|
|
2019 highlights of the structural revision of natural product via total synthesis |
Zongjia Chen, Mark A. Rizzacasa( ) |
School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia |
|
|
|
Corresponding Author(s):
Mark A. Rizzacasa
|
Just Accepted Date: 08 September 2020
Online First Date: 13 November 2020
Issue Date: 10 May 2021
|
|
1 |
C Seger, S Sturm, H Stuppner. Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques—state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Natural Product Reports, 2013, 30(7): 970–987
https://doi.org/10.1039/c3np70015a
|
2 |
K C Nicolaou, S A Snyder. Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angewandte Chemie International Edition, 2005, 44(7): 1012–1044
https://doi.org/10.1002/anie.200460864
|
3 |
H D Yoo, S J Nam, Y W Chin, M S Kim. Misassigned natural products and their revised structures. Archives of Pharmacal Research, 2016, 39(2): 143–153
https://doi.org/10.1007/s12272-015-0649-9
|
4 |
A S Burns, S D Rychnovsky. Total synthesis and structure revision of (–)-illisimonin A, a neuroprotective sesquiterpenoid from the fruits of Illicium simonsii. Journal of the American Chemical Society, 2019, 141(34): 13295–13300
https://doi.org/10.1021/jacs.9b05065
|
5 |
A W Carroll, A C Willis, M Hoshino, A Kato, S G Pyne. Corrected structure of natural hyacinthacine C1 via total synthesis. Journal of Natural Products, 2019, 82(2): 358–367
https://doi.org/10.1021/acs.jnatprod.8b00879
|
6 |
D Chen, H Y Chow, K H L Po, W Ma, E L Y Leung, Z Sun, M Liu, S Chen, X Li. Total synthesis and structural establishment/revision of antibiotics A54145. Organic Letters, 2019, 21(14): 5639–5644
https://doi.org/10.1021/acs.orglett.9b01972
|
7 |
X Cheng, C D Quintanilla, L Zhang. Total synthesis and structure revision of diplobifuranylone B. Journal of Organic Chemistry, 2019, 84(17): 11054–11060
https://doi.org/10.1021/acs.joc.9b01613
|
8 |
M A Coleman, L Burchill, C J Sumby, J H George. Biomimetic synthesis enables the structure revision of furoerioaustralasine. Organic Letters, 2019, 21(21): 8776–8778
https://doi.org/10.1021/acs.orglett.9b03392
|
9 |
D H Dethe, A K Nirpal. Bio-inspired enantio-selective total syntheses of (–)-viminalins A, B, H, I, and N and structural reassignment of (–)-viminalin M. Organic & Biomolecular Chemistry, 2019, 17(32): 7507–7516
https://doi.org/10.1039/C9OB01426H
|
10 |
K P Reber, I W Gilbert, D A Strassfeld, E J Sorensen. Synthesis of (+)-lineariifolianone and related cyclopropenone-containing sesquiterpenoids. Journal of Organic Chemistry, 2019, 84(9): 5524–5534
https://doi.org/10.1021/acs.joc.9b00478
|
11 |
K Sakamoto, A Hakamata, A Iwasaki, K Suenaga, M Tsuda, H Fuwa. Total synthesis, stereochemical revision, and biological assessment of iriomoteolide-2a. Chemistry (Weinheim an der Bergstrasse, Germany), 2019, 25(36): 8528–8542
https://doi.org/10.1002/chem.201900813
|
12 |
S Wang, Q Zhang, Y Zhao, J Sun, W Kang, F Wang, H Pan, G Tang, B Yu. The miharamycins and amipurimycin: their structural revision and the total synthesis of the latter. Angewandte Chemie International Edition, 2019, 58(31): 10558–10562
https://doi.org/10.1002/anie.201905723
|
13 |
H Hattori, L V Hoff, K Gademann. Total synthesis and structural revision of mangrolide D. Organic Letters, 2019, 21(9): 3456–3459
|
14 |
L Xu, P Wu, J Xue, I Molnar X Wei. Antifungal and cytotoxic β-resorcylic acid lactones from a paecilomyces species Journal of Natural Products, 2017, 80(8): 2215–2223
|
15 |
N A Mallampudi, B Srinivas, J G Reddy, D K Mohapatra. Total synthesis and structural revision of monocillin VII. Organic Letters, 2019, 21(15): 5952–5956
https://doi.org/10.1021/acs.orglett.9b02075
|
16 |
F Zhang, D R Braun, G E Ananiev, F M Hoffmann, I W Tsai, S R Rajski, T S Bugni. Biemamides A–E, inhibitors of the TGF-β pathway that block the epithelial to mesenchymal transition. Organic Letters, 2018, 20(18): 5529–5532
https://doi.org/10.1021/acs.orglett.8b01871
|
17 |
N Srivastava, L Macha, H J Ha. Total Synthesis and stereochemical revision of biemamides B and D. Organic Letters, 2019, 21(22): 8992–8996
https://doi.org/10.1021/acs.orglett.9b03394
|
18 |
S B Singh, D L Zink, G A Doss, J D Polishook, C Ruby, E Register, T M Kelly, C Bonfiglio, J M Williamson, R Kelly. Citrafungins A and B, two new fungal metabolite inhibitors of GGTase I with antifungal activity. Organic Letters, 2004, 6(3): 337–340
https://doi.org/10.1021/ol0361249
|
19 |
M F A Amer, K Takahashi, J Ishihara, S Hatakeyama. Total synthesis of citrafungin A. Heterocycles, 2007, 72(1): 181–185
https://doi.org/10.3987/COM-06-S(K)44
|
20 |
F Calo, J Richardson, A G M Barrett. Total synthesis of citrafungin A. Journal of Organic Chemistry, 2008, 73(24): 9692–9697
https://doi.org/10.1021/jo801708q
|
21 |
S Tsegay, H Hügel, M A Rizzacasa. Formal total synthesis of (+)-citrafungin A. Australian Journal of Chemistry, 2009, 62(7): 676–682
https://doi.org/10.1071/CH09182
|
22 |
M A Rizzacasa, D Sturgess. Total synthesis of alkyl citrate natural products. Organic & Biomolecular Chemistry, 2014, 12(9): 1367–1382
https://doi.org/10.1039/c3ob42231c
|
23 |
Z Chen, A Robertson, J M White, M A Rizzacasa. Total synthesis and stereochemical reassignment of citrafungin A. Organic Letters, 2019, 21(23): 9663–9666
https://doi.org/10.1021/acs.orglett.9b03830
|
24 |
E Adelin, C Servy, M T Martin, G Arcile, B I Iorga, P Retailleau, M Bonfill, J Ouazzani. Bicyclic and tetracyclic diterpenes from a trichoderma symbiont of Taxus baccata. Phytochemistry, 2014, 97: 55–61
https://doi.org/10.1016/j.phytochem.2013.10.016
|
25 |
M Hönig, E M Carreira. Total synthesis and structural revision of a harziane diterpenoid. Angewandte Chemie International Edition, 2020, 59(3): 1192–1196
https://doi.org/10.1002/anie.201912982
|
26 |
C Boonlarppradab, C A Kauffman, P R Jensen, W Fenical. Marineosins A and B, cytotoxic spiroaminals from a marine-derived actinomycete. Organic Letters, 2008, 10(24): 5505–5508
https://doi.org/10.1021/ol8020644
|
27 |
L N Aldrich, C B Berry, B S Bates, L C Konkol, M So, C W Lindsley. Towards the total synthesis of marineosin A: construction of the macrocyclic pyrrole and an advanced, functionalized spiroaminal model. European Journal of Organic Chemistry, 2013, 2013(20): 4215–4218
https://doi.org/10.1002/ejoc.201300643
|
28 |
L N Aldrich, E S Dawson, C W Lindsley. Evaluation of the biosynthetic proposal for the synthesis of marineosins A and B. Organic Letters, 2010, 12(5): 1048–1051
https://doi.org/10.1021/ol100034p
|
29 |
X C Cai, B B Snider. Synthesis of the spiroiminal moiety and approaches to the synthesis of marineosins A and B. Journal of Organic Chemistry, 2013, 78(23): 12161–12175
https://doi.org/10.1021/jo402178r
|
30 |
X C Cai, X Wu, B B Snider. Synthesis of the spiroiminal moiety of marineosins A and B. Organic Letters, 2010, 12(7): 1600–1603
https://doi.org/10.1021/ol100333d
|
31 |
G Li, X Zhang, Q Li, P Feng, Y Shi. A concise approach to the spiroiminal fragment of marineosins. Organic & Biomolecular Chemistry, 2013, 11(18): 2936–2938
https://doi.org/10.1039/c3ob40208h
|
32 |
B Xu, G Li, J Li, Y Shi. Total synthesis of the proposed structure of marineosin A. Organic Letters, 2016, 18(9): 2028–2031
https://doi.org/10.1021/acs.orglett.6b00632
|
33 |
Z Feng, T K Allred, E E Hurlow, P G Harran. Anomalous chromophore disruption enables an eight-step synthesis and stereochemical reassignment of (+)-marineosin A. Journal of the American Chemical Society, 2019, 141(6): 2274–2278
https://doi.org/10.1021/jacs.9b00396
|
34 |
K R Schramma, L B Bushin, M R Seyedsayamdost. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nature Chemistry, 2015, 7(5): 431–437
https://doi.org/10.1038/nchem.2237
|
35 |
N A Isley, Y Endo, Z C Wu, B C Covington, L B Bushin, M R Seyedsayamdost, D L Boger. Total synthesis and stereochemical assignment of streptide. Journal of the American Chemical Society, 2019, 141(43): 17361–17369
https://doi.org/10.1021/jacs.9b09067
|
36 |
P Ciminiello, C Dell’Aversano, E Fattorusso, M Forino, S Magno, M Di Rosa, A Ianaro, R Poletti. Structure and stereochemistry of a new cytotoxic polychlorinated sulfolipid from adriatic shellfish. Journal of the American Chemical Society, 2002, 124(44): 13114–13120
https://doi.org/10.1021/ja0207347
|
37 |
C Nilewski, N R Deprez, T C Fessard, D B Li, R W Geisser, E M Carreira. Synthesis of undecachlorosulfolipid A: re-evaluation of the nominal structure. Angewandte Chemie International Edition, 2011, 50(34): 7940–7943
https://doi.org/10.1002/anie.201102521
|
38 |
P Sondermann, E M Carreira. Stereochemical revision, total synthesis, and solution state conformation of the complex chlorosulfolipid mytilipin B. Journal of the American Chemical Society, 2019, 141(26): 10510–10519
https://doi.org/10.1021/jacs.9b05013
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|