Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (5) : 1332-1345    https://doi.org/10.1007/s11705-021-2035-0
RESEARCH ARTICLE
A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy
Yong Luo1, Yuhui Xie1, Renjie Chen1, Ruizhi Zheng1, Hua Wu1,3, Xinxin Sheng1,2(), Delong Xie1(), Yi Mei1
1. Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2. Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
3. Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
 Download: PDF(3256 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Design and exploitation of flame retardant polymers with high electrical conductivity are desired for polymer applications in electronics. Herein, a novel phosphorus-nitrogen intumescent flame retardant was synthesized from pentaerythritol octahydrogen tetraphosphate, phenylphosphonyl dichloride, and aniline. Low-density polyethylene was combined with the flame retardant and multi-walled carbon nanotubes to form a nanocomposite material via a ball-milling and hot-pressing method. The electrical conductivity, mechanical properties, thermal performance, and flame retardancy of the composites were investigated using a four-point probe instrument, universal tensile machine, thermogravimetric analysis, and cone calorimeter tests, respectively. It was found that the addition of multi-walled carbon nanotubes can significantly improve the electrical conductivity and mechanical properties of the low-density polyethylene composites. Furthermore, the combination of multi-walled carbon nanotubes and phosphorus–nitrogen flame retardant remarkably enhances the flame retardancy of matrixes with an observed decrease of the peak heat release rate and total heat release of 49.8% and 51.9%, respectively. This study provides a new and effective methodology to substantially enhance the electrical conductivity and flame retardancy of polymers with an attractive prospect for polymer applications in electrical equipment.

Keywords MWCNTs      PEPA      electrical conductivity      flame retardant      low density polyethylene     
Corresponding Author(s): Xinxin Sheng,Delong Xie   
Just Accepted Date: 30 January 2021   Online First Date: 19 March 2021    Issue Date: 30 August 2021
 Cite this article:   
Yong Luo,Yuhui Xie,Renjie Chen, et al. A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1332-1345.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2035-0
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I5/1332
Fig.1  (a) FTIR spectra of PEPA, BPOD, PEPA-BPOD and PEPA-BPOD-A, (b) 1H NMR of PEPA-BPOD-A, and (c) 31P NMR spectra of PEPA-BPOD-A.
Fig.2  Electrical conductivity of pure LDPE and its composites.
Polymer matrix Filler Content
/wt-%
Electrical conductivity
/(S·m–1)
Processing method Ref.
PP a) MWCNTs 5 10 Cold rolling process [27]
PP MWCNTs 10 5 Melt blending [29]
ABS b) MWCNTs 10 3.3E-4 Melt mixing [12]
PS c) MWCNTs 6.5 4.9E-2 Latex technology [32]
PS MWCNTs 10 10 Compression molding [33]
PS MWCNTs 5 7.1 Compression molding [34]
PC d) MWCNTs 10 ~40 Injection molding [35]
TPU e) MWCNTs 10 45.6 Melt blending [31]
PLLA f) MWCNTs 14 10 Solution mixing [36]
PLLA MWCNTs 5 1 Solution mixing [37]
PLA g) MWCNTs 2 1E-5 Melt mixing [30]
LDPE MWCNTs 8 1 Melt mixing [28]
LDPE MWCNTs 7 31.7 Ball-mixing and hot-pressing This work
Tab.1  Comparison of electrical conductivity in our work with other MWCNTs-based composites
Fig.3  Mechanical properties of pure LDPE and its composites: (a) stress-strain curves, (b) tensile strength and elongation at break.
Fig.4  (a) TGA curves and (b) DTG curves of PEPA-BPOD-A, pure LDPE, and its composites.
Sample T5%/°C Tmax-1/°C Rmax-1/(%·min−1) Tmax-2/°C Rmax-2/(%·min−1) Char residues at 800 °C/%
LDPE 429 472 -35.7 0.6
PPC-0 363 350 -1.53 472 -33.0 3.5
PPC-0.5 364 349 -1.36 473 -31.1 8.3
PPC-1 365 353 -1.38 473 -30.3 8.9
PPC-2 359 353 -1.36 474 -29.9 9.4
PPC-3 364 354 -1.23 476 -28.7 10.4
PPC-5 361 355 -1.31 474 -27.4 12.3
PPC-7 361 355 -1.20 475 -25.7 16.6
PEPA-BPOD-A 193 356 -17.7 435 -2.5 31.3
Tab.2  TGA results for pure LDPE and its composites in N2 atmosphere
Fig.5  (a) HRR curves and (b) THR curves of pure LDPE and its composites obtained via cone calorimetry.
Sample tpHRR
/s
pHRR
/(kW·m–2)
THR
/(MJ·m–2)
MARHE
/(kW·m–2)
av-EHC
/(MJ·kg–1)
FIGRA
/(kW·m–2·s–1)
Residue
/wt-%
LDPE 228±4 867.9±24 151.3±7.3 405.9±21.8 57.9±4.7 3.8±0.1 0
PPC-0 198±2 647.9±37 84.5±4.7 310.3±17.9 45.3±5.1 3.3±0.2 2.4±0.2
PPC-0.5 193±5 600.2±28 88.2±4.5 344.4±16.5 51.7±3.9 3.1±0.1 1.8±0.1
PPC-1 188±2 589.9±19 83.4±5.2 329.5±15.4 40.1±4.7 3.1±0.1 2.7±0.1
PPC-2 180±3 513.8±21 78.3±3.9 317.6±19.3 38.3±3.8 2.8±0.1 3.6±0.3
PPC-3 191±3 497.5±25 78.0±4.1 312.5±17.4 37.1±4.6 2.6±0.1 5.6±0.2
PPC-5 175±5 464.6±20 73.6±3.4 302.9±16.1 34.7±4.9 2.7±0.1 8.2±0.3
PPC-7 164±4 435.7±17 72.8±3.7 279.4±14.7 28.9±3.8 2.7±0.1 11.8±0.2
Tab.3  Cone calorimeter results of pure LDPE and its composites
Fig.6  TG-IR results of pure LDPE, PPC-0, and PPC-7 samples: (a) total pyrolysis products, (b) hydrocarbons, (c) aromatic compounds.
Fig.7  SEM images of the residues of (a) PPC-0, (b) PPC-3, and (c) PPC-7.
Fig.8  Raman spectra of the residues of LDPE composites of (a) PPC-0, (b) PPC-0.5, (c) PPC-1, (d) PPC-2, (e) PPC-3, (f) PPC-5, (g) PPC-7.
Fig.9  (a, b) C 1s, (c, d) O 1s, (e, f) N 1s, and (g, h) P 2p XPS spectra of PPC-0 residue (left) and PPC-7 residue (right).
Fig.10  Scheme 1 Schematic illustration for the synergistic flame retardant mechanism of LDPE composite.
1 Z Ma, P Chen, W Cheng, K Yan, L Pan, Y Shi, G Yu. Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection. Nano Letters, 2018, 18(7): 4570–4575
https://doi.org/10.1021/acs.nanolett.8b01825
2 L Wang, H Qiu, C Liang, P Song, Y Han, Y Han, J Gu, J Kong, D Pan, Z Guo. Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon, 2019, 141: 506–514
https://doi.org/10.1016/j.carbon.2018.10.003
3 Y Huangfu, K Ruan, H Qiu, Y Lu, C Liang, J Kong, J Gu. Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Composites. Part A, Applied Science and Manufacturing, 2019, 121: 265–272
https://doi.org/10.1016/j.compositesa.2019.03.041
4 W J Sun, L Xu, L C Jia, C G Zhou, Y Xiang, R H Yin, D X Yan, J H Tang, Z M Li. Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Composites Science and Technology, 2019, 181: 107695
https://doi.org/10.1016/j.compscitech.2019.107695
5 M Parchovianský, D Galusek, P Švančárek, J Sedláček, P Šajgalík. Thermal behavior, electrical conductivity and microstructure of hot pressed Al2O3/SiC nanocomposites. Ceramics International, 2014, 40(9): 14421–14429
https://doi.org/10.1016/j.ceramint.2014.06.038
6 J C Huang. Carbon black filled conducting polymers and polymer blends. Advances in Polymer Technology, 2002, 21(4): 299–313
https://doi.org/10.1002/adv.10025
7 W Zheng, S C Wong. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Composites Science and Technology, 2003, 63(2): 225–235
https://doi.org/10.1016/S0266-3538(02)00201-4
8 I H Kim, Y G Jeong. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. Journal of Polymer Science. Part B, Polymer Physics, 2010, 48(8): 850–858
https://doi.org/10.1002/polb.21956
9 S Naghdi, K Y Rhee, D Hui, S J Park. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications. Coatings, 2018, 8(8): 278
https://doi.org/10.3390/coatings8080278
10 J Zhao, J Zhang, L Wang, S Lyu, J Gu. Fabrication and investigation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites. Composites. Part A, Applied Science and Manufacturing, 2019, 129: 105714
https://doi.org/10.1016/j.compositesa.2019.105714
11 J Zhao, J Zhang, L Wang, J Li, T Feng, J Fan, L Chen, J Gu. Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Composites Communications, 2020, 22: 100486
https://doi.org/10.1016/j.coco.2020.100486
12 J Jyoti, S Basu, B P Singh, S Dhakate. Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Composites. Part B, Engineering, 2015, 83: 58–65
https://doi.org/10.1016/j.compositesb.2015.08.055
13 R Jung, H S Kim, Y Kim, S M Kwon, H S Lee, H J Jin. Electrically conductive transparent papers using multiwalled carbon nanotubes. Journal of Polymer Science. Part B, Polymer Physics, 2008, 46(12): 1235–1242
https://doi.org/10.1002/polb.21457
14 L Wang, J Qiu, E Sakai, X Wei. The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Composites. Part A, Applied Science and Manufacturing, 2016, 89: 18–25
https://doi.org/10.1016/j.compositesa.2015.12.016
15 X Yan, J Gu, G Zheng, J Guo, A M Galaska, J Yu, M A Khan, L Sun, D P Young, Q Zhang, S Wei, Z Guo. Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer, 2016, 103: 315–327
https://doi.org/10.1016/j.polymer.2016.09.056
16 J Gu, J Dang, Y Wu, C Xie, Y Han. Flame-retardant, thermal, mechanical and dielectric properties of structural non-halogenated epoxy resin composites. Polymer-Plastics Technology and Engineering, 2012, 51(12): 1198–1203
https://doi.org/10.1080/03602559.2012.694951
17 H Yang, J Gong, X Wen, J Xue, Q Chen, Z Jiang, N Tian, T Tang. Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites. Composites Science and Technology, 2015, 113: 31–37
https://doi.org/10.1016/j.compscitech.2015.03.013
18 X Li, Y Ou, Y Shi. Combustion behavior and thermal degradation properties of epoxy resins with a curing agent containing a caged bicyclic phosphate. Polymer Degradation & Stability, 2002, 77(3): 383–390
https://doi.org/10.1016/S0141-3910(02)00075-7
19 K A Salmeia, A Gooneie, P Simonetti, R Nazir, J P Kaiser, A Rippl, C Hirsch, S Lehner, P Rupper, R Hufenus, S Gaan. Comprehensive study on flame retardant polyesters from phosphorus additives. Polymer Degradation & Stability, 2018, 155: 22–34
https://doi.org/10.1016/j.polymdegradstab.2018.07.006
20 W Zhao, J Liu, H Peng, J Liao, X Wang. Synthesis of a novel PEPA-substituted polyphosphoramide with high char residues and its performance as an intumescent flame retardant for epoxy resins. Polymer Degradation & Stability, 2015, 118: 120–129
https://doi.org/10.1016/j.polymdegradstab.2015.04.023
21 Y Luo, D Xie, Y Chen, T Han, R Chen, X Sheng, Y Mei. Synergistic effect of ammonium polyphosphate and a-zirconium phosphate in flame-retardant poly (vinyl alcohol) aerogels. Polymer Degradation & Stability, 2019, 170: 109019
https://doi.org/10.1016/j.polymdegradstab.2019.109019
22 Y Shi, G Wang. The novel epoxy/PEPA phosphate flame retardants: synthesis, characterization and application in transparent intumescent fire resistant coatings. Progress in Organic Coatings, 2016, 97: 1–9
https://doi.org/10.1016/j.porgcoat.2016.02.023
23 Y Hou, W Hu, L Liu, Z Gui, Y Hu. In-situ synthesized CNTs/Bi2Se3 nanocomposites by a facile wet chemical method and its application for enhancing fire safety of epoxy resin. Composites Science and Technology, 2018, 157: 185–194
https://doi.org/10.1016/j.compscitech.2018.01.044
24 P Scarfato, L Incarnato, L Di Maio, B Dittrich, B Schartel. Influence of a novel organo-silylated clay on the morphology, thermal and burning behavior of low density polyethylene composites. Composites. Part B, Engineering, 2016, 98: 444–452
https://doi.org/10.1016/j.compositesb.2016.05.053
25 T McNally, P Pötschke, P Halley, M Murphy, D Martin, S E Bell, G P Brennan, D Bein, P Lemoine, J P Quinn. Polyethylene multiwalled carbon nanotube composites. Polymer, 2005, 46(19): 8222–8232
https://doi.org/10.1016/j.polymer.2005.06.094
26 V Divya, M A Khan, B N Rao, R Sailaja. High density polyethylene/cenosphere composites reinforced with multi-walled carbon nanotubes: mechanical, thermal and fire retardancy studies. Materials & Design, 2015, 65: 377–386
https://doi.org/10.1016/j.matdes.2014.08.076
27 S H Lee, M W Kim, S H Kim, J R Youn. Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips. European Polymer Journal, 2008, 44(6): 1620–1630
https://doi.org/10.1016/j.eurpolymj.2008.03.017
28 R Socher, B Krause, M T Müller, R Boldt, P Pötschke. The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer, 2012, 53(2): 495–504
https://doi.org/10.1016/j.polymer.2011.12.019
29 Y Pan, L Li, S H Chan, J Zhao. Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Composites. Part A, Applied Science and Manufacturing, 2010, 41(3): 419–426
https://doi.org/10.1016/j.compositesa.2009.11.009
30 H Quan, S Zhang, J Qiao, L Zhang. The electrical properties and crystallization of stereocomplex poly (lactic acid) filled with carbon nanotubes. Polymer, 2012, 53(20): 4547–4552
https://doi.org/10.1016/j.polymer.2012.07.061
31 S D Ramôa, G M Barra, R V Oliveira, M G de Oliveira, M Cossa, B G Soares. Electrical, rheological and electromagnetic interference shielding properties of thermoplastic polyurethane/carbon nanotube composites. Polymer International, 2013, 62(10): 1477–1484
https://doi.org/10.1002/pi.4446
32 T M Wu, E C Chen. Preparation and characterization of conductive carbon nanotube–polystyrene nanocomposites using latex technology. Composites Science and Technology, 2008, 68(10-11): 2254–2259
https://doi.org/10.1016/j.compscitech.2008.04.010
33 M Arjmand, T Apperley, M Okoniewski, U Sundararaj. Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon, 2012, 50(14): 5126–5134
https://doi.org/10.1016/j.carbon.2012.06.053
34 M Mahmoodi, M Arjmand, U Sundararaj, S Park. The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon, 2012, 50(4): 1455–1464
https://doi.org/10.1016/j.carbon.2011.11.004
35 A P Singh, B K Gupta, M Mishra, A Chandra, R Mathur, S Dhawan. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties. Carbon, 2013, 56: 86–96
https://doi.org/10.1016/j.carbon.2012.12.081
36 D Zhang, M A Kandadai, J Cech, S Roth, S A Curran. Poly (L-lactide)(PLLA)/multiwalled carbon nanotube (MWCNT) composite: characterization and biocompatibility evaluation. Journal of Physical Chemistry B, 2006, 110(26): 12910–12915
https://doi.org/10.1021/jp061628k
37 D Zhang, X Liu, G Wu. Forming CNT-guided stereocomplex networks in polylactide-based nanocomposites. Composites Science and Technology, 2016, 128: 8–16
https://doi.org/10.1016/j.compscitech.2016.03.003
38 B Schartel, T R Hull. Development of fire-retarded materials—interpretation of cone calorimeter data. Fire and Materials, 2007, 31(5): 327–354
https://doi.org/10.1002/fam.949
39 S Brehme, B Schartel, J Goebbels, O Fischer, D Pospiech, Y Bykov, M Döring. Phosphorus polyester versus aluminium phosphinate in poly (butylene terephthalate)(PBT): flame retardancy performance and mechanisms. Polymer Degradation & Stability, 2011, 96(5): 875–884
https://doi.org/10.1016/j.polymdegradstab.2011.01.035
40 Y Shi, B Yu, K Zhou, R K Yuen, Z Gui, Y Hu, S Jiang. Novel CuCo2O4/graphitic carbon nitride nanohybrids: highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites. Journal of Hazardous Materials, 2015, 293: 87–96
https://doi.org/10.1016/j.jhazmat.2015.03.041
41 U Braun, A I Balabanovich, B Schartel, U Knoll, J Artner, M Ciesielski, M Döring, R Perez, J K Sandler, V Altstädt, T Hoffmann, D Pospiech. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer, 2006, 47(26): 8495–8508
https://doi.org/10.1016/j.polymer.2006.10.022
42 W Xing, W Yang, W Yang, Q Hu, J Si, H Lu, B Yang, L Song, Y Hu, R K Yuen. Functionalized carbon nanotubes with phosphorus-and nitrogen-containing agents: effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites. ACS Applied Materials & Interfaces, 2016, 8(39): 26266–26274
https://doi.org/10.1021/acsami.6b06864
43 X Lai, S Tang, H Li, X Zeng. Flame-retardant mechanism of a novel polymeric intumescent flame retardant containing caged bicyclic phosphate for polypropylene. Polymer Degradation & Stability, 2015, 113: 22–31
https://doi.org/10.1016/j.polymdegradstab.2015.01.009
44 S Bourbigot, M Le Bras, L Gengembre, R Delobel. XPS study of an intumescent coating application to the ammonium polyphosphate/pentaerythritol fire-retardant system. Applied Surface Science, 1994, 81(3): 299–307
https://doi.org/10.1016/0169-4332(94)90287-9
45 B R Xu, C Deng, Y M Li, P Lu, P P Zhao, Y Z Wang. Novel amino glycerin decorated ammonium polyphosphate for the highly-efficient intumescent flame retardance of wood flour/polypropylene composite via simultaneous interfacial and bulk charring. Composites. Part B, Engineering, 2019, 172: 636–648
https://doi.org/10.1016/j.compositesb.2019.05.099
46 S Bourbigot, M Le Bras, R Delobel, L Gengembre. XPS study of an intumescent coating: II. Application to the ammonium polyphosphate/pentaerythritol/ethylenic terpolymer fire retardant system with and without synergistic agent. Applied Surface Science, 1997, 120(1-2): 15–29
https://doi.org/10.1016/S0169-4332(97)00239-0
47 L Gu, J Qiu, Y Yao, E Sakai, L Yang. Functionalized MWCNTs modified flame retardant PLA nanocomposites and cold rolling process for improving mechanical properties. Composites Science and Technology, 2018, 161: 39–49
https://doi.org/10.1016/j.compscitech.2018.03.033
48 Y Hu, P Xu, H Gui, X Wang, Y Ding. Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Composites. Part A, Applied Science and Manufacturing, 2015, 77: 147–153
https://doi.org/10.1016/j.compositesa.2015.06.025
49 B Du, Z Fang. Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. Polymer Degradation & Stability, 2011, 96(10): 1725–1731
https://doi.org/10.1016/j.polymdegradstab.2011.08.002
50 R Yang, B Ma, H Zhao, J Li. Preparation, thermal degradation, and fire behaviors of intumescent flame retardant polypropylene with a charring agent containing pentaerythritol and triazine. Industrial & Engineering Chemistry Research, 2016, 55(18): 5298–5305
https://doi.org/10.1021/acs.iecr.6b00204
[1] FCE-20093-OF-LY_suppl_1 Download
[1] Gang Tang, Ruiqing Zhao, Dan Deng, Yadong Yang, Depeng Chen, Bing Zhang, Xinliang Liu, Xiuyu Liu. Self-extinguishing and transparent epoxy resin modified by a phosphine oxide-containing bio-based derivative[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1269-1280.
[2] Aswathy Vasudevan, Vasyl Shvalya, Aleksander Zidanšek, Uroš Cvelbar. Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review[J]. Front. Chem. Sci. Eng., 2019, 13(3): 427-443.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed