Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (3) : 679-686    https://doi.org/10.1007/s11705-020-1979-9
RESEARCH ARTICLE
A highly efficient methodology for the preparation of N-methoxycarbazoles and the total synthesis of 3,3'-[oxybis(methylene)]bis(9-methoxy-9H-carbazole)
Yongxin Zhang, Shucheng Wang, Yaodong Huang()
Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
 Download: PDF(347 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A convenient and highly efficient method is described for the synthesis of N-methoxycarbazole derivatives, including those with sterically demanding, benzannulated, or strongly electron-donating or -withdrawing substituents. Various N-methoxycarbazole derivatives were directly prepared in good-to-moderate yields by the Pd2(dba)3CHCl3/9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene-catalyzed reactions of the corresponding dibromobiphenyl compounds and methoxya-mine. Based on this methodology, the first total synthesis of 3,3′-[oxybis(methylene)]bis(9-methoxy-9H-carbazole), an antimicrobial dimeric carbazole alkaloid previously isolated from the stem bark of Murraya koenigii, was achieved in 18% yield over seven steps from 1,2-dibromobenzene.

Keywords N-methoxyl carbazole      dimeric N-methoxyl carbazole      alkaloid      total synthesis      double N-arylation of methoxyamine     
Corresponding Author(s): Yaodong Huang   
Just Accepted Date: 24 September 2020   Online First Date: 23 November 2020    Issue Date: 10 May 2021
 Cite this article:   
Yongxin Zhang,Shucheng Wang,Yaodong Huang. A highly efficient methodology for the preparation of N-methoxycarbazoles and the total synthesis of 3,3'-[oxybis(methylene)]bis(9-methoxy-9H-carbazole)[J]. Front. Chem. Sci. Eng., 2021, 15(3): 679-686.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1979-9
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I3/679
Fig.1  Scheme 1 Two synthetic routes for N-methoxycarbazole reported in the literature [15,16].
Fig.2  Scheme 2 Dimeric N-methoxycarbazole alkaloid OBMC.
Entry Xantphos /mol-% Pd/xantphos
/mol-%
Temperature
/°C
Reaction time
/h
Yield
/%
1 5 0.5% 90 36 19
2 10 0.5% 90 36 28
3 15 0.5% 90 36 29
4 5 1% 90 36 24
5 10 1% 90 36 35
6 15 1% 90 36 37
7 5 1.5% 90 36 34
8 10 1.5% 90 36 45
9 15 1.5% 90 36 49
10 5 2% 90 36 35
11 10 2% 90 36 56
12 15 2% 90 36 60
13 5 2.5% 90 36 43
14 10 2.5% 90 36 78
15 15 2.5% 90 36 79
16 10 2.5% 50 60 0
17 10 2.5% 90 24 65
18 10 2.5% 120 36 78
19 10 2.5% 90 48 78
Tab.1  The yield of the reaction of 1a with methoxyamine under different conditions
Fig.3  Scheme 3 Synthetic routes for compounds 2a2g. (a) Dibromobiaryl, CH3ONH2 (1.5 equiv), Pd2(dba)3CHCl3 (2.5 mol-%), xantphos (10 mol-%), K3PO4 (3 equiv), toluene, 90–120 °C, 24–60 h, 69%–92%; (b) 3,3′-dibromo-2,2′-binaphthalene, CH3ONH2 (1.5 equiv), Pd2(dba)3CHCl3 (2.5 mol-%), xantphos (10 mol-%), K3PO4 (3 equiv), toluene, 90 °C, 36 h, 80%.
Entry Starting material Product R1 R2 Reaction time/h Reaction temp/°C Yield/%
1 1a 2a H H 36 90 78
2 a) 1b 2b H t-Bu 60 120 69
3 1c 2c NO2 H 24 90 92
4 1d 2d NO2 t-Bu 48 90 75
5 1e 2e H COOMe 36 90 85
6a) 1f 2f OCH3 OCH3 60 120 72
Tab.2  Reaction details and yields in the syntheses of 2a2f
Fig.4  Scheme 4 ?Route for the total synthesis of OBMC. (a) N,N-Dimethylformamide (DMF)/POCl3 (1:1), ClCH2CH2Cl, 85 °C, 24 h, 73%; (b) NaBH4 (1.2 equiv), EtOH, 25 °C, 2 h, 100%; (c) SOCl2 (1.2 equiv), THF, 25 °C, 4 h, 100%; (d) NaI (1.2 equiv), acetone, 25 °C, 2 h, 100%; (e) 4 (1 equiv), NaH (1.2 equiv), 6 (1.2 equiv), tetrabutylammonium bromide (TBAB), toluene, 90 °C, 36 h, 45%.
Fig.5  Scheme 5 Possible chemical structure of the unstable compound from the Pd-catalyzed reaction of 5-methyl-2,2′-biphenylylene ditriflate with methoxyamine.
Fig.6  Scheme 6 Total syntheses of 9-methoxy-9H-carbazole-3-carbaldehyde (3) by (a) Kawasaki and Somei and (b) Selvakumar et al.
1 D P Chakraborty, B K Barman, P K Bose. On the constitution of Murrayanine, a carbazole derivative isolated from Murraya koengii Spreng. Tetrahedron, 1965, 21(1-2): 681–685
2 D P Chakraborty. The Alkaloids. 1st ed. New York: Academic Press, 1993, 257–364
3 H J Knölker, K R Reddy. Isolation and synthesis of biologically active carbazole alkaloids. Chemical Reviews, 2002, 102(11): 4303–4427
4 H J Knölker. Topics in Current Chemistry: Natural Product Synthesis. 1st ed. Heidelberg: Springer, 2004, 244
5 A W Schmidt, K R Reddy, H J Knölker. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chemical Reviews, 2012, 112(6): 3193–3328
6 H Greger. Phytocarbazoles: alkaloids with great structural diversity and pronounced biological activities. Phytochemistry Reviews, 2017, 16(6): 1095–1153
7 Y P Liu, S Hu, Y Y Liu, M M Zhang, W H Zhang, L Qiang, Y H Fu. Anti-inflammatory and antiproliferative prenylated carbazole alkaloids from Clausena vestita. Bioorganic Chemistry, 2019, 91: 103107
8 X Y Sun, J Ma, C J Li, Y D Zang, J W Huang, X Y Wang, N H Chen, X G Chen, D M Zhang. Carbazole alkaloids with bioactivities from the stems of Clausena lansium. Phytochemistry Letters, 2020, 38: 28–32
9 W W Peng, X X Fu, Z H Xiong, H L Wu, J W Chang, G H Huo, B T Li. Taxonomic significance and antitumor activity of alkaloids from Clausena lansium Lour. Skeels (Rutaceae). Biochemical Systematics and Ecology, 2020, 90: 104046
10 S Y Zhang, Z J Zhan, H Zhang, H Qi, L Q Zhang, S X Chen, L S Gan, J D Wang, L F Ma. Morindolestatin, naturally occurring dehydromorpholinocarbazole alkaloid from soil-derived bacterium of the genus Streptomyces. Organic Letters, 2020, 22(3): 1113–1116
11 C Ito, T S Wu, H Furukawa. New carbazole alkaloids from Murraya euchrestifolia. Chemical & Pharmaceutical Bulletin, 1988, 36(7): 2377–2380
12 M M Rahman, A I Gray. A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity. Phytochemistry, 2005, 66(13): 1601–1606
13 R Wei, Q Ma, T Li, W Liu, Z Sang, M Li, S Liu. Carbazole alkaloids with antiangiogenic activities from Clausena sanki. Bioorganic Chemistry, 2018, 77: 387–392
14 H N Lv, R Wen, Y Zhou, K W Zeng, J Li, X Y Guo, P F Tu, Y Jiang. Nitrogen oxide inhibitory trimeric and dimeric carbazole alkaloids from Murraya tetramera. Journal of Natural Products, 2016, 78(10): 2432–2439
15 M Somei, T Kawasaki. A new and simple synthesis of 1-hydroxyindole derivatives. Heterocycles, 1989, 29(7): 1251–1254
16 N Selvakumar, M K Khera, B Y Reddy, D Srinivas, A M Azhagan, J Iqbal. An efficient total synthesis of 9-methoxycarbazole-3-carbaldehyde based on a novel methodology for the preparation of methoxyindoles. Tetrahedron Letters, 2003, 44(37): 7071–7074
17 K Nozaki, K Takahashi, K Nakano, T Hiyama, H Z Tang, M Fujiki, S Yamaguchi, K Tamao. The double N-arylation of primary amines: toward multisubstituted carbazoles with unique optical properties. Angewandte Chemie International Edition, 2003, 42(18): 2051–2053
18 H B Xiao, B Leng, H Tian. Hole transport triphenylamine-spirosilabifluorene alternating copolymer: synthesis and optical, electrochemical and electroluminescent properties. Polymer, 2005, 46(15): 5707–5713
19 M Tashiro, T Yamato. Studies on selective preparation of aromatic compounds. 20. Selective preparation of 2-mono- and 2,2′-disubstituted biphenyl using the tert-butyl group as a positional protective group. Journal of Organic Chemistry, 1979, 44(17): 3037–3041
20 Y Q Mo, R Y Tian, W Shi, Y Cao. Ultraviolet-emitting conjugated polymer poly(9,9′-alkyl-3,6-silafluorene) with a wide band gap of 4.0 eV. Chemical Communications, 2005, 39: 4925–4926
21 M Tashiro, Y Fukuda. Preparation of 4,4′-di-tert-butylbiphenyl derivatives. Organic Preparations and Procedures International, 1983, 15(4): 271–275
22 N J Ronde, D Totev, C Müller, M Lutz, A L Spek, D Vogt. Molecular-weight-enlarged multiple-pincer ligands: synthesis and application in palladium-catalyzed allylic substitution reactions. ChemSusChem, 2009, 2(6): 558–574
23 A McKillop, A G Turrell, D W Young, E C Taylor. Thallium in organic synthesis. 58. Regiospecific intermolecular oxidative dehydrodimerization of aromatic compounds to biaryls using thallium(III) trifluoroacetate. Journal of the American Chemical Society, 1980, 102(21): 6504–6512
24 T Motomura, H Nakamura, M Suginome, M Murakami, Y Ito. Synthesis and structural analysis of oligo(naphthalene-2,3-diyl)s. Bulletin of the Chemical Society of Japan, 2005, 78(1): 142–146
25 A Kuwahara, K Nakano, K Nozaki. Double N-arylation of primary amines: carbazole synthesis from 2,2′-biphenyldiols. Journal of Organic Chemistry, 2005, 70: 413–419
26 R E Meadows, S Woodward. Steric effects in palladium-catalysed amination of aryl triflates and nonaflates with the primary amines PhCH(R)NH2 (R= H, Me). Tetrahedron, 2008, 64(7): 1218–1224
27 C Ito, N Okahana, T S Wu, M L Wang, J S Lai, C S Kuoh, H Furukawa. New carbazole alkaloids from Murraya euchrestifolia. Chemical & Pharmaceutical Bulletin, 1992, 40: 230–232
28 T Kawasaki, M Somei. The first total syntheses of 9-methoxycarbazole-3-carboxaldehyde and methoxybrassinin. Heterocycles, 1990, 31: 1605–1608
[1] Wei Wang,Bhavitavya Nijampatnam,Sadanandan E. Velu,Ruiwen Zhang. Discovery and development of synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs for human cancer therapy[J]. Front. Chem. Sci. Eng., 2016, 10(1): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed