Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (3) : 687-697    https://doi.org/10.1007/s11705-020-1974-1
RESEARCH ARTICLE
Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2
Baowei Wang1(), Xiaoxi Wang1, Bo Zhang2
1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
 Download: PDF(1873 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Four coaxial cylinder dielectric barrier discharge micro-plasma reactors were designed for the non-catalytic decomposition of pure CO2 into CO and O2 at low temperature and ambient pressure. The influence of segmented outer electrodes on the electrical characteristics and the reaction performance was investigated. Experimental results indicated that the introduction of segmented outer electrodes can significantly promote the decomposition of CO2. Encouragingly, the highest conversion of 13.1% was obtained at an applied voltage of 18 kV, which was a substantial increase of 39.4% compared to the traditional device. Compared with other types of dielectric barrier discharge plasma reactors, the proposed segmented outer electrode micro-plasma reactor can give a higher CO2 conversion and acceptable energy efficiency. The increase in conversion can be attributed mainly to the enhanced corona discharge caused by the fringe effect at electrode edges, the increase in energy density and the increase in the number of micro-discharges. In addition, detailed electrical characterization was performed to reveal some trends in the electrical behavior of proposed reactors.

Keywords CO2 decomposition      dielectric barrier discharge      segmented outer electrodes      electrical analysis      reactor design     
Corresponding Author(s): Baowei Wang   
Just Accepted Date: 29 September 2020   Online First Date: 26 November 2020    Issue Date: 10 May 2021
 Cite this article:   
Baowei Wang,Xiaoxi Wang,Bo Zhang. Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2[J]. Front. Chem. Sci. Eng., 2021, 15(3): 687-697.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1974-1
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I3/687
Fig.1  Schematic diagram of the experimental system.
Fig.2  DBD micro-plasma reactors.
Reactor type Electrode width/mm Electrode interval/mm Discharge length/mm
Reactor 1 60.0 60.0
Reactor 2 30.0 10.0 60.0
Reactor 3 20.0 10.0 60.0
Reactor 4 10.0 10.0 60.0
Tab.1  Electrode configuration parameters
Fig.3  (a) Typical DBD equivalent circuit; (b) Schematic of an idealized DBD Q-V plot.
Fig.4  Influence of the segmented electrode on discharge waveforms: (a) applied voltage: 18 kV; (b) input power: 60 W (frequency: 9.0 kHz; discharge length: 60.0 mm; barrier thickness: 1.6 mm; interval between adjacent outer electrodes: 10.0 mm; feed flow rate: 43.7 mL/min; residence time: 1.5 s).
Fig.5  Influence of segmented outer electrodes on Cd: (a) applied voltage; (b) input power.
Fig.6  Influence of segmented outer electrodes on Cg: (a) applied voltage; (b) input power.
Fig.7  Lissajous-figure of pure CO2 decomposition at different DBD reactors: (a) applied voltage: 18 kV; (b) input power: 60 W.
Reactor type C1/%a) C2/%b)
Reactor 1 0.6 0.8
Reactor 2 0.8 0.9
Reactor 3 0.9 0.7
Reactor 4 1.0 0.9
Tab.2  The carbon balance of different reactors
Fig.8  CO yield of different reactors: (a) applied voltage; (b) input power.
Fig.9  CO2 conversion of different reactors: (a) applied voltage; (b) input power.
Fig.10  Energy efficiency of different reactors: (a) applied voltage; (b) input power.
Inner electrode Outer electrode Maximum CO2 conversion/% Energy efficiency/% Reference
Stainless steel tube Segmented aluminum foil strips 13.1 3.1 This work
Stainless steel rod Stainless steel mesh 3.9 3.5 [50]
Stainless steel rod NaCl solution 15.1 3.9 [51]
Compact copper powder Stainless steel tube 9.2 4.5 [52]
Tab.3  Comparison of CO2 conversion and energy efficiency with different electrode configurations
1 A Zhou, D Chen, C Ma, F Yu, B Dai. DBD plasma-ZrO2 catalytic decomposition of CO2 at low temperatures. Catalysts, 2018, 8(7): 2073–4344
https://doi.org/10.3390/catal8070256
2 Z Jiang, T Xiao, V L Kuznetsov, P P Edwards. Turning carbon dioxide into fuel. Philosophical Transactions, 1923, 2010(368): 3343–3364
3 R Snoeckx, A Bogaerts. Plasma technology—a novel solution for CO2 conversion? Chemical Society Reviews, 2017, 46(19): 5805–5863
https://doi.org/10.1039/C6CS00066E
4 J Gao, Y Wang, Y Ping, D Hu, G Xu, F Gu, F Su. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2012, 2(6): 2358–2368
https://doi.org/10.1039/c2ra00632d
5 B Wang, C Chi, M Xu, C Wang, D Meng. Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge. Chemical Engineering Journal, 2017, 322: 679–692
https://doi.org/10.1016/j.cej.2017.03.153
6 F Saleem, K Zhang, A P Harvey. Decomposition of benzene as a tar analogue in CO2 and H2 carrier gases, using a non-thermal plasma. Chemical Engineering Journal, 2019, 360: 714–720
https://doi.org/10.1016/j.cej.2018.11.195
7 W J Ge, X F Duan, Y P Li, B W Wang. Plasma-catalyst synergy during methanol steam reforming in dielectric barrier discharge micro-plasma reactors for hydrogen production. Plasma Chemistry and Plasma Processing, 2015, 35(1): 187–199
https://doi.org/10.1007/s11090-014-9585-6
8 I Michielsen, Y Uytdenhouwen, J Pype, B Michielsen, J Mertens, F Reniers, V Meynen, A Bogaerts. CO2 dissociation in a packed bed DBD reactor: first steps towards a better understanding of plasma catalysis. Chemical Engineering Journal, 2017, 326: 477–488
https://doi.org/10.1016/j.cej.2017.05.177
9 B Zhu, L Y Zhang, M Li, Y Yan, X M Zhang, Y M Zhu. High-performance of plasma-catalysis hybrid system for toluene removal in air using supported Au nanocatalysts. Chemical Engineering Journal, 2020, 381: 122599
https://doi.org/10.1016/j.cej.2019.122599
10 X F Duan, Z Y Hu, Y P Li, B W Wang. Effect of dielectric packing materials on the decomposition of carbon dioxide using DBD microplasma reactor. AIChE Journal, 2015, 61(3): 898–903
https://doi.org/10.1002/aic.14682
11 X F Duan, Y P Li, W J Ge, B W Wang. Degradation of CO2 through dielectric barrier discharge microplasma. Greenhouse Gases Science and Technology, 2015, 5(2): 131–140
https://doi.org/10.1002/ghg.1425
12 G Trenchev, A. BogaertsDual-vortex plasmatron: a novel plasma source for CO2 conversion. Journal of CO2 Utilization, 2020, 39: 101152
13 A Bogaerts, E C Neyts. Plasma technology: an emerging technology for energy storage. ACS Energy Letters, 2018, 3(4): 1013–1027
https://doi.org/10.1021/acsenergylett.8b00184
14 S Zhu, A Zhou, Y U Feng, B Dai, C Ma. Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device. Plasma Science & Technology, 2019, 21(8): 085504
https://doi.org/10.1088/2058-6272/ab15e5
15 G Niu, Y Qin, W Li, Y Duan. Investigation of CO2 splitting process under atmospheric pressure using multi-electrode cylindrical DBD plasma reactor. Plasma Chemistry and Plasma Processing, 2019, 39(4): 809–824
https://doi.org/10.1007/s11090-019-09955-y
16 L Li, H F Zhang, X Li, X Kong, R Xu, K Tay, X. Tu Plasma-assisted CO2 conversion in a gliding arc discharge: improving performance by optimizing the reactor design. Journal of CO2 Utilization, 2019, 29: 296–303
17 A Li, Y Pei, X Tao, Z Wang. Effects of discharge parameters on carbon dioxide conversion in TiO2 packed dielectric barrier discharge at atmospheric pressure. SN Applied Sciences, 2019, 1(8): 816
https://doi.org/10.1007/s42452-019-0847-z
18 U Kogelschatz. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1–46
https://doi.org/10.1023/A:1022470901385
19 S Mohsenian, D Nagassou, S Bhatta, R Elahi, J P Trelles. Design and characterization of a solar-enhanced microwave plasma reactor for atmospheric pressure carbon dioxide decomposition. Plasma Sources Science & Technology, 2019, 28(6): 065001
https://doi.org/10.1088/1361-6595/ab1c43
20 D C M van den Bekerom, J M P Linares, T Verreycken, E M van Veldhuizen, S Nijdam, G Berden, W A Bongers, M C M van de Sanden, G J van Rooij. The importance of thermal dissociation in CO2 microwave discharges investigated by power pulsing and rotational Raman scattering. Plasma Sources Science & Technology, 2019, 28(5): 055015
https://doi.org/10.1088/1361-6595/aaf519
21 S H Moreno, A Stankiewicz, G Stefanidis. A two-step modelling approach for plasma reactors—experimental validation for CO2 dissociation in surface wave microwave plasma. Reaction Chemistry & Engineering, 2019, 4(7): 1253–1269
https://doi.org/10.1039/C9RE00022D
22 J L Liu, H W Park, W J Chung, D W Park. High-efficient conversion of CO2 in AC-pulsed tornado gliding arc plasma. Plasma Chemistry and Plasma Processing, 2015, 36(2): 1–13
23 S Kolev, A Bogaerts. Similarities and differences between gliding glow and gliding arc discharges. Plasma Sources Science & Technology, 2015, 24(6): 065023
https://doi.org/10.1088/0963-0252/24/6/065023
24 L Lin, B Wu, C Yang, C K Wu. Characteristics of gliding arc discharge plasma. Plasma Science & Technology, 2006, 8(6): 653–655
https://doi.org/10.1088/1009-0630/8/6/06
25 L Li, H Zhang, X Li, J Huang, X Kong, R Xu, X Tu. Magnetically enhanced gliding arc discharge for CO2 activation. Journal of CO2 Utilization, 2020, 35: 28–37
26 B W Wang, W J Yan, W J Ge, X F Duan. Kinetic model of the methane conversion into higher hydrocarbons with a dielectric barrier discharge microplasma reactor. Chemical Engineering Journal, 2013, 234(12): 354–360
https://doi.org/10.1016/j.cej.2013.08.052
27 V Damideh, O H Chin, H A Gabbar, S J Ch’ng, C Y Tan. Study of ozone concentration from CO2 decomposition in a water cooled coaxial dielectric barrier discharge. Vacuum, 2020, 177: 109370
https://doi.org/10.1016/j.vacuum.2020.109370
28 B Lee, D W Kim, D Park. Dielectric barrier discharge reactor with the segmented electrodes for decomposition of toluene adsorbed on bare-zeolite. Chemical Engineering Journal, 2019, 357: 188–197
https://doi.org/10.1016/j.cej.2018.09.104
29 G Niu, Y Li, J Tang, X Wang, Y Duan. Optical and electrical analysis of multi-electrode cylindrical dielectric barrier discharge (DBD) plasma reactor. Vacuum, 2018, 157: 465–474
https://doi.org/10.1016/j.vacuum.2018.09.025
30 A M Banerjee, J Billinger, K J Nordheden, F J J Peeters. Conversion of CO2 in a packed-bed dielectric barrier discharge reactor. Journal of Vacuum Science and Technology, 2018, 36(4): 04F403
31 Y Uytdenhouwen, S Van Alphen, I Michielsen, V Meynen, P Cool, A Bogaerts. A packed-bed DBD micro plasma reactor for CO2 dissociation: does size matter? Chemical Engineering Journal, 2018, 348: 557–568
https://doi.org/10.1016/j.cej.2018.04.210
32 M Ramakers, I Michielsen, R Aerts, V Meynen, A Bogaerts. Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge. Plasma Processes and Polymers, 2015, 12(8): 755–763
https://doi.org/10.1002/ppap.201400213
33 B Lee, D W Kim, D W Park. Dielectric barrier discharge reactor with the segmented electrodes for decomposition of toluene adsorbed on bare-zeolite. Chemical Engineering Journal, 2019, 357: 188–197
https://doi.org/10.1016/j.cej.2018.09.104
34 N Lu, D Sun, C Zhang, N Jiang, K Shang, X Bao, J Li, Y Wu. CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes. Journal of Physics D: Applied Physics, 2018, 51(9): 094001
https://doi.org/10.1088/1361-6463/aaa919
35 G Gao, L Dong, K Peng, W Wei, C Li, G Wu. Comparison of the surface dielectric barrier discharge characteristics under different electrode gaps. Physics of Plasmas, 2017, 24(1): 013510
https://doi.org/10.1063/1.4974037
36 A V Pipa, T Hoder, J Koskulics, M Schmidt, R Brandenburg. Experimental determination of dielectric barrier discharge capacitance. Review of Scientific Instruments, 2012, 83(7): 075111
https://doi.org/10.1063/1.4737623
37 T C Manley. The electric characteristics of the ozonator discharge. Transactions of the Electrochemical Society, 1943, 84(1): 83–96
https://doi.org/10.1149/1.3071556
38 C Kasper. The Theory of the potential and the technical practice of electrodeposition. Journal of the Franklin Institute, 1943, 236(3): 304–305
https://doi.org/10.1016/S0016-0032(43)90741-0
39 P Reichen, A Sonnenfeld, P R Von Rohr. Discharge expansion in barrier discharge arrangements at low applied voltages. Plasma Sources Science & Technology, 2011, 20(5): 055015
https://doi.org/10.1088/0963-0252/20/5/055015
40 S Liu, M Neiger. Electrical modelling of homogeneous dielectric barrier discharges under an arbitrary excitation voltage. Journal of Physics D: Applied Physics, 2003, 36(24): 3144–3150
https://doi.org/10.1088/0022-3727/36/24/009
41 I Belov, S Paulussen, A Bogaerts. Appearance of a conductive carbonaceous coating in a CO2 dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency. Plasma Sources Science & Technology, 2016, 25(1): 015023
https://doi.org/10.1088/0963-0252/25/1/015023
42 J Van Durme, J Dewulf, C Leys, H Van Langenhove. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Applied Catalysis B: Environmental, 2008, 78(3): 324–333
https://doi.org/10.1016/j.apcatb.2007.09.035
43 P J P Bruggeman, R Brandenburg. Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics. Journal of Physics D: Applied Physics, 2013, 46(46): 464001
https://doi.org/10.1088/0022-3727/46/46/464001
44 B Eliasson, M Hirth, U Kogelschatz. Ozone synthesis from oxygen in dielectric barrier discharges. Journal of Physics D: Applied Physics, 1987, 20(11): 1421–1437
https://doi.org/10.1088/0022-3727/20/11/010
45 S Tao, L Kaihua, Z Cheng, Y Ping, Z Shichang, P Ruzheng. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure. Journal of Physics D: Applied Physics, 2008, 41(21): 215203
https://doi.org/10.1088/0022-3727/41/21/215203
46 T Sreethawong, N Permsin, T Suttikul, S Chavadej. Ethylene epoxidation in low-temperature AC dielectric barrier discharge: effect of electrode geometry. Plasma Chemistry and Plasma Processing, 2010, 30(4): 503–524
https://doi.org/10.1007/s11090-010-9232-9
47 S Gadkari, S Gu. Numerical investigation of coaxial DBD: influence of relative permittivity of the dielectric barrier, applied voltage amplitude, and frequency. Physics of Plasmas, 2017, 24(5): 053517
https://doi.org/10.1063/1.4982657
48 A J Wu, H Zhang, X D Li, S Y Lu, C M Du, J H Yan. Determination of spectroscopic temperatures and electron density in rotating gliding arc discharge. IEEE Transactions on Plasma Science, 2015, 43(3): 836–845
https://doi.org/10.1109/TPS.2015.2394441
49 R B Tyata, D P Subedi, R Shrestha, C S Wong. Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge. Pramana-Journal of Physics, 2013, 80(3): 507–517
https://doi.org/10.1007/s12043-012-0494-z
50 R Snoeckx, S Heijkers, K Van Wesenbeeck, S Lenaerts, A Bogaerts. CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity? Energy & Environmental Science, 2016, 9(3): 999–1011
https://doi.org/10.1039/C5EE03304G
51 P Chen, J Shen, T Ran, T Yang, Y Yin. Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma. Plasma Science & Technology, 2017, 19(12): 125505
https://doi.org/10.1088/2058-6272/aa8903
52 N Lu, C K Zhang, K F Shang, N Jiang, J Li, Y Wu. Dielectric barrier discharge plasma assisted CO2 conversion: understanding the effects of reactor design and operating parameters. Journal of Physics D: Applied Physics, 2019, 52(22): 224003
https://doi.org/10.1088/1361-6463/ab0ebb
53 G Niu, Y Li, J Tang, X Wang, Y Duan. Optical and electrical analysis of multi-electrode cylindrical dielectric barrier discharge (DBD) plasma reactor. Vacuum, 2018, 157: 465–474
https://doi.org/10.1016/j.vacuum.2018.09.025
[1] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[2] Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan. Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction[J]. Front. Chem. Sci. Eng., 2018, 12(4): 790-797.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed