Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (5) : 1158-1168    https://doi.org/10.1007/s11705-020-2021-z
RESEARCH ARTICLE
Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents
Jiajia Li1, Shengcheng Zhai1, Weibing Wu2, Zhaoyang Xu1()
1. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
2. College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
 Download: PDF(2898 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we employed a facile approach to prepare flexible and porous metal-organic frameworks (MOFs) containing cellulose nanofiber (CNF) aerogels (MNCAs) through freeze-drying MOF-containing cellulose nanofiber suspensions. After coating with methyltrimethoxysilane (MTMS) by chemical vapor deposition, recycled and hydrophobic MTMS-coated MNCAs (MMNCAs) were obtained. Due to the low density (0.009 g/cm3), high porosity (97%) and good mechanical properties of the aerogel, the adsorption capacity of MMNCAs reached up to 210 g/g, which was nearly 3–5 times that of pure CNF aerogels. These prepared aerogels showed excellent oil/water selectivity and high capacity to adsorb oil and organic solvents. This kind of cellulose-based aerogel may be applicable in the field of environmental protection.

Keywords cellulose nanofibers      aerogels      metal-organic framework      oil-adsorption     
Corresponding Author(s): Zhaoyang Xu   
Just Accepted Date: 13 January 2021   Online First Date: 10 March 2021    Issue Date: 30 August 2021
 Cite this article:   
Jiajia Li,Shengcheng Zhai,Weibing Wu, et al. Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1158-1168.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-2021-z
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I5/1158
Fig.1  (a) Synthesis procedure of UiO-66 crystals; (b) synthesis process of CNFs; (c) fabrication of the MNCAs.
Fig.2  FESEM images of a MOF containing CNF aerogel: (a) MNCAs prepared by refrigerator-freezing; (b,c): MNCA prepared by directional freeze-casting; (d) images of the side view of MNCAs; (e,f) FESEM and TEM images of UiO-66; (g) N2 adsorption/desorption isotherms of UiO-66; (h) BET surface area plot of UiO-66.
Fig.3  (a) Comparison of the adsorption conditions of water and pump oil; (b, c) water contact angles of MNCAs and MMNCAs; (d?f) floating state of MMNCAs in water.
Fig.4  FTIR spectra of (a) CNFs, (b) UiO-66 powders, (c) CNF/CMC aerogels, and (d) MMNCAs and MNCAs.
Fig.5  X-ray diffraction pattern of (a) UiO-66, (b) CNFs, (c) CNF/CMC aerogel, (d) MNCAs and MMNCAs, (e) UiO-66 and UiO-66 after washing with ethanol, and (f) MMNCAs before and after washing with ethanol.
Adsorbents Qmax/(g?g?1) Ref.
TMCS/rGO/CNF aerogel 39 [40]
PVA/CNF aerogels 136 [41]
CNF/MWCNT carbon aerogels 110 [42]
Cellulose-based adsorbents 190 [43]
MMNCAs 210 This work
Tab.1  Comparison of the oil adsorption of the MMNCAs with other adsorption materials
Fig.6  (a) The absorption capacities of CNF aerogels, hydrophobic CNF aerogels and hybrid aerogels; (b) the absorption capacities of CNF aerogels, hydrophobic CNF aerogels and hybrid aerogels; (c?g) the immersion state of the aerogel in water.
Fig.7  (a) Mechanical properties of the aerogels; (b) directional freeze-casting equipment; (c) compressive stress-strain curves of the directional MMNCAs and MMNCAs; (d) stress-strain curves of the MMNCAs at the maximum strain of 70% for 20 cycles.
Fig.8  (a?c) Extrusion?process of oil; (d, e) shape of the MMNCAs after absorbing oil; (f) state of MMNCAs filled with diesel oil in ethanol; (g) absorption capacities of MMNCAs for diesel after 20 cycles.
1 A M Vibhute, V Muvvala, K M Sureshan. A sugar-based gelator for marine oil-spill recovery. Angewandte Chemie, 2016, 128(27): 7913–7916
https://doi.org/10.1002/ange.201510308
2 H Chapman, K Purnell, R J Law, M F Kirby. The use of chemical dispersants to combat oil spills at sea: a review of practice and research needs in Europe. Marine Pollution Bulletin, 2007, 54(7): 827–838
https://doi.org/10.1016/j.marpolbul.2007.03.012
3 M S Kuyukina, I B Ivshina, M I Ritchkova, J C Philp, C J Cunningham, N Christofi. Bioremediation of crude oil-contaminated soil using slurry-phase biological treatment and land farming techniques. Soil and Sediment Contamination: An International Journal, 2003, 12(1): 85–99
https://doi.org/10.1080/713610962
4 D Angelova, I Uzunov, S Uzunova, A Gigova, L Minchev. Kinetics of oil and oil products adsorption by carbonized rice husks. Chemical Engineering Journal, 2011, 172(1): 306–311
https://doi.org/10.1016/j.cej.2011.05.114
5 S Sabir. Approach of cost-effective adsorbents for oil removal from oily water. Critical Reviews in Environmental Science and Technology, 2015, 45(17): 1916–1945
https://doi.org/10.1080/10643389.2014.1001143
6 H Maleki. Recent advances in aerogels for environmental remediation applications: a review. Chemical Engineering Journal, 2016, 300: 98–118
https://doi.org/10.1016/j.cej.2016.04.098
7 C H Wang, J Kim, J Tang, J Na, Y M Kang, M Kim, H Lim, Y Bando, J Li, Y Yamauchi. Large-scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents. Angewandte Chemie, 2020, 59(5): 2066–2070
https://doi.org/10.1002/anie.201913719
8 N Muhd Julkapli, S Bagheri. Nanocellulose as a green and sustainable emerging material in energy applications: a review. Polymers for Advanced Technologies, 2017, 28(12): 1583–1594
https://doi.org/10.1002/pat.4074
9 H Timo, Z Fan, R Tobias, W Andreas, M Rolf. Nanocellulose aerogels for supporting iron catalysts and in situ formation of polyethylene nanocomposites. Advanced Functional Materials, 2017, 27(11): 1605586
https://doi.org/10.1002/adfm.201605586
10 Y L Li, Y S Liu, Y Liu, W C Lai, F Huang, A P Ou, R Qin, X Y Liu, X Wang. Ester crosslinking enhanced hydrophilic cellulose nanofibrils aerogel. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11979–11988
https://doi.org/10.1021/acssuschemeng.8b02284
11 Z Y Wu, H W Liang, L F Chen, B C Hu, S H Yu. Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Accounts of Chemical Research, 2016, 49(1): 96–105
https://doi.org/10.1021/acs.accounts.5b00380
12 P Phanthong, P Reubroycharoen, S Kongparakul, C Samart, Z D Wang, X G Hao, A Abudula, G Q Guan. Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydrate Polymers, 2018, 190: 184–189
https://doi.org/10.1016/j.carbpol.2018.02.066
13 S Huang, D Y Wang. A simple nanocellulose coating for self-cleaning upon water action: molecular design of stable surface hydrophilicity. Angewandte Chemie International Edition, 2017, 56(31): 9053–9057
https://doi.org/10.1002/anie.201703913
14 H Jin, M Kettunen, A Laiho, H Pynnonen, J Paltakari, A Marmur, O Ikkala, H A Ras. Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir, 2011, 27(5): 1930–1934
https://doi.org/10.1021/la103877r
15 J T Korhonen, M Kettunen, R H A Ras, O Ikkala. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Applied Materials & Interfaces, 2011, 3(6): 1813–1816
https://doi.org/10.1021/am200475b
16 H Z Liu, B Y Geng, Y F Chen, H Y Wang. Review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 49–66
https://doi.org/10.1021/acssuschemeng.6b02301
17 H Todd, E D Cranston. Review of hydrogels and aerogels containing nanocellulose. Chemistry of Materials, 2017, 29(11): 4609–4631
https://doi.org/10.1021/acs.chemmater.7b00531
18 M Zanini, A Lavoratti, L K Lazzari, D Galiotto, M Pagnocelli, C Baldasso, A J Zattera. Producing aerogels from silanized cellulose nanofiber suspension. Cellulose, 2017, 24(2): 769–779
https://doi.org/10.1007/s10570-016-1142-4
19 W N Zhang, G Lu, C L Cui, Y Y Liu, S Z Li, W J Yan, C Xing, Y R Chi, Y H Yang, F G Huo. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Advanced Materials, 2014, 26(24): 4056–4060
https://doi.org/10.1002/adma.201400620
20 Y V Kaneti, S Dutta, M S A Hossain, M J A Shiddiky, K L Tung, F K Shieh, C K Tsung, K C W Wu, Y Yamauchi. Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Advanced Materials, 2017, 29(38): 1700213
https://doi.org/10.1002/adma.201700213
21 J Jiang, O M Yaghi. Brønsted acidity in metal-organic frameworks. Chemical Reviews, 2015, 115(14): 6966–6997
https://doi.org/10.1021/acs.chemrev.5b00221
22 A J Howarth, Y Y Liu, P Li, Z Y Li, T C Wang, J T Hupp, O K Farha. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nature Reviews. Materials, 2016, 1(3): 15018
https://doi.org/10.1038/natrevmats.2015.18
23 L Sun, M G Campbell, M Dincă. Electrically conductive porous metal-organic frameworks. Angewandte Chemie International Edition, 2016, 55(11): 3566–3579
https://doi.org/10.1002/anie.201506219
24 C H Wang, Y V Kaneti, Y Bando, J J Lin, C Liu, J S Li, Y Yamauchi. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Materials Horizons, 2018, 5(3): 394–407
https://doi.org/10.1039/C8MH00133B
25 Y V Kaneti, J Zhang, Y B He, Z J Wang, S Tanaka, M S A Hossain, Z Z Pan, B Xiang, Q H Yang, Y Yamauchi. Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(29): 15356–15366
https://doi.org/10.1039/C7TA03939E
26 H L Li, M M Eddaoudi, M O’Keeffe, O M Yaghi. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402(6759): 276–279
https://doi.org/10.1038/46248
27 C H Wang, J Kim, J Tang, M Kim, H Lim, V Malgras, J You, Q Xu, J S Li, Y Yamauchi. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem, 2020, 6(1): 19–40
https://doi.org/10.1016/j.chempr.2019.09.005
28 M Hmadeh, Z Lu, Z Liu, F Gándara, H Furukawa, S Wan, V Augustyn, R Chang, L Liao, F Zhou, et al. New porous crystals of extended metal-catecholates. Chemistry of Materials, 2012, 24(18): 3511–3513
https://doi.org/10.1021/cm301194a
29 X T Ma, Y Lou, X B Chen, Z Shi, Y Xu. Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chemical Engineering Journal, 2019, 356: 227–235
https://doi.org/10.1016/j.cej.2018.09.034
30 M Matsumoto, T Kitaoka. Ultraselective gas separation by nanoporous metal-organic frameworks embedded in gas-barrier nanocellulose films. Advanced Materials, 2016, 28(9): 1765– 1769
https://doi.org/10.1002/adma.201504784
31 L Li, Q Chen, Z G Niu, X H Zhou, T Yang, W Huang. Lanthanide metal-organic frameworks assembled from a fluorene-based ligand: selective sensing of Pb2+ and Fe3+ ions. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(9): 1900–1905
https://doi.org/10.1039/C5TC04320D
32 B Y Li, X G Dong, H Wang, D X Ma, K Tan, S Jensen, B J Deibert, J Butler, J Cure, Z Shi, et al. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. Nature Communications, 2017, 8(1): 485
https://doi.org/10.1038/s41467-017-00526-3
33 J H Cavka, S Jakobsen, U Olsbye, N Guillou, C Lamberti, S Bordiga, K P Lillerud. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851
https://doi.org/10.1021/ja8057953
34 G Gilang, V K Yusuf, H Joel, C Sauvik, N Jongbeom, Y Brian, N Nugraha. General synthesis of hierarchical sheet/plate-like M-BDC (M= Cu, Mn, Ni, and Zr) metal-organic frameworks for electrochemical non-enzymatic glucose sensing. Chemical Science, 2020, 14: 3644–3655
35 J Y Lee, O K Farha, J Roberts, K A Scheidt, S T Nguyen, J T Hupp. Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009, 38(5): 1450
https://doi.org/10.1039/b807080f
36 M Kandiah, M H Nilsen, S Usseglio, S Jakobsen, U Olsbye, M Tilset, C Larabi, E A Quadrelli, F Bonino, K P Lillerud. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials, 2010, 22(24): 6632–6640
https://doi.org/10.1021/cm102601v
37 K Abe, S Iwamoto, H Yano. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules, 2007, 8(10): 3276–3278
https://doi.org/10.1021/bm700624p
38 S K Zhou, T T You, X M Zhang, F Xu. Superhydrophobic cellulose nanofiber-assembled aerogels for highly efficient water-in-oil emulsions separation. ACS Applied Nano Materials, 2018, 1(5): 2095–2103
https://doi.org/10.1021/acsanm.8b00079
39 M Aghajanzadeh, M Zamani, H Molavi, H Khieri Manjili, H Danafar, A Shojaei. Preparation of metal-organic frameworks UiO-66 for sdsorptive removal of methotrexate from aqueous solution. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(1): 177–186
https://doi.org/10.1007/s10904-017-0709-3
40 Z Y Xu, H Zhou, X D Jiang, J Y Li, F Huang. Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnology, 2017, 11(8): 929–934
https://doi.org/10.1049/iet-nbt.2017.0063
41 Z Y Xu, X D Jiang, H Zhou, J Y Li. Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)-cellulose nanofiber (CNF) aerogels as effective oil absorbents. Cellulose, 2018, 25(2): 1217–1227
https://doi.org/10.1007/s10570-017-1619-9
42 Z Y Xu, X D Jiang, S C Tan, W B Wu, J T Shi, H Zhou, P Chen. Preparation and characterisation of CNF/MWCNT carbon aerogel as efficient adsorbents. IET Nanobiotechnology, 2018, 12(4): 500–504
https://doi.org/10.1049/iet-nbt.2017.0234
43 W Zhao, W P Jia, M Z Xu, J X Wang, Y M Li, Z Y Zhang, Y N Wang, L Zheng, Q Li, J N Yun, J Yan, X Wang, Z Liu. Facile synthesis of oil adsorbent carbon microtubes by pyrolysis of plant tissues. Journal of Materials Science, 2019, 54(13): 9352–9361
https://doi.org/10.1007/s10853-019-03540-6
[1] Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu. Effects of functional groups for CO2 capture using metal organic frameworks[J]. Front. Chem. Sci. Eng., 2021, 15(2): 437-449.
[2] Xinlei Liu. Metal-organic framework UiO-66 membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 216-232.
[3] Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen. Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Front. Chem. Sci. Eng., 2017, 11(4): 594-602.
[4] Yinlong Hu,Shuang Zheng,Fumin Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol[J]. Front. Chem. Sci. Eng., 2016, 10(4): 534-541.
[5] Nadeen Al-Janabi,Abdullatif Alfutimie,Flor R. Siperstein,Xiaolei Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework[J]. Front. Chem. Sci. Eng., 2016, 10(1): 103-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed