Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (4) : 954-959    https://doi.org/10.1007/s11705-020-2028-4
RESEARCH ARTICLE
Effect of sodium bicarbonate solution on methyltrimethoxysilane-derived silica aerogels dried at ambient pressure
Yujing Liu1(), Xiao Han1, Balati Kuerbanjiang2, Vlado K. Lazarov2, Lidija Šiller1()
1. School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
2. Department of Physics, University of York, York YO10 5DD, UK
 Download: PDF(889 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Here we present an economical ambient pressure drying method of preparing monolithic silica aerogels from methyltrimethoxysilane precursor while using sodium bicarbonate solution as the exchanging solvent. We prepared silica aerogels with a density and a specific surface area of 0.053 g∙cm−3 and 423 m2∙g−1, respectively. The average pore diameter of silica aerogels is 23 nm as the pore specific volume is 1.11 cm3∙g−1. Further, the contact angle between water droplet and the surface of silica aerogels in specific condition can be as high as 166°, which indicates a super-hydrophobic surface of aerogels.

Keywords silica aerogel      methyltrimethoxysilane      solvent exchange      sodium bicarbonate      trimethylchlorosilane      ambient pressure drying     
Corresponding Author(s): Yujing Liu,Lidija Šiller   
Just Accepted Date: 20 January 2021   Online First Date: 03 March 2021    Issue Date: 04 June 2021
 Cite this article:   
Yujing Liu,Xiao Han,Balati Kuerbanjiang, et al. Effect of sodium bicarbonate solution on methyltrimethoxysilane-derived silica aerogels dried at ambient pressure[J]. Front. Chem. Sci. Eng., 2021, 15(4): 954-959.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-2028-4
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I4/954
Fig.1  MTMS-derived SAs via APD method while using (a) deionized water, (b) hexane, (c) 0.044 g?mL−1 sodium bicarbonate solution, (d) 0.022 g?mL−1 sodium bicarbonate solution in solvent exchange step, respectively along with (e) sample A3 after extra wash to remove salt.
Fig.2  XRD 2θ scans of MTMS-derived SAs using (a) deionized water, (b) hexane, (c) 0.044 g?mL−1 and (d) 0.022 g?mL−1 sodium bicarbonate solution in solvent exchange step, respectively. Peaks (1–5) appearing on patterns of c and d belong to NaCl (200), (220), (222), (400) and (420), which could be removed by extra wash with mixed solvent of ethanol and deionized water (E).
Sample A1 A2 A3 A4 A5
Specific surface area/(m2?g−1) 422.7 480.6 423.6 406.4 313.3
Average diameter/nm 18.84 27.99 17.06 22.96 29.29
Pore specific volume/(cm3?g−1) 0.57 0.76 1.11 0.53 0.87
Density/(g?cm−3) 0.081 0.066 0.053 0.071 0.055
Porosity 95.7% 96.5% 97.2% 96.3% 97.1%
Tab.1  Physical properties of MTMS-derived SAs using deionized water (A1), hexane (A2), 0.044 g?mL−1 (A3) and 0.022 g?mL−1 sodium bicarbonate solution (A4) in solvent exchange step, respectively along with properties of sample A5 (A3 with extra wash prior to APD process)
Fig.3  SEM images of MTMS-derived SAs via APD method with the solvent exchange step with (a) deionized water, (b) hexane, (c) 0.044 g?mL−1 and (d) 0.022 g?mL−1 sodium bicarbonate solution, respectively.
Fig.4  FTIR spectra of MTMS-derived SAs using (a) deionized water, (b) hexane, (c) 0.044 g?mL−1 and (d) 0.022 g?mL−1 sodium bicarbonate solution in solvent exchange step, respectively.
Fig.5  TEM images of MTMS-derived SAs using in solvent exchange step (a) deionized water, (b) hexane, (c) 0.044 g?mL−1 and (d) 0.022 g?mL−1 sodium bicarbonate solution, respectively.
Fig.6  Observations of hydrophobicity of (a–c) MTMS-derived SAs and (d–g) contact angle measurement of deionized water droplet and samples surface. A2, A3, A4 are MTMS-derived SAs using (d) hexane, (e) 0.044 g?mL−1 sodium bicarbonate solution and (f) 0.022 g?mL−1 sodium bicarbonate solution, respectively.
1 N Hüsing, U Schubert. Aerogels—airy materials: chemistry, structure, and properties. Angewandte Chemie International Edition, 1998, 37(1-2): 22–45
https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
2 C Wang, S Okubayashi. 3D aerogel of cellulose triacetate with supercritical antisolvent process for drug delivery. Journal of Supercritical Fluids, 2019, 148: 33–41
https://doi.org/10.1016/j.supflu.2019.02.026
3 C Wang, W Liang, Y Yang, F Liu, H Sun, Z Zhu, A Li. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage. Renewable Energy, 2020, 153: 182–192
https://doi.org/10.1016/j.renene.2020.02.008
4 P Tsou. Silica aerogel captures cosmic dust intact. Journal of Non-Crystalline Solids, 1995, 186: 415–427
https://doi.org/10.1016/0022-3093(95)00065-8
5 I Smirnova, P Gurikov. Aerogels in chemical engineering: strategies toward tailor-made aerogels. Annual Review of Chemical and Biomolecular Engineering, 2017, 8(1): 307–334
https://doi.org/10.1146/annurev-chembioeng-060816-101458
6 F T da Silva, J P de Oliveira, L M Fonseca, G P Bruni, E da Rosa Zavareze, A R G Dias. Physically cross-linked aerogels based on germinated and non-germinated wheat starch and PEO for application as water absorbers for food packaging. International Journal of Biological Macromolecules, 2020, 155: 6–13
https://doi.org/10.1016/j.ijbiomac.2020.03.123
7 E Ul Haq, S F A Zaidi, M Zubair, M R Abdul Karim, S K Padmanabhan, A Licciulli. Hydrophobic silica aerogel glass-fibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor. Energy and Building, 2017, 151: 494–500
https://doi.org/10.1016/j.enbuild.2017.07.003
8 A M Anderson, M K Carroll, E C Green, J T Melville, M S Bono. Hydrophobic silica aerogels prepared via rapid supercritical extraction. Journal of Sol-Gel Science and Technology, 2010, 53(2): 199–207
https://doi.org/10.1007/s10971-009-2078-z
9 M A Aegerter, N Leventis, M M Koebel. Aerogels Handbook. New York: Springer, 2011, 79, 105
10 J L Gurav, I K Jung, H H Park, E S Kang, D Y Nadargi. Silica aerogel: synthesis and applications. Journal of Nanomaterials, 2010, 2010: 409310
https://doi.org/10.1155/2010/409310
11 A P Rao, A V Rao, G M Pajonk. Hydrophobic and physical properties of the two step processed ambient pressure dried silica aerogels with various exchanging solvents. Journal of Sol-Gel Science and Technology, 2005, 36(3): 285–292
https://doi.org/10.1007/s10971-005-4662-1
12 X Han, K T Hassan, A Harvey, D Kulijer, A Oila, M R C Hunt, L Šiller. Bioinspired synthesis of monolithic and layered aerogels. Advanced Materials, 2018, 30(23): 1706294
https://doi.org/10.1002/adma.201706294
13 S D Bhagat, C S Oh, Y H Kim, Y S Ahn, J G Yeo. Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying. Microporous and Mesoporous Materials, 2007, 100(1): 350–355
https://doi.org/10.1016/j.micromeso.2006.10.026
14 A V Rao, S D Bhagat, H Hirashima, G M Pajonk. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. Journal of Colloid and Interface Science, 2006, 300(1): 279–285
https://doi.org/10.1016/j.jcis.2006.03.044
15 Y Luo, Z Li, W Zhang, H Yan, Y Wang, M Li, Q Liu. Rapid synthesis and characterization of ambient pressure dried monolithic silica aerogels in ethanol/water co-solvent system. Journal of Non-Crystalline Solids, 2019, 503-504: 214–223
https://doi.org/10.1016/j.jnoncrysol.2018.09.049
16 X Cheng, C Li, X Shi, Z Li, L Gong, H Zhang. Rapid synthesis of ambient pressure dried monolithic silica aerogels using water as the only solvent. Materials Letters, 2017, 204: 157–160
https://doi.org/10.1016/j.matlet.2017.05.107
17 S L B Lana, A B Seddon. X-ray diffraction studies of sol-gel derived ORMOSILs based on combinations of tetramethoxysilane and trimethoxysilane. Journal of Sol-Gel Science and Technology, 1998, 13(1): 461–466
https://doi.org/10.1023/A:1008685614559
18 A A Widati, N Nuryono, I Kartini. Water-repellent glass coated with SiO2-TiO2-methyltrimethoxysilane through sol-gel coating. AIMS Materials Science, 2019, 6(1): 10–24
https://doi.org/10.3934/matersci.2019.1.10
19 P Moriones, J C Echeverria, J B Parra, J J Garrido. Phenyl siloxane hybrid xerogels: structure and porous texture. Adsorption, 2020, 26(2): 177–188
https://doi.org/10.1007/s10450-019-00075-9
20 A Y Jeong, S M Koo, D P Kim. Characterization of hydrophobic SiO2 powders prepared by surface modification on wet gel. Journal of Sol-Gel Science and Technology, 2000, 19(1): 483–487
https://doi.org/10.1023/A:1008716017567
21 N Hering, K Schreiber, R Riedel, O Lichtenberger, J Woltersdorf. Synthesis of polymeric precursors for the formation of nanocrystalline Ti-C-N/amorphous Si-C-N composites. Applied Organometallic Chemistry, 2001, 15(10): 879–886
https://doi.org/10.1002/aoc.241
22 M Łączka, K Cholewa-Kowalska, M Kogut. Organic-inorganic hybrid glasses of selective optical transmission. Journal of Non-Crystalline Solids, 2001, 287(1): 10–14
https://doi.org/10.1016/S0022-3093(01)00532-4
23 K Y Law. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. Journal of Physical Chemistry Letters, 2014, 5(4): 686–688
https://doi.org/10.1021/jz402762h
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed