Chen. Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy, 2016, 1(9): 16126
https://doi.org/10.1038/nenergy.2016.126
122 J Li, M Du, G Lv, L Zhou, X Li, L Bertoluzzi, C Liu, S Zhu, J Zhu. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Advanced Materials, 2018, 30(49): 1805159
https://doi.org/10.1002/adma.201805159
123 X Hu, W Xu, L Zhou, Y Tan, Y Wang, S Zhu, J Zhu. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials, 2017, 29(5): 1604031
https://doi.org/10.1002/adma.201604031
124 Y Li, T Gao, Z Yang, C Chen, Y Kuang, J Song, C Jia, E M Hitz, B Yang, L Hu. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy, 2017, 41: 201–209
https://doi.org/10.1016/j.nanoen.2017.09.034
125 N Xu, X Hu, W Xu, X Li, L Zhou, S Zhu, J Zhu. Mushrooms as efficient solar steam-generation devices. Advanced Materials, 2017, 29(28): 1606762
https://doi.org/10.1002/adma.201606762
126 M Gao, P K N Connor, G W Ho. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160
https://doi.org/10.1039/C6EE00971A
127 X Wang, Y He, X Liu, G Cheng, J Zhu. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Applied Energy, 2017, 195: 414–425
https://doi.org/10.1016/j.apenergy.2017.03.080
128 Y Li, C Lin, D Zhou, Y An, D Li, C Chi, H Huang, S Yang, C Y Tso, C Y H Chao, B Huang. Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers. Nano Energy, 2019, 64: 103947
https://doi.org/10.1016/j.nanoen.2019.103947
129 P D Dongare, A Alabastri, O Neumann, P Nordlander, N J Halas. Solar thermal desalination as a nonlinear optical process. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(27): 13182–13187
https://doi.org/10.1073/pnas.1905311116
130 L Shi, Y He, Y Huang, B Jiang. Recyclable Fe3O4@ CNT nanoparticles for high-efficiency solar vapor generation. Energy Conversion and Management, 2017, 149: 401–408
https://doi.org/10.1016/j.enconman.2017.07.044
131 X Wang, G Ou, N Wang, H Wu. Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Applied Materials & Interfaces, 2016, 8(14): 9194–9199
https://doi.org/10.1021/acsami.6b02071
132 X Lang, X Chen, J Zhao. Heterogeneous visible light photocatalysis for selective organic transformations. Chemical Society Reviews, 2014, 43(1): 473–486
https://doi.org/10.1039/C3CS60188A
133 U Aslam, V G Rao, S Chavez, S Linic. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nature Catalysis, 2018, 1(9): 656–665
https://doi.org/10.1038/s41929-018-0138-x
134 Z Zheng, W Xie, B Huang, Y Dai. Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(69): 18322–18333
https://doi.org/10.1002/chem.201803705
135 T G U Ghobadi, A Ghobadi, E Ozbay, F Karadas. Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting. ChemPhotoChem, 2018, 2(3): 161–182
https://doi.org/10.1002/cptc.201700165
136 Q Xiao, T U Connell, J J Cadusch, A Roberts, A S R Chesman, D E Gómez. Hot-carrier organic synthesis via the near-perfect absorption of light. ACS Catalysis, 2018, 8(11): 10331–10339
https://doi.org/10.1021/acscatal.8b03486
137 A Naldoni, U Guler, Z Wang, M Marelli, F Malara, X Meng, L V Besteiro, A O Govorov, A V Kildishev, A Boltasseva, V M Shalaev. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Advanced Optical Materials, 2017, 5(15): 1601031
https://doi.org/10.1002/adom.201601031
138 X Li, J Shang, Z Wang. Intelligent materials: a review of applications in 4D printing. Assembly Automation, 2017, 37(2): 170–185
https://doi.org/10.1108/AA-11-2015-093
139 M J Kreder, J Alvarenga, P Kim, J Aizenberg. Design of anti-icing surfaces: smooth, textured or slippery? Nature Reviews. Materials, 2016, 1(1): 1–15
https://doi.org/10.1038/natrevmats.2015.3
140 S Dash, J de Ruiter, K K Varanasi. Photothermal trap utilizing solar illumination for ice mitigation. Science Advances, 2018, 4(8): eaat0127
141 Z Yang, X Han, H K Lee, G C Phan-Quang, C S L Koh, C L Lay, Y H Lee, Y E Miao, T Liu, I Y Phang, X Y Ling. Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. Nanoscale, 2018, 10(34): 16005–16012
https://doi.org/10.1039/C8NR04053B
142 F B Barho, F Gonzalez-Posada, M Bomers, A Mezy, L Cerutti, T Taliercio. Surface-enhanced thermal emission spectroscopy with perfect absorber metasurfaces. ACS Photonics, 2019, 6(6): 1506–1514
https://doi.org/10.1021/acsphotonics.9b00254
143 M. Chandrashekara Experimental analysis of high temperature solar selective coated box type receiver for desalination. International Journal of Ambient Energy, 2020, DOI: 10.1080/01430750.2020.1718752
144 Y Li, S S Choi, C Yang. Dish-Stirling solar power plants: Modeling, analysis, and control of receiver temperature. IEEE Transactions on Sustainable Energy, 2014, 5(2): 398–407
https://doi.org/10.1109/TSTE.2013.2291572
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed