Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (3) : 595-601    https://doi.org/10.1007/s11705-020-1971-4
VIEWS & COMMENTS
2019 highlights of the structural revision of natural product via total synthesis
Zongjia Chen, Mark A. Rizzacasa()
School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
 Download: PDF(1273 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Mark A. Rizzacasa   
Just Accepted Date: 08 September 2020   Online First Date: 13 November 2020    Issue Date: 10 May 2021
 Cite this article:   
Zongjia Chen,Mark A. Rizzacasa. 2019 highlights of the structural revision of natural product via total synthesis[J]. Front. Chem. Sci. Eng., 2021, 15(3): 595-601.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1971-4
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I3/595
Fig.1  Scheme 1 Onogashira coupling and revised structure of monocillin VII (4a) [15].
Fig.2  Scheme 2 Synthesis of pyrimidinedione 2d and revised structure of biemamides B (9a) and B (9b) [17].
Fig.3  Scheme 3 Cascade rearrangement and revised structure of citrafungin A (13a) [23].
Fig.4  Scheme 4 Cycloisomerization and revised structure of harziane diterpenoid (19a) [25].
Fig.5  Scheme 5 Redox reaction and revised structure of (+)-marineosin A (23a) [33].
Fig.6  Scheme 6 Indole macrocyclization and revised structure of streptide (26) [35].
Fig.7  Scheme 7 Julia olefination and revised structure of mytilipin B (31) [38].
1 C Seger, S Sturm, H Stuppner. Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques—state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Natural Product Reports, 2013, 30(7): 970–987
https://doi.org/10.1039/c3np70015a
2 K C Nicolaou, S A Snyder. Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angewandte Chemie International Edition, 2005, 44(7): 1012–1044
https://doi.org/10.1002/anie.200460864
3 H D Yoo, S J Nam, Y W Chin, M S Kim. Misassigned natural products and their revised structures. Archives of Pharmacal Research, 2016, 39(2): 143–153
https://doi.org/10.1007/s12272-015-0649-9
4 A S Burns, S D Rychnovsky. Total synthesis and structure revision of (–)-illisimonin A, a neuroprotective sesquiterpenoid from the fruits of Illicium simonsii. Journal of the American Chemical Society, 2019, 141(34): 13295–13300
https://doi.org/10.1021/jacs.9b05065
5 A W Carroll, A C Willis, M Hoshino, A Kato, S G Pyne. Corrected structure of natural hyacinthacine C1 via total synthesis. Journal of Natural Products, 2019, 82(2): 358–367
https://doi.org/10.1021/acs.jnatprod.8b00879
6 D Chen, H Y Chow, K H L Po, W Ma, E L Y Leung, Z Sun, M Liu, S Chen, X Li. Total synthesis and structural establishment/revision of antibiotics A54145. Organic Letters, 2019, 21(14): 5639–5644
https://doi.org/10.1021/acs.orglett.9b01972
7 X Cheng, C D Quintanilla, L Zhang. Total synthesis and structure revision of diplobifuranylone B. Journal of Organic Chemistry, 2019, 84(17): 11054–11060
https://doi.org/10.1021/acs.joc.9b01613
8 M A Coleman, L Burchill, C J Sumby, J H George. Biomimetic synthesis enables the structure revision of furoerioaustralasine. Organic Letters, 2019, 21(21): 8776–8778
https://doi.org/10.1021/acs.orglett.9b03392
9 D H Dethe, A K Nirpal. Bio-inspired enantio-selective total syntheses of (–)-viminalins A, B, H, I, and N and structural reassignment of (–)-viminalin M. Organic & Biomolecular Chemistry, 2019, 17(32): 7507–7516
https://doi.org/10.1039/C9OB01426H
10 K P Reber, I W Gilbert, D A Strassfeld, E J Sorensen. Synthesis of (+)-lineariifolianone and related cyclopropenone-containing sesquiterpenoids. Journal of Organic Chemistry, 2019, 84(9): 5524–5534
https://doi.org/10.1021/acs.joc.9b00478
11 K Sakamoto, A Hakamata, A Iwasaki, K Suenaga, M Tsuda, H Fuwa. Total synthesis, stereochemical revision, and biological assessment of iriomoteolide-2a. Chemistry (Weinheim an der Bergstrasse, Germany), 2019, 25(36): 8528–8542
https://doi.org/10.1002/chem.201900813
12 S Wang, Q Zhang, Y Zhao, J Sun, W Kang, F Wang, H Pan, G Tang, B Yu. The miharamycins and amipurimycin: their structural revision and the total synthesis of the latter. Angewandte Chemie International Edition, 2019, 58(31): 10558–10562
https://doi.org/10.1002/anie.201905723
13 H Hattori, L V Hoff, K Gademann. Total synthesis and structural revision of mangrolide D. Organic Letters, 2019, 21(9): 3456–3459
14 L Xu, P Wu, J Xue, I Molnar X Wei. Antifungal and cytotoxic β-resorcylic acid lactones from a paecilomyces species Journal of Natural Products, 2017, 80(8): 2215–2223
15 N A Mallampudi, B Srinivas, J G Reddy, D K Mohapatra. Total synthesis and structural revision of monocillin VII. Organic Letters, 2019, 21(15): 5952–5956
https://doi.org/10.1021/acs.orglett.9b02075
16 F Zhang, D R Braun, G E Ananiev, F M Hoffmann, I W Tsai, S R Rajski, T S Bugni. Biemamides A–E, inhibitors of the TGF-β pathway that block the epithelial to mesenchymal transition. Organic Letters, 2018, 20(18): 5529–5532
https://doi.org/10.1021/acs.orglett.8b01871
17 N Srivastava, L Macha, H J Ha. Total Synthesis and stereochemical revision of biemamides B and D. Organic Letters, 2019, 21(22): 8992–8996
https://doi.org/10.1021/acs.orglett.9b03394
18 S B Singh, D L Zink, G A Doss, J D Polishook, C Ruby, E Register, T M Kelly, C Bonfiglio, J M Williamson, R Kelly. Citrafungins A and B, two new fungal metabolite inhibitors of GGTase I with antifungal activity. Organic Letters, 2004, 6(3): 337–340
https://doi.org/10.1021/ol0361249
19 M F A Amer, K Takahashi, J Ishihara, S Hatakeyama. Total synthesis of citrafungin A. Heterocycles, 2007, 72(1): 181–185
https://doi.org/10.3987/COM-06-S(K)44
20 F Calo, J Richardson, A G M Barrett. Total synthesis of citrafungin A. Journal of Organic Chemistry, 2008, 73(24): 9692–9697
https://doi.org/10.1021/jo801708q
21 S Tsegay, H Hügel, M A Rizzacasa. Formal total synthesis of (+)-citrafungin A. Australian Journal of Chemistry, 2009, 62(7): 676–682
https://doi.org/10.1071/CH09182
22 M A Rizzacasa, D Sturgess. Total synthesis of alkyl citrate natural products. Organic & Biomolecular Chemistry, 2014, 12(9): 1367–1382
https://doi.org/10.1039/c3ob42231c
23 Z Chen, A Robertson, J M White, M A Rizzacasa. Total synthesis and stereochemical reassignment of citrafungin A. Organic Letters, 2019, 21(23): 9663–9666
https://doi.org/10.1021/acs.orglett.9b03830
24 E Adelin, C Servy, M T Martin, G Arcile, B I Iorga, P Retailleau, M Bonfill, J Ouazzani. Bicyclic and tetracyclic diterpenes from a trichoderma symbiont of Taxus baccata. Phytochemistry, 2014, 97: 55–61
https://doi.org/10.1016/j.phytochem.2013.10.016
25 M Hönig, E M Carreira. Total synthesis and structural revision of a harziane diterpenoid. Angewandte Chemie International Edition, 2020, 59(3): 1192–1196
https://doi.org/10.1002/anie.201912982
26 C Boonlarppradab, C A Kauffman, P R Jensen, W Fenical. Marineosins A and B, cytotoxic spiroaminals from a marine-derived actinomycete. Organic Letters, 2008, 10(24): 5505–5508
https://doi.org/10.1021/ol8020644
27 L N Aldrich, C B Berry, B S Bates, L C Konkol, M So, C W Lindsley. Towards the total synthesis of marineosin A: construction of the macrocyclic pyrrole and an advanced, functionalized spiroaminal model. European Journal of Organic Chemistry, 2013, 2013(20): 4215–4218
https://doi.org/10.1002/ejoc.201300643
28 L N Aldrich, E S Dawson, C W Lindsley. Evaluation of the biosynthetic proposal for the synthesis of marineosins A and B. Organic Letters, 2010, 12(5): 1048–1051
https://doi.org/10.1021/ol100034p
29 X C Cai, B B Snider. Synthesis of the spiroiminal moiety and approaches to the synthesis of marineosins A and B. Journal of Organic Chemistry, 2013, 78(23): 12161–12175
https://doi.org/10.1021/jo402178r
30 X C Cai, X Wu, B B Snider. Synthesis of the spiroiminal moiety of marineosins A and B. Organic Letters, 2010, 12(7): 1600–1603
https://doi.org/10.1021/ol100333d
31 G Li, X Zhang, Q Li, P Feng, Y Shi. A concise approach to the spiroiminal fragment of marineosins. Organic & Biomolecular Chemistry, 2013, 11(18): 2936–2938
https://doi.org/10.1039/c3ob40208h
32 B Xu, G Li, J Li, Y Shi. Total synthesis of the proposed structure of marineosin A. Organic Letters, 2016, 18(9): 2028–2031
https://doi.org/10.1021/acs.orglett.6b00632
33 Z Feng, T K Allred, E E Hurlow, P G Harran. Anomalous chromophore disruption enables an eight-step synthesis and stereochemical reassignment of (+)-marineosin A. Journal of the American Chemical Society, 2019, 141(6): 2274–2278
https://doi.org/10.1021/jacs.9b00396
34 K R Schramma, L B Bushin, M R Seyedsayamdost. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nature Chemistry, 2015, 7(5): 431–437
https://doi.org/10.1038/nchem.2237
35 N A Isley, Y Endo, Z C Wu, B C Covington, L B Bushin, M R Seyedsayamdost, D L Boger. Total synthesis and stereochemical assignment of streptide. Journal of the American Chemical Society, 2019, 141(43): 17361–17369
https://doi.org/10.1021/jacs.9b09067
36 P Ciminiello, C Dell’Aversano, E Fattorusso, M Forino, S Magno, M Di Rosa, A Ianaro, R Poletti. Structure and stereochemistry of a new cytotoxic polychlorinated sulfolipid from adriatic shellfish. Journal of the American Chemical Society, 2002, 124(44): 13114–13120
https://doi.org/10.1021/ja0207347
37 C Nilewski, N R Deprez, T C Fessard, D B Li, R W Geisser, E M Carreira. Synthesis of undecachlorosulfolipid A: re-evaluation of the nominal structure. Angewandte Chemie International Edition, 2011, 50(34): 7940–7943
https://doi.org/10.1002/anie.201102521
38 P Sondermann, E M Carreira. Stereochemical revision, total synthesis, and solution state conformation of the complex chlorosulfolipid mytilipin B. Journal of the American Chemical Society, 2019, 141(26): 10510–10519
https://doi.org/10.1021/jacs.9b05013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed