Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (3) : 433-442    https://doi.org/10.1007/s11705-021-2066-6
RESEARCH ARTICLE
Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties
Katarína Gáborová1,2, Marcela Achimovičová1(), Michal Hegedüs3, Vladimír Girman4, Mária Kaňuchová5, Erika Dutková1
1. Institute of Geotechnics, Slovak Academy of Sciences, Košice 04001, Slovakia
2. Institute of Metallurgy, Faculty of Materials, Metallurgy and Recycling, Technical University, Košice 04201, Slovakia
3. Synthon, s.r.o., Blansko 67801, Czech Republic
4. Faculty of Science, Pavol Jozef Šafárik University, Košice 04154, Slovakia
5. Institute of Earth Resources, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University, Košice 04200, Slovakia
 Download: PDF(1586 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Copper(I) selenide-nanocrystalline semiconductor was synthesized via one-step mechanochemical synthesis after 5 min milling in a planetary ball mill. The kinetics of synthesis was followed by X-ray powder diffraction analysis and specific surface area measurements of milled 2Cu/Se mixtures. The X-ray diffraction confirmed the orthorhombic crystal structure of Cu2Se with the crystallite size ~25 nm. The surface chemical structure was studied by X-ray photoelectron spectroscopy, whereby the binding energy of the Cu 2p and Se 3d signals corresponded to Cu+ and Se2– oxidation states. Transmission electron microscopy revealed agglomerated nanocrystals and confirmed their orthorhombic structure, as well. The optical properties were studied utilizing ultraviolet-visible spectroscopy and photoluminescence spectroscopy. The direct bandgap energy 3.7 eV indicated a blue-shift phenomenon due to the quantum size effect. This type of Cu2Se synthesis can be easily adapted to production dimensions using an industrial vibratory mill. The advantages of mechanochemical synthesis represent the potential for inexpensive, environmentally-friendly, and waste-free manufacturing of Cu2Se.

Keywords Cu2Se      berzelianite      nanocrystalline semiconductor      mechanochemical synthesis      planetary ball mill     
Corresponding Author(s): Marcela Achimovičová   
Online First Date: 13 July 2021    Issue Date: 24 February 2022
 Cite this article:   
Katarína Gáborová,Marcela Achimovičová,Michal Hegedüs, et al. Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties[J]. Front. Chem. Sci. Eng., 2022, 16(3): 433-442.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2066-6
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I3/433
Fig.1  XRPD patterns of 2Cu/Se mixtures milled for 0.5, 1.5, 3, and 5 min.
Fig.2  The graphical LeBail refinement output of the orthorhombic cell parameters against measured data of 2Cu/Se mixtures milled for 5 min.
h k l d/nm calc.* I/I0 d/nm obs.
2 0 0 0.6928 9.5 0.6910
0 3 0 0.6831 78.7 0.6860
2 5 0 0.3528 20.4 0.3523
0 6 0 0.3416 78.1 0.3417
2 1 1 0.3367 88.1 0.3378
0 7 1 0.2346 4.4 0.2323
4 4 1 0.2316 0.0
0 9 0 0.2277 27.0 0.2269
6 2 0 0.2253 11.8 0.2250
3 7 1 0.2092 100.0 0.2083
5 4 1 0.2070 63.1 0.2065
3 2 2 0.1778 20.5 0.1777
7 0 1 0.1767 26.6 0.1768
4 0 2 0.1707 1.6 0.1703
4 2 2 0.1684 0.6 0.1685
9 1 0 0.1535 2.2 0.1528
9 2 0 0.1522 4.4 0.1520
9 4 0 0.1474 1.9 0.1468
7 3 2 1.365 3.0 0.1361
0 0 3 1.308 2.5 0.1306
Tab.1  Indexing of the orthorhombic unit cell along with the relative intensity of Bragg reflections
Fig.3  In-situ monitoring of Cu2Se mechanochemical synthesis: (a) gas pressure and temperature changes during milling; (b) XRPD pattern of 2Cu/Se mixture milled for 5 min.
Fig.4  Specific surface area, SA of milled 2Cu/Se mixtures vs. time of mechanochemical synthesis, tM.
Fig.5  PSD curves of 2Cu/Se mixtures milled for 5 and 7 min.
Fig.6  XPS spectra of mechanochemically synthesized Cu2Se: (a) Cu 2p; (b) Se 3d.
Fig.7  SEM micrographs of starting reagents: (a) elemental copper and (b) selenium at the same magnification with milled mixtures for (c) 0.5 min and (d) 5 min.
Fig.8  TEM images of (a) agglomerated crystals of Cu2Se after 5 min of mechanochemical synthesis; (b) detail of Cu2Se particle imaged at magnification 300 kx; (c) selected area electron diffraction (SAED) pattern of the same crystals.
Fig.9  UV-Vis optical absorption spectrum of Cu2Se after 5 min of mechanochemical synthesis (Inset: (αhν)2 vs. hν plot and the obtained bandgap energy 3.7 eV).
Fig.10  PL spectrum of Cu2Se product at an excitation wavelength of 480 nm.
1 R D Heydin, R M Murray. The crystal structures of Cu1.8Se, Cu3Se2, α- and γ-CuSe, CuSe2, and CuSe2II. Canadian Journal of Chemistry, 1976, 54(6): 841–848
https://doi.org/10.1139/v76-122
2 S Butt, M Farooq, W Mahmood, S Salam, M Sultan, M Basit, J Ma, Y Lin, C Nan. One-step rapid synthesis of Cu2Se with enhanced thermoelectric properties. Journal of Alloys and Compounds, 2019, 786: 557–564
https://doi.org/10.1016/j.jallcom.2019.01.359
3 L Gulay, M Daszkiewicz, O Strok, A Pietraszko. Crystal structure of Cu2Se. Chemistry of Metals and Alloys, 2011, 4(3/4): 200–205
https://doi.org/10.30970/cma4.0184
4 D Byeon, R Sobota, K Delime-Codrin, S Choi, K Hirata, M Adachi, M Kiyama, T Matsuura, Y Yamamoto, M Matsunami, T Takeuchi. Discovery of colossal Seebeck effect in metallic Cu2Se. Nature Communications, 2019, 10(1): 72
https://doi.org/10.1038/s41467-018-07877-5
5 K Liu, H Liu, J Wang, L J Shi. Synthesis and characterization of Cu2Se prepared by hydrothermal co-reduction. Journal of Alloys and Compounds, 2009, 484(1-2): 674–676
https://doi.org/10.1016/j.jallcom.2009.05.014
6 X Han, F Liao, Y Zhang, Z Yuan, H Chen, C Xu. CTAB-assisted hydrothermal synthesis of Cu2Se films composed of nanowire networks. Materials Letters, 2018, 210: 62–65
https://doi.org/10.1016/j.matlet.2017.08.124
7 H Hsiang, W Hsu, L Lu, Y Chang, F Yen. Cuprous selenide nano-crystal synthesis and characterization. Materials Research Bulletin, 2013, 48(2): 715–720
https://doi.org/10.1016/j.materresbull.2012.11.020
8 F Jia, S Zhang, X Zhang, X Peng, H Zhang, Y Xiang. Sb-triggered β-to-α transition: solvothermal synthesis of metastable alpha-Cu2Se. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(48): 15941–15946
https://doi.org/10.1002/chem.201403797
9 Y Zhao, L Zhu, Y Jiang, H Xie, G Zhang, N Ba. Microphone shaped Cu2Se micro/nanoarchitecture: preparation, formation mechanism and optical property. Materials Letters, 2015, 147: 82–84
https://doi.org/10.1016/j.matlet.2015.02.042
10 E Eikeland, A Blichfeld, K Borup, K Zhao, J Overgaard, X Shi, L Chen, B Iversen. Crystal structure across the beta to alpha phase transition in thermoelectric Cu2−xSe. Journal of Applied Crystallography, 2017, 4: 476–485
11 S Xu, H Wang, J Zhu, H Chen. Sonochemical synthesis of copper selenides nanocrystals with different phases. Journal of Crystal Growth, 2002, 234(1): 263–266
https://doi.org/10.1016/S0022-0248(01)01667-0
12 H Kaur, J Kaur, L Singh, S Singh. Electrochemical synthesis and characterization of Cu2Se nanowires. Superlattices and Microstructures, 2013, 64: 294–302
https://doi.org/10.1016/j.spmi.2013.09.042
13 C Yang, H Hsiang, J Tu. Copper selenide crystallites synthesized using the hot-injection process. Advanced Powder Technology, 2016, 27(3): 959–963
https://doi.org/10.1016/j.apt.2016.03.004
14 C Yang, H Hsiang. Rapid synthesis and characterization of nearly dispersed marcasite CuSe2 and berzelianite Cu2Se crystallites using the chemical reduction process. Materials Research Bulletin, 2018, 97: 30–36
https://doi.org/10.1016/j.materresbull.2017.08.052
15 Y Su, G Li, Z Guo, Y Y Li, Y X Li, X J Huang, J H Liu. Cation-exchange synthesis of Cu2Se nanobelts and thermal conversion to porous CuO nanobelts with highly selective sensing toward H2S. ACS Applied Nano Materials, 2018, 1(1): 245–253
https://doi.org/10.1021/acsanm.7b00106
16 L Bulat, V Osvenskii, A Ivanov, A Sorokin, D Pshenay-Severin, V Bublik, N Tabachkova, V Panchenko, M Lavrentev. Experimental and theoretical study of the thermoelectric properties of copper selenide. Semiconductors, 2017, 51(7): 854–857
https://doi.org/10.1134/S1063782617070041
17 A Ivanov, A Sorokin, V Panchenko, I Tarasova, N Tabachkova, V Bublik, R Akchurin. Structure of the Cu2Se compound produced by different methods. Semiconductors, 2017, 51(7): 866–869
https://doi.org/10.1134/S1063782617070144
18 J Li, G Liu, X Wu, G He, Z Yang, J Li. Reaction mechanism in mechanochemical synthesis of Cu2−xSe. Ceramics International, 2018, 44(18): 22172–22175
https://doi.org/10.1016/j.ceramint.2018.08.331
19 A Stevels, F Jellinek. Phase transitions in copper chalcogenides: 1. Copper-selenium system. Recueil Des Travaux Chimiques Des Pays-Bas, 1971, 90(3): 273–283
https://doi.org/10.1002/recl.19710900307
20 C Lévy-Clément, M Neumann-Spallart, S Haram, K Santhanam. Chemical bath deposition of cubic copper(I) selenide and its room temperature transformation to the orthorhombic phase. Thin Solid Films, 1997, 302(1-2): 12–16
https://doi.org/10.1016/S0040-6090(97)00021-7
21 O Kopp, O Cavin. Hydrothermal growth of single-crystal Cu2Se (Berzelianite). Journal of Crystal Growth, 1984, 67(2): 391–392
https://doi.org/10.1016/0022-0248(84)90202-1
22 S Haram, K Santhanam, M Neumann-Spallart, C Lévy-Clément. Electroless deposition on copper substrates and characterization of thin-films of copper(I) selenide. Materials Research Bulletin, 1992, 27(10): 1185–1191
https://doi.org/10.1016/0025-5408(92)90226-P
23 M Baláž, A Zorkovská, F Urakaev, P Baláž, J Briančin, Z Bujňáková, M Achimovičová, E Gock. Ultrafast mechanochemical synthesis of copper sulfides. RSC Advances, 2016, 6(91): 87836–87842
https://doi.org/10.1039/C6RA20588G
24 M Achimovičová, N Daneu, A Rečnik, J Ďurišin, B Peter, M Fabián, J Kováč, A Šatka. Characterization of mechanochemically synthesized lead selenide. Chemical Papers, 2009, 63(5): 562–567
https://doi.org/10.2478/s11696-009-0050-6
25 M Achimovičová, P Baláž, T Ohtani, N Kostova, G Tyuliev, A Feldhoff, V Šepelák. Characterization of mechanochemically synthesized ZnSe in a laboratory and an industrial mill. Solid State Ionics, 2011, 192(1): 632–637
https://doi.org/10.1016/j.ssi.2010.07.009
26 M Achimovičová, F Gotor, C Real, N Daneu. Mechanochemical synthesis and characterization of nanocrystalline BiSe, Bi2Se3 semiconductors. Journal of Materials Science Materials in Electronics, 2012, 23(10): 1844–1850
https://doi.org/10.1007/s10854-012-0672-2
27 M Achimovičová, N Daneu, E Tóthová, M Mazaj, E Dutková. Combined mechanochemical/thermal annealing approach for the synthesis of Co9Se8 with potential optical properties. Applied Physics. A, Materials Science & Processing, 2019, 125(1): 8
https://doi.org/10.1007/s00339-018-2305-y
28 L Zhu, H Xie, Y Liu, D Chen, M Bian, W Zheng. Novel ultralong hollow hyperbranched Cu2−xSe with nanosheets hierarchical structure: preparation, formation mechanism and properties. Journal of Alloys and Compounds, 2019, 802: 430–436
https://doi.org/10.1016/j.jallcom.2019.06.237
29 S Riha, D Johnson, A Prieto. Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction. Journal of the American Chemical Society, 2011, 133(5): 1383–1390
https://doi.org/10.1021/ja106254h
30 M Baláž, E Dutková, Z Bujňáková, E Tóthová, N Kostova, Y Karakirova, J Briančin, M Kaňuchová. Mechanochemistry of copper sulfides: characterization, surface oxidation and photocatalytic activity. Journal of Alloys and Compounds, 2018, 746: 576–582
https://doi.org/10.1016/j.jallcom.2018.02.283
31 M Hegedüs, M Baláž, M Tešinský, M Sayagues, P Siffalovic, M Kruľaková, M Kaňuchová, J Briančin, M Fabián, P Baláž. Scalable synthesis of potential solar cell absorber Cu2SnS3 (CTS) from nanoprecursors. Journal of Alloys and Compounds, 2018, 768: 1006–1015
https://doi.org/10.1016/j.jallcom.2018.07.284
32 B J Tufts, I L Abrahams, C E Caley, S R Lunt, G M Miskelly, M J Sailor, P G Santangelo, N S Lewis, A L Roe, A O Hodgson. XPS and EXAFS studies of the reactions of Co(III) ammine complexes with GAAS-surfaces. Journal of the American Chemical Society, 1990, 112(13): 5123–5136
https://doi.org/10.1021/ja00169a021
33 M L Theye, A Gheorghiu, C H Senemaud, M F Kotkata, K Kandil. Studies of short-range order in amorphous GexSe100−x compounds by X-ray photoelectron spectroscopy. Philosophical Magazine B, Physics of Condensed Matter. Structural, Electronic, Optical and Magnetic Properties, 1994, 69: 209–222
34 A Zyoud, K Murtada, H Kwon, H Choi, T Kim, M Helal, M Faroun, H Bsharat, D Park, H Hilal. Copper selenide film electrodes prepared by combined electrochemical/chemical bath depositions with high photo-electrochemical conversion efficiency and stability. Solid State Sciences, 2018, 75: 53–62
https://doi.org/10.1016/j.solidstatesciences.2017.11.013
35 J Tauc, R Grigorovici, A Vancu. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi B, Basic Research, 1966, 15(2): 627–637
https://doi.org/10.1002/pssb.19660150224
36 V Gurin, A Alexeenko, S Zolotovskaya, K Yumashev. Copper and copper selenide nanoparticles in the sol-gel matrices: structural and optical. Materials Science and Engineering C, 2006, 26(5-7): 952–955
https://doi.org/10.1016/j.msec.2005.09.021
37 G B Sakr, I S Yahia, M Fadel, S S Fouad, N Romčevic. Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. Journal of Alloys and Compounds, 2010, 507(2): 557–562
https://doi.org/10.1016/j.jallcom.2010.08.022
38 M Petrovic, M Gilic, J Cirkovic, M Romčevic, N Romčevic, J Trajic, I S Yahia. Optical properties of CuSe thin films—band gap determination. Science of Sintering, 2017, 49(2): 167–174
https://doi.org/10.2298/SOS1702167P
[1] Marcela Achimovičová, Erika Dutková, Erika Tóthová, Zdenka Bujňáková, Jaroslav Briančin, Satoshi Kitazono. Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill[J]. Front. Chem. Sci. Eng., 2019, 13(1): 164-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed