Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (5) : 1075-1087    https://doi.org/10.1007/s11705-020-2019-5
RESEARCH ARTICLE
Halide-free carbonylation of methanol with H-MOR supported CuCeOx catalysts
Chaoli Tong, Jiachang Zuo, Danlu Wen, Weikun Chen, Linmin Ye, Youzhu Yuan()
State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
 Download: PDF(1384 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heterogeneous halide-free carbonylation of methanol to acetates, including methyl acetate (MA) and acetic acid, using non-precious metal catalysts has been a topic of interest for decades. The key issue is that the water produced by methanol dehydration inhibits the formation of acetyl species and reduces the MA selectivity. Here, we report that CuCeOx/H-mordenite (H-MOR) catalyst can nearly eliminate the inhibiting effect of water on carbonylation by a water-gas shift reaction (WGSR) on-site, and can thus achieve 96.5% methanol conversion with 87.4% MA selectivity for the halide-free carbonylation of methanol. The results of powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy show that the Cu and Ce species are highly dispersed on H-MOR even when the CuCeOx contents are as high as 29 wt-%. Fourier transform infrared spectroscopy and CO chemisorption analysis reveal that a small portion of Cu species can migrate into the channel of H-MOR when CuCeOx/H-MOR is calcined at 500 °C and these Cu species are converted into Cu+ sites upon reduction. The Cu+ sites facilitate the WGSR and are also active sites for methanol carbonylation. The introduction of Ce benefits the inhibition of coke deposits and thus enhances the catalyst stability.

Keywords methanol carbonylation      halide-free      methyl acetate      H-mordenite      copper and cerium oxide     
Corresponding Author(s): Youzhu Yuan   
Just Accepted Date: 13 January 2021   Online First Date: 10 March 2021    Issue Date: 30 August 2021
 Cite this article:   
Chaoli Tong,Jiachang Zuo,Danlu Wen, et al. Halide-free carbonylation of methanol with H-MOR supported CuCeOx catalysts[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1075-1087.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-2019-5
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I5/1075
Fig.1  XRD patterns of different zeolite catalysts: (a) H-MOR; (b) Cu/H-MOR; (c) Ce/H-MOR; (d) CuCeOx/H-MOR (Cu: 9.2 wt-%; Ce: 19.6 wt-%).
Fig.2  (A–C) TEM images and (D) HR-TEM image of the CuCeOx/H-MOR catalyst (Cu: 9.2 wt-%; Ce: 19.6 wt-%).
Fig.3  (A and B) SEM images of the CuCeOx/H-MOR catalyst; (C–H) elemental EDS maps of the CuCeOx/H-MOR catalyst that correspond to the image (C) and five maps for O (D), Si (E), Al (F), Cu (G), and Ce (H) (Cu: 9.2 wt-%; Ce: 19.6 wt-%).
Catalyst CH3OH
conversion/%
CO2
selectivity/%
Selectivity/%
MA AA DME Acetone CH4
H-MOR 86.3 0.9 1.2 0.5 97.4 0.5 0.4
Cu/H-MOR 93.6 6.1 49.1 2.5 47.8 0.3 0.2
Ce/H-MOR 84.4 0.3 0.9 0.7 97.9 0.2 0.3
CuCeOx/H-MOR 96.5 12.1 87.4 0.2 1.0 11.1 0.3
Tab.1  Catalytic performance of different catalysts for heterogeneous methanol carbonylationa)
Fig.4  Effect of the calcination temperature on the CuCeOx/H-MOR catalyst for heterogeneous methanol carbonylation (reaction conditions: T = 200 °C; Pco = 1.0 MPa; CH3OH/CO= 2.15 mol-%; F = 10 mL·min–1; time on stream= 3 h).
Fig.5  XRD patterns of the CuCeOx/H-MOR catalyst treated in air at different calcination temperatures: (a) 300 °C, (b) 350 °C, (c) 400 °C, (d) 500 °C, (e) 600 °C, and (f) 700 °C (Cu: 9.2 wt-%; Ce: 19.6 wt-%).
Fig.6  Catalytic performance of CuCeOx/H-MOR catalysts with different carriers for the methanol heterogeneous carbonylation reaction (reaction conditions: T = 200 °C; Pco = 1.0 MPa; CH3OH/CO= 2.15 mol-%; F = 10 mL·min–1; time on stream= 3 h. Cu: 9.2 wt-%; Ce: 19.6 wt-%).
Fig.7  (A) FTIR spectra of the chemisorbed CO on the as-reduced CuCeOx/H-MOR catalyst with different calcination temperatures after evacuation for 25 min; (B) H2—TPR and (C) CO-TPD profiles of the CuCeOx/H-MOR catalyst treated in air at different calcination temperatures: (a) 300 °C; (b) 350 °C; (c) 400 °C; (d) 500 °C; (e) 600 °C; (f) 700 °C (Cu: 9.2 wt-%; Ce: 19.6 wt-%).
Fig.8  Proposed mechanism for the ketonization reaction.
Fig.9  Proposed reaction mechanism of heterogeneous methanol carbonylation over the CuCeOx/H-MOR catalyst.
Fig.10  Results of carbonylation stability tests (A) methanol conversion and (B) MA selectivity over different catalysts: (a) CuCeOx/H-MOR; (b) Cu-H-MOR+CuCeO||Cu-H-MOR; (c) Cu/H-MOR; (d) Ce/H-MOR (reaction conditions: T = 200 °C; Pco = 1.0 MPa; CH3OH/CO= 2.15 mol-%; F = 10 mL·min–1).
1 F E Paulik, J F Roth. Novel catalysts for the low-pressure carbonylation of methanol to acetic acid. Chemical Communications, 1968, (24): 1578a
https://doi.org/10.1039/c1968001578a
2 A Haynes, P M Maitlis, G E Morris, G J Sunley, H Adams, P W Badger, C M Bowers, D B Cook, P I Elliott, T Ghaffar, H Green, T R Griffin, M Payne, J M Pearson, M J Taylor, P W Vickers, R J Watt. Promotion of iridium-catalyzed methanol carbonylation: mechanistic studies of the cativa process. Journal of the American Chemical Society, 2004, 126(9): 2847–2861
https://doi.org/10.1021/ja039464y
3 E S Zhan, Z P Xiong, W J Shen. Dimethyl ether carbonylation over zeolites. Journal of Energy Chemistry, 2019, 36: 51–63
https://doi.org/10.1016/j.jechem.2019.04.015
4 Y M Ni, L Shi, H C Liu, W N Zhang, Y Liu, W L Zhu, Z M Liu. A green route for methanol carbonylation. Catalysis Science & Technology, 2017, 7(20): 4818–4822
https://doi.org/10.1039/C7CY01621B
5 N Yoneda, S Kusano, M Yasui, P Pujado, S Wilcher. Recent advances in processes and catalysts for the production of acetic acid. Applied Catalysis A, General, 2001, 221(1–2): 253–265
https://doi.org/10.1016/S0926-860X(01)00800-6
6 F Pang, F E Song, Q D Zhang, Y S Tan, Y Z Han. Study on the influence of oxygen-containing groups on the performance of Ni/AC catalysts in methanol vapor-phase carbonylation. Chemical Engineering Journal, 2016, 293: 129–138
https://doi.org/10.1016/j.cej.2016.02.093
7 A S Merenov, A Nelson, M A Abraham. Support effects of nickel on activated carbon as a catalyst for vapor phase methanol carbonylation. Catalysis Today, 2000, 55(1–2): 91–101
https://doi.org/10.1016/S0920-5861(99)00229-1
8 X J Meng, H Q Guo, Q Wang, Y Xiao, C B Chen, B Hou, D B Li. Elucidating the nature and role of copper species in catalytic carbonylation of methanol to methyl acetate over copper/titania-silica mixed oxides. Catalysis Science & Technology, 2017, 7(16): 3511–3523
https://doi.org/10.1039/C7CY00719A
9 L Zhou, S H Li, G D Qi, Y C Su, J Li, A M Zheng, X F Yi, Q Wang, F Deng. Methanol carbonylation over copper-modified mordenite zeolite: a solid-state NMR study. Solid State Nuclear Magnetic Resonance, 2016, 80: 1–6
https://doi.org/10.1016/j.ssnmr.2016.10.003
10 T Blasco, M Boronat, P Concepcion, A Corma, D Law, J A Vidal Moya. Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center. Angewandte Chemie International Edition, 2007, 46(21): 3938–3941
https://doi.org/10.1002/anie.200700029
11 J H Kwak, R Dagle, G C Tustin, J R Zoeller, L F Allard, Y Wang. Molecular active sites in heterogeneous Ir-La/C-catalyzed carbonylation of methanol to acetates. Journal of Physical Chemistry Letters, 2014, 5(3): 566–572
https://doi.org/10.1021/jz402728e
12 S Q Feng, X G Song, Z Ren, Y J Ding. La-stabilized, single-atom Ir/AC catalyst for heterogeneous methanol carbonylation to methyl acetate. Industrial & Engineering Chemistry Research, 2019, 58(12): 4755–4763
https://doi.org/10.1021/acs.iecr.8b05402
13 Z Martinez Ramirez, G A Flores Escamilla, G S Berumen España, S A Jimenez Lam, B E Handy, M G Cardenas Galindo, A G Sarmiento Lopez, J C Fierro Gonzalez. Methanol carbonylation catalyzed by TiO2-supported gold: an in-situ infrared spectroscopic investigation. Applied Catalysis A, General, 2015, 502: 254–261
https://doi.org/10.1016/j.apcata.2015.06.020
14 A Goguet, C Hardacre, I Harvey, K Narasimharao, Y Saih, J Sa. Increased dispersion of supported gold during methanol carbonylation. Journal of the American Chemical Society, 2009, 131(20): 6973–6975
https://doi.org/10.1021/ja9021705
15 F B Li, B F Chen, Z J Huang, T Lu, Y Yuan, G Q Yuan. Sustainable catalysts for methanol carbonylation. Green Chemistry, 2013, 15(6): 1600–1607
https://doi.org/10.1039/c3gc00024a
16 K Fujimoto, T Shikada, K Omata, H Tominaga. Vapor phase carbonylation of methanol with solid acid catalysts. Chemistry Letters, 1984, 13(12): 2047–2050
https://doi.org/10.1246/cl.1984.2047
17 A Calafat, J Laine. High pressure reaction of methanol with CO or CO+ H2 catalyzed by sulfided CoMo/C. Applied Catalysis A, General, 1995, 133(1): 67–79
https://doi.org/10.1016/0926-860X(95)00175-1
18 F Peng, X F Bao. Direct vapor-phase carbonylation of methanol at atmospheric pressure on activated carbon-supported NiCl2-CuCl2 catalysts. Catalysis Today, 2004, 93-95: 451–455
https://doi.org/10.1016/j.cattod.2004.06.058
19 P Cheung, A Bhan, G J Sunley, E Iglesia. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites. Angewandte Chemie International Edition, 2006, 45(10): 1617–1620
https://doi.org/10.1002/anie.200503898
20 K P Cao, D Fan, L Y Li, B H Fan, L Y Wang, D L Zhu, Q Y Wang, P Tian, Z M Liu. Insights into the pyridine-modified MOR zeolite catalysts for DME carbonylation. ACS Catalysis, 2020, 10(5): 3372–3380
https://doi.org/10.1021/acscatal.9b04890
21 C L Tong, J P Zhang, W K Chen, X Y Liu, L M Ye, Y Z Yuan. Combined halide-free Cu-based catalysts with triple functions for heterogeneous conversion of methanol into methyl acetate. Catalysis Science & Technology, 2019, 9(21): 6136–6144
https://doi.org/10.1039/C9CY01321K
22 D W Jeong, W J Jang, J O Shim, W B Han, H S Roh, U H Jung, W L Yoon. Low-temperature water-gas shift reaction over supported Cu catalysts. Renewable Energy, 2014, 65: 102–107
https://doi.org/10.1016/j.renene.2013.07.035
23 H F Xue, X M Huang, E Ditzel, E S Zhan, M Ma, W J Shen. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites. Industrial & Engineering Chemistry Research, 2013, 52(33): 11510–11515
https://doi.org/10.1021/ie400909u
24 A L Chen, X J Yu, Y Zhou, S Miao, Y Li, S Kuld, J Sehested, J Y Liu, T Aoki, S Hong, M F Camellone, S Fabris, J Ning, C Jin, C Yang, A Nefedov, C Wöll, Y Wang, W Shen. Structure of the catalytically active copper-ceria interfacial perimeter. Nature Catalysis, 2019, 2(4): 334–341
https://doi.org/10.1038/s41929-019-0226-6
25 A Bhan, A D Allian, G J Sunley, D J Law, E Iglesia. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls. Journal of the American Chemical Society, 2007, 129(16): 4919–4924
https://doi.org/10.1021/ja070094d
26 H Zhou, W L Zhu, L Shi, H C Liu, S P Liu, S T Xu, Y M Ni, Y Liu, L N Li, Z M Liu. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate. Catalysis Science & Technology, 2015, 5(3): 1961–1968
https://doi.org/10.1039/C4CY01580K
27 K Mudiyanselage, S D Senanayake, L Feria, S Kundu, A E Baber, J Graciani, A B Vidal, S Agnoli, J Evans, R Chang, S Axnanda, Z Liu, J F Sanz, P Liu, J A Rodriguez, D J Stacchiola. Importance of the metal-oxide interface in catalysis: in situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angewandte Chemie International Edition, 2013, 52(19): 5101–5105
https://doi.org/10.1002/anie.201210077
28 Y Wang, H L Wu, Q H Zhang, Q H Tang. Cobalt nanoparticles prepared in faujasite zeolites by borohydride reduction. Microporous and Mesoporous Materials, 2005, 86(1-3): 38–49
https://doi.org/10.1016/j.micromeso.2005.07.001
29 M Boronat, C Martinez, A Corma. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite. Physical Chemistry Chemical Physics, 2011, 13(7): 2603–2612
https://doi.org/10.1039/c0cp01996h
30 H M Zhan, S Y Huang, Y Li, J Lv, S P Wang, X B Ma. Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR. Catalysis Science & Technology, 2015, 5(9): 4378–4389
https://doi.org/10.1039/C5CY00460H
31 H Q Lin, X L Zheng, Z He, J W Zheng, X P Duan, Y Z Yuan. Cu/SiO2 hybrid catalysts containing HZSM-5 with enhanced activity and stability for selective hydrogenation of dimethyl oxalate to ethylene glycol. Applied Catalysis A, General, 2012, 445-446: 287–296
https://doi.org/10.1016/j.apcata.2012.08.025
32 S Y Huang, Y Wang, Z Z Wang, B Yan, S P Wang, J L Gong, X B Ma. Cu-doped zeolites for catalytic oxidative carbonylation: the role of Brønsted acids. Applied Catalysis A, General, 2012, 417-418: 236–242
https://doi.org/10.1016/j.apcata.2011.12.043
33 C Lamberti, S Bordiga, A Zecchina, M Salvalaggio, F Geobaldo, C O Arean. XANES, EXAFS and FTIR characterization of copper-exchanged mordenite. Journal of the Chemical Society, Faraday Transactions, 1998, 94(10): 1519–1525
https://doi.org/10.1039/a708778k
34 G Q Zhang, T Y Guo, H Y Zheng, Z Li. Effect of calcination temperature on catalytic performance of CuCe/AC catalysts for oxidative carbonylation of methanol. Journal of Fuel Chemistry and Technology, 2016, 44(6): 674–679
https://doi.org/10.1016/S1872-5813(16)30031-7
35 X D Ma, X Feng, X He, H W Guo, L Lv, J Guo, H Q Cao, T Zhou. Mesoporous CuO/CeO2 bimetal oxides: one-pot synthesis, characterization and their application in catalytic destruction of 1,2-dichlorobenzene. Microporous and Mesoporous Materials, 2012, 158: 214–218
https://doi.org/10.1016/j.micromeso.2012.03.044
36 M F Luo, J M Ma, J Q Lu, Y P Song, Y J Wang. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. Journal of Catalysis, 2007, 246(1): 52–59
https://doi.org/10.1016/j.jcat.2006.11.021
37 C S Triantafillidis, A G Vlessidis, N P Evmiridis. Dealuminated H-Y zeolites: influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites. Industrial & Engineering Chemistry Research, 2000, 39(2): 307–319
https://doi.org/10.1021/ie990568k
38 J Datka, S Marschmeyer, T Neubauer, J Meusinger, H Papp, F W Schütze, I Szpyt. Physicochemical and catalytic properties of HZSM-5 zeolites dealuminated by the treatment with steam. Journal of Physical Chemistry, 1996, 100(34): 14451–14456
https://doi.org/10.1021/jp960685i
39 T N Pham, T Sooknoi, S P Crossley, D E Resasco. Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catalysis, 2013, 3(11): 2456–2473
https://doi.org/10.1021/cs400501h
40 R Klimkiewicz, H Grabowska, L Syper. Vapor-phase conversion of esters into ketones in the presence of an Sn-, Ce-, and Rh-containing oxide catalyst. Kinetics and Catalysis, 2003, 44(2): 283–286
https://doi.org/10.1023/A:1023368815756
41 Y Li, Q Fu, M Flytzani Stephanopoulos. Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Applied Catalysis B: Environmental, 2000, 27(3): 179–191
https://doi.org/10.1016/S0926-3373(00)00147-8
42 S R Wang, W W Guo, L J Zhu, H X Wang, K Z Qiu, K F Cen. Methyl acetate synthesis from dimethyl ether carbonylation over mordenite modified by cation exchange. Journal of Physical Chemistry C, 2015, 119(1): 524–533
https://doi.org/10.1021/jp511543x
43 P Cheung, A Bhan, G J Sunley, D J Law, E Iglesia. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites. Journal of Catalysis, 2007, 245(1): 110–123
https://doi.org/10.1016/j.jcat.2006.09.020
44 H F Xue, X M Huang, E S Zhan, M Ma, W J Shen. Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation. Catalysis Communications, 2013, 37: 75–79
https://doi.org/10.1016/j.catcom.2013.03.033
45 J L Liu, H F Xue, X M Huang, P H Wu, S J Huang, S B Liu, W J Shen. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine. Chinese Journal of Catalysis, 2010, 31(7): 729–738
https://doi.org/10.1016/S1872-2067(09)60081-4
46 M Ma, E S Zhan, X M Huang, N Ta, Z P Xiong, L Y Bai, W J Shen. Carbonylation of dimethyl ether over Co-HMOR. Catalysis Science & Technology, 2018, 8(8): 2124–2130
https://doi.org/10.1039/C8CY00407B
47 A A C Reule, N Semagina. Zinc hinders deactivation of copper-mordenite: dimethyl ether carbonylation. ACS Catalysis, 2016, 6(8): 4972–4975
https://doi.org/10.1021/acscatal.6b01464
48 A A C Reule, V Prasad, N Semagina. Effect of Cu and Zn ion-exchange locations on mordenite performance in dimethyl ether carbonylation. Microporous and Mesoporous Materials, 2018, 263: 220–230
https://doi.org/10.1016/j.micromeso.2017.12.026
49 L L Li, L Zhang, K L Ma, W X Zou, Y Cao, Y Xiong, C J Tang, L Dong. Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2017, 207: 366–375
https://doi.org/10.1016/j.apcatb.2017.02.041
50 J F Chen, Y Y Zhan, J J Zhu, C Q Chen, X Y Lin, Q Zheng. The synergetic mechanism between copper species and ceria in NO abatement over Cu/CeO2 catalysts. Applied Catalysis A, General, 2010, 377(1-2): 121–127
https://doi.org/10.1016/j.apcata.2010.01.027
[1] FCE-20078-OF-TC_suppl_1 Download
[1] Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl. Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects[J]. Front. Chem. Sci. Eng., 2018, 12(4): 670-682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed