Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (1) : 99-108    https://doi.org/10.1007/s11705-020-1947-4
RESEARCH ARTICLE
Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm
Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao(), Yu-Fei Song()
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
 Download: PDF(1821 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The rational design of photocatalyst that can effectively reduce CO2 under visible light (l>400 nm), and simultaneously precise control of the products syngas (CO/H2) ratio is highly desirable for the Fischer-Tropsch reaction. In this work, we synthesized a series of CeO2-decorated layered double hydroxides (LDHs, Ce-x) samples for photocatalytic CO2 reduction. It was found that the selectivity and productivity of CO and H2 from photoreduction of CO2 in conjunction with Ru-complex as photosensitizer performed an obvious “volcano-like” trend, with the highest point at Ce-0.15 and the CO/H2 ratio can be widely tunable from 1/7.7 to 1/1.3. Furthermore, compared with LDH, Ce-0.15 also drove photocatalytic CO2 to syngas under 600 nm irradiation. It implied that an optimum amount of CeO2 modifying LDH promoted the photoreduction of CO2 to syngas. This report gives the way to fully utilize the rare earth elements and provides a promising route to enhance the photo-response ability and charge injection efficiency of LDH-based photocatalysts in the synthesis of syngas with a tunable ratio under visible light irradiation.

Keywords visible light catalysis      CO2 conversion      layered double hydroxide      rare earth elements     
Corresponding Author(s): Yufei Zhao,Yu-Fei Song   
Just Accepted Date: 04 June 2020   Online First Date: 30 July 2020    Issue Date: 12 January 2021
 Cite this article:   
Ling Tan,Kipkorir Peter,Jing Ren, et al. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1947-4
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I1/99
Fig.1  Scheme 1 Scheme of the tunable selectivity of syngas from photocatalytic CO2 reduction by LDH, Ce-x (x = 0.05, 0.10, 0.15, 0.20, 0.30 and 0.40) and CeO2 in conjunction with Ru-complex photosensitizer.
Fig.2  (a) XRD patterns and (b) FTIR spectra of LDH and Ce-x (x = 0.05, 0.10, 0.15, 0.20, 0.30 and 0.40), respectively; (c) BET of the as-synthesized LDH, Ce-x (x = 0.15, 0.20 and 0.40) and (d) the corresponding pore size distribution.
Fig.3  TEM images of (a) LDH, (b) Ce-0.05, (c) Ce-0.15, and the corresponding particle size distribution of CeO2 (the insert picture of Fig. 2(c)), (d) HRTEM image of Ce-0.15; TEM images of (e) Ce-0.20 and (f) Ce-0.40.
Fig.4  The (a) selectivity, (b) productivity of LDH and Ce-x (x = 0.05, 0.10, 0.15, 0.20, 0.30 and 0.40, respectively) and CeO2 in CO2PR under visible light irradiation; (c) isotope trace analysis GC-MS spectra using Ce-0.15 photocatalysts; (d) the selectivity of catalyst under control experimental reaction conditions (1. Ar atmosphere; 2. Without Ce-0.15; 3. Without Ru(bpy)3Cl2; 4. In dark); (e) selectivity and (f) productivity of recycle Ce-0.15.
Fig.5  The UV-vis spectra of (a) LDH, Ce-x and CeO2, (b) the photosensitizer Ru(bpy)3Cl2·6H2O as our previous report [39] and the selectivity of (c) LDH and (d) Ce-0.15 in CO2PR under different cut-off filter light irradiation.
Fig.6  (a) PL spectra of as-synthesized catalyst in a solution containing 4 × 10?6 mol Ru(bpy)3Cl2·6H2O; (b) EIS spectra of the as-synthesized LDH and Ce-x.
1 X Li, J Yu, M Jaroniec, X Chen. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chemical Reviews, 2019, 119(6): 3962–4179
https://doi.org/10.1021/acs.chemrev.8b00400
2 X Li, Y Sun, J Xu, Y Shao, J Wu, X Xu, Y Pan, H Ju, J Zhu, Y Xie. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nature Energy, 2019, 4(8): 690–699
https://doi.org/10.1038/s41560-019-0431-1
3 Y Zhao, G I N Waterhouse, G Chen, X Xiong, L Z Wu, C H Tung, T Zhang. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48(7): 1972–2010
https://doi.org/10.1039/C8CS00607E
4 P P Huang, J H Huang, S A Pantovich, A D Carl, T G Fenton, C A Caputo, R L Grimm, A I Frenkel, G H Li. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. Journal of the American Chemical Society, 2018, 140(47): 16042–16047
https://doi.org/10.1021/jacs.8b10380
5 R Kuriki, M Yamamoto, K Higuchi, Y Yamamoto, M Akatsuka, D L Lu, S Yagi, T Yoshida, O Ishitani, K Maeda. Robust binding between carbon nitride nanosheets and a binuclear ruthenium(II) complex enabling durable, selective CO2 reduction under visible light in aqueous solution. Angewandte Chemie International Edition, 2017, 56(17): 4867–4871
https://doi.org/10.1002/anie.201701627
6 R Kuriki, K Sekizawa, O Ishitani, K Maeda. Visible-light-driven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Angewandte Chemie International Edition, 2015, 54(8): 2406–2409
https://doi.org/10.1002/anie.201411170
7 J S Lee, D I Won, W J Jung, H J Son, C Pac, S O Kang. Widely controllable syngas production by a dye-sensitized TiO2 hybrid system with Re(I) and Co(III) catalysts under visible-light irradiation. Angewandte Chemie International Edition, 2017, 56(4): 976–980
https://doi.org/10.1002/anie.201608593
8 D I Won, J S Lee, J M Ji, W J Jung, H J Son, C Pac, S O Kang. Highly robust hybrid photocatalyst for carbon dioxide reduction: Tuning and optimization of catalytic activities of Dye/TiO2/Re(I) organic-inorganic ternary systems. Journal of the American Chemical Society, 2015, 137(42): 13679–13690
https://doi.org/10.1021/jacs.5b08890
9 T W Woolerton, S Sheard, E Reisner, E Pierce, S W Ragsdale, F A Armstrong. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. Journal of the American Chemical Society, 2010, 132(7): 2132–2133
https://doi.org/10.1021/ja910091z
10 X Chen, L Liu, P Y Yu, S S Mao. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750
https://doi.org/10.1126/science.1200448
11 P Li, Y Zhou, Z Zhao, Q Xu, X Wang, M Xiao, Z Zou. Hexahedron prism-anchored octahedronal CeO2: Crystal facet-based homojunction promoting efficient solar fuel synthesis. Journal of the American Chemical Society, 2015, 137(30): 9547–9550
https://doi.org/10.1021/jacs.5b05926
12 E Aneggi, D Wiater, C de Leitenburg, J Llorca, A Trovarelli. Shape-dependent activity of ceria in soot combustion. ACS Catalysis, 2014, 4(1): 172–181
https://doi.org/10.1021/cs400850r
13 A Tanaka, K Hashimoto, H Kominami. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. Journal of the American Chemical Society, 2012, 134(35): 14526–14533
https://doi.org/10.1021/ja305225s
14 J Wang, T Xia, L Wang, X Zheng, Z Qi, C Gao, J Zhu, Z Li, H Xu, Y Xiong. Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angewandte Chemie International Edition, 2018, 57(50): 16447–16451
https://doi.org/10.1002/anie.201810550
15 U Ulmer, T Dingle, P N Duchesne, R H Morris, A Tavasoli, T Wood, G A Ozin. Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 2019, 10(1): 3169
https://doi.org/10.1038/s41467-019-10996-2
16 O S Bushuyev, P De Luna, C T Dinh, L Tao, G Saur, J van de Lagemaat, S O Kelley, E H Sargent. What should we make with CO2 and how can we make it? Joule, 2018, 2(5): 825–832
https://doi.org/10.1016/j.joule.2017.09.003
17 D M Schultz, T P Yoon. Solar synthesis: Prospects in visible light photocatalysis. Science, 2014, 343(6174): 1239176
https://doi.org/10.1126/science.1239176
18 J Yu, Q Wang, D O’Hare, L Sun. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chemical Society Reviews, 2017, 46(19): 5950–5974
https://doi.org/10.1039/C7CS00318H
19 H Yin, Z Tang. Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chemical Society Reviews, 2016, 45(18): 4873–4891
https://doi.org/10.1039/C6CS00343E
20 G Fan, F Li, D G Evans, X Duan. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chemical Society Reviews, 2014, 43(20): 7040–7066
https://doi.org/10.1039/C4CS00160E
21 R Gao, D Yan. Layered host-guest long-after glow ultrathin nanosheets: High-efficiency phosphorescence energy transfer at 2D confined interface. Chemical Science (Cambridge), 2017, 8(1): 590–599
https://doi.org/10.1039/C6SC03515A
22 T Li, X Hao, S Bai, Y Zhao, Y F Song. Controllable synthesis and scale-up production prospect of monolayer layered double hydroxide nanosheets. Acta Physico-chimica Sinica, 2020, 36: 1912005(in Chinese)
23 Q Yin, D Rao, G Zhang, Y Zhao, J Han, K Lin, L Zheng, J Zhang, J Zhou, M Wei. CoFe-Cl layered double hydroxide: A new cathode material for high-performance chloride ion batteries. Advanced Functional Materials, 2019, 29(36): 1900983
https://doi.org/10.1002/adfm.201900983
24 M Arif, G Yasin, M Shakeel, M A Mushtaq, W Ye, X Fang, S Ji, D Yan. Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting. Materials Chemistry Frontiers, 2019, 3(3): 520–531
https://doi.org/10.1039/C8QM00677F
25 S Kumar, L J Durndell, J C Manayil, M A Isaacs, C M A Parlett, S Karthikeyan, R E Douthwaite, B Coulson, K Wilson, A F Lee. Delaminated CoAl-layered double hydroxide@TiO2 heterojunction nanocomposites for photocatalytic reduction of CO2. Particle & Particle Systems Characterization, 2018, 35(1): 1700317
https://doi.org/10.1002/ppsc.201700317
26 S Tonda, S Kumar, M Bhardwaj, P Yadav, S Ogale. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Applied Materials & Interfaces, 2018, 10(3): 2667–2678
https://doi.org/10.1021/acsami.7b18835
27 N Ahmed, Y Shibata, T Taniguchi, Y Izumi. Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M(III) (M= aluminum, gallium) layered double hydroxides. Journal of Catalysis, 2011, 279(1): 123–135
https://doi.org/10.1016/j.jcat.2011.01.004
28 K Teramura, S Iguchi, Y Mizuno, T Shishido, T Tanaka. Photocatalytic conversion of CO2 in water over layered double hydroxides. Angewandte Chemie International Edition, 2012, 51(32): 8008–8011
https://doi.org/10.1002/anie.201201847
29 Y Izumi. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews, 2013, 257(1): 171–186
https://doi.org/10.1016/j.ccr.2012.04.018
30 M Arif, G Yasin, L Luo, W Ye, M A Mushtaq, X Fang, X Xiang, S Ji, D Yan. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Applied Catalysis B: Environmental, 2020, 265: 118559
https://doi.org/10.1016/j.apcatb.2019.118559
31 Y Zhao, X Jia, G I N Waterhouse, L Z Wu, C H Tung, D O’Hare, T Zhang. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Advanced Energy Materials, 2016, 6(6): 1501974
https://doi.org/10.1002/aenm.201501974
32 J Li, Y Xu, Z Ding, A H Mahadi, Y Zhao, Y F Song. Photocatalytic selective oxidation of benzene to phenol in water over layered double hydroxide: A thermodynamic and kinetic perspective. Chemical Engineering Journal, 2020, 388: 124248
https://doi.org/10.1016/j.cej.2020.124248
33 Q Wang, J Feng, L Zheng, B Wang, R Bi, Y He, H Liu, D Li. Interfacial structure-determined reaction pathway and selectivity for 5-hydroxymethyl furfural hydrogenation over Cu-based catalysts. ACS Catalysis, 2020, 10(2): 1353–1365
https://doi.org/10.1021/acscatal.9b03630
34 S Bai, Z Wang, L Tan, G I N Waterhouse, Y Zhao, Y F Song. 600 nm irradiation-induced efficient photocatalytic CO2 reduction by ultrathin layered double hydroxide nanosheets. Industrial & Engineering Chemistry Research, 2020, 59(13): 5848–5857
https://doi.org/10.1021/acs.iecr.0c00522
35 C G Silva, Y Bouizi, V Forne’s, H Garcia. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. Journal of the American Chemical Society, 2009, 131(38): 13833–13839
https://doi.org/10.1021/ja905467v
36 J Ren, S Ouyang, H Xu, X Meng, T Wang, D Wang, J Ye. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Advanced Energy Materials, 2017, 7(5): 1601657
https://doi.org/10.1002/aenm.201601657
37 X Wang, Z Wang, Y Bai, L Tan, Y Xu, X Hao, J Wang, A H Mahadi, Y Zhao, L Zheng, et al. Tuning the selectivity of photoreduction of CO2 to syngas over Pd/layered double hydroxide nanosheets under visible-light up to 600 nm. Journal of Energy Chemistry, 2020, 46: 1–7
https://doi.org/10.1016/j.jechem.2019.10.004
38 P Kipkorir, L Tan, J Ren, Y Zhao, Y F Song. Intercalation effect in NiAl-layered double hydroxide nanosheets for CO2 reduction under visible light. Chemical Research in Chinese Universities, 2020, 36(1): 127–133
https://doi.org/10.1007/s40242-020-9096-3
39 L Tan, S M Xu, Z Wang, Y Xu, X Wang, X Hao, S Bai, C Ning, Y Wang, W Zhang, et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angewandte Chemie International Edition, 2019, 58(34): 11860–11867
https://doi.org/10.1002/anie.201904246
40 X Hao, L Tan, Y Xu, Z Wang, X Wang, S Bai, C Ning, J Zhao, Y Zhao, Y F Song. Engineering active Ni sites in ternary layered double hydroxides nanosheets for a high selectivity photoreduction of CO2 to CH4 under irradiation above 500 nm. Industrial & Engineering Chemistry Research, 2020, 59(7): 3008–3015
https://doi.org/10.1021/acs.iecr.9b06464
41 T Montini, M Melchionna, M Monai, P Fornasiero. Fundamentals and catalytic applications of CeO2-based materials. Chemical Reviews, 2016, 116(10): 5987–6041
https://doi.org/10.1021/acs.chemrev.5b00603
42 Y Li, X He, J J Yin, Y Ma, P Zhang, J Li, Y Ding, J Zhang, Y Zhao, Z Chai, Z Zhang. Acquired superoxide-scavenging ability of ceria nanoparticles. Angewandte Chemie International Edition, 2015, 54(6): 1832–1835
https://doi.org/10.1002/anie.201410398
43 T Ye, W Huang, L Zeng, M Li, J Shi. CeO2−x platelet from monometallic cerium layered double hydroxides and its photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2017, 210: 141–148
https://doi.org/10.1016/j.apcatb.2017.03.051
44 S Zhang, C Chang, Z Huang, Y Ma, W Gao, J Li, Y Qu. Visible-light-activated Suzuki-Miyaura coupling reactions of aryl chlorides over the multifunctional Pd/Au/porous nanorods of CeO2 catalysts. ACS Catalysis, 2015, 5(11): 6481–6488
https://doi.org/10.1021/acscatal.5b01173
45 A Primo, T Marino, A Corma, R Molinari, H Garcia. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. Journal of the American Chemical Society, 2011, 133(18): 6930–6933
https://doi.org/10.1021/ja2011498
46 E M Seftel, M C Puscasu, M Mertens, P Cool, G Carja. Assemblies of nanoparticles of CeO2-ZnTi-LDHs and their derived mixed oxides as novel photocatalytic systems for phenol degradation. Applied Catalysis B: Environmental, 2014, 150-151: 157–166
https://doi.org/10.1016/j.apcatb.2013.12.019
47 J S Valente, F Tzompantzi, J Prince. Highly efficient photocatalytic elimination of phenol and chlorinated phenols by CeO2/MgAl layered double hydroxides. Applied Catalysis B: Environmental, 2011, 102(1-2): 276–285
https://doi.org/10.1016/j.apcatb.2010.12.009
48 K Iqbal, A Iqbal, A M Kirillov, B Wang, W Liu, Y Tang. A new Ce-doped MgAl-LDH@Au nanocatalyst for highly efficient reductive degradation of organic contaminants. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(14): 6716–6724
https://doi.org/10.1039/C6TA10880F
49 Y Chen, S Lv, C Chen, C Qiu, X Fan, Z Wang. Controllable synthesis of ceria nanoparticles with uniform reactive {100} exposure planes. Journal of Chemical Physics, 2014, 118(8): 4437–4443
50 C Gao, S Chen, Y Wang, J Wang, X Zheng, J Zhu, L Song, W Zhang, Y Xiong. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Advanced Materials, 2018, 30(13): 1704624
https://doi.org/10.1002/adma.201704624
51 H Rao, L C Schmidt, J Bonin, M Robert. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature, 2017, 548(7665): 74–77
https://doi.org/10.1038/nature23016
52 B Han, X Ou, Z Deng, Y Song, C Tian, H Deng, Y J Xu, Z Lin. Nickel metal-organic frameworks monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angewandte Chemie International Edition, 2018, 57(51): 16811–16815
https://doi.org/10.1002/anie.201811545
[1] FCE-20010-OF-TL_suppl_1 Download
[1] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[2] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[3] Honggui Tang, Shuangshuang Li, Dandan Gong, Yi Guan, Yuan Liu. Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas[J]. Front. Chem. Sci. Eng., 2017, 11(4): 613-623.
[4] Xiaojie Zhang,Lei Wang,Shuqing Chen,Yi Huang,Zhuonan Song,Miao Yu. Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase composition? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 349-358.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed