Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (5) : 634-660    https://doi.org/10.1007/s11705-021-2107-1
REVIEW ARTICLE
Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes
Yan Zhao1, Yangbo Qiu2, Natalie Mamrol3, Longfei Ren2, Xin Li1, Jiahui Shao2(), Xing Yang1(), Bart van der Bruggen1()
1. Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
2. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
 Download: PDF(2576 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital wastewater, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.

Keywords membrane technology      membrane bioreactor      hospital wastewater      hybrid MBR      integrated MBR-membrane system     
Corresponding Author(s): Jiahui Shao,Xing Yang,Bart van der Bruggen   
Online First Date: 25 November 2021    Issue Date: 28 March 2022
 Cite this article:   
Yan Zhao,Yangbo Qiu,Natalie Mamrol, et al. Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes[J]. Front. Chem. Sci. Eng., 2022, 16(5): 634-660.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2107-1
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I5/634
Fig.1  The hospital wastewater, community epidemic prevention, and workplace epidemic prevention containing large amounts of water-borne bacteria and viruses, antivirals, antibacterial, and other anti-infectives, organic compounds, and ionic pollutants.
Name Molecular size Hopstial wastewater treatment plant (WWTP) sample concentration Ref.
Virus
Adenovirus Diameter: 70–100 nm 2.02 × 106 to 7.23 × 106 GC·mL–1 a) [4042]
Astrovirus Diameter: 28 nm 6.3% (of total influent samples) [40,43,44]
Coronavirus (SARS-CoV-2) Diameter: 60–140 nm Confirmed, but not quantified [40,45,46]
Enteroviruses (echovirus, coxsackie viruses, poliovirus) Diameter: 25–30 nm 2.6 × 106 GC·mL–1 [40,47,48]
Hepatitis A/E Diameter: 27–30 nm 2.8 × 104 GC·mL–1 [40,49]
Norovirus I/II Diameter: 27–38 nm 3.1% (of total influent samples) [40,44,50]
Rotavirus Diameter: 75 nm 32.3% (of total influent samples) [40,44,51]
Sapovirus Diameter: 41–46 µm 29.4% (of total influent samples [40,52,53]
Protozoa
Cryptosporidium Diameter: 3–14 µm 18.9% (of total influent samples) [40,54,55]
Entamoeba histolytica Diameter: 3–14 µm 59% (of total influent samples) [40,56,57]
Giardia duodenalis Diameter: 3–14 µm 27.4% (of total influent samples) [40,55,58]
Bacteria
Campylobacter Diameter: 0.2–0.4 mm
Length: 0.5–5 mm
87% (of total influent samples) [59,60]
Escherichia coli Diameter: 0.2–6.0 µm
Length: 1.1–1.1 µm
4.6 × 106 CFU·mL–1 b) [40,61,62]
Legionella Diameter: 0.3–0.9 µm
Length: 1–3 µm
58% (of total influent samples) [63,64]
Pseudomonas Diameter: 0.6–1.2 μm
Length: 2–3 µm
2 to 800 CFU·mL–1 [40,65]
Salmonella Diameter: 0.8–1.5 µm
Length: 2–5 µm
71% (of total influent samples)/5.5 × 104 CFU·g–1 [40,6668]
Shigella Diameter: 0.6–1.2 μm
Length: 2–3 µm
62% (of total influent samples)/2.2 × 105 CFU·g–1 [40,6769]
Streptococcus Diameter: 0.6–1.2 μm
Length: 2–3 µm
1.6 × 105 CFU·g–1 [40,68]
Vibrio cholera Diameter: 0.6–1.2 μm
Length: 0.5–3 µm
0.01 to 10 CFU·mL–1 [40,70,71]
Tab.1  Recently reported typical water-borne viruses and bacteria in hospital wastewater
Name Chemical formula Size/(g·mol–1) Hopstial WWTPs sample concentration/(ng·L–1) Ref.
Antibacterials
Azythromycin C38H72N2O12 748.98 20.1 ± 5.7 [83,84]
Carbamazpine C15H12N2O 236.27 14 [84]
Cefotaxime C16H17N5O7S2 455.5 143.7 ± 4.2 [83]
Ceftazidime C22H22N6O7S2 636.7 1200 [85]
Cefazolin C14H14N8O4S3 454.5 83.4 ± 3.6 [83]
Ciprofloxacin C17H18FN3O3 331.34 8372.9 ± 67.8 [83,84,86]
Chlortetracycline C22H23ClN2O8 478.88 8 [84]
Clarithromycin C38H69NO13 747.95 167.3 ± 10.7 [83,84]
Doxycycline C22H24N2O8 444.44 18 [84]
Enrofloxacin C19H22FN3O3 359.4 4 [84]
Erythromycin C37H65NO12 715.92 188 ± 297 [84,87]
Lomefloxacin C17H19F2N3O3 351.35 10 [84]
Metronidazole C6H9N3O3 171.15 937.4 ± 111.8 [83]
Norfloxacin C16H18FN3O3 319.33 5933 ± 3390 [84,86]
Ofloxacin C18H20FN3O4 361.37 14377.8 ± 50.9 [83,84]
Oxytetracycline C22H24N2O9 460.43 18 [84]
Roxithromycin C41H76N2O15 837.05 23 [4]
Spiramycin C43H74N2O14 843.1 1700 [85]
Sulfadiazine C10H10N4O2S 250.28 1896 ± 4003 [87]
Sulfadimidine C12H14N4O2S 278.33 59 [84]
Sulfamethoxazole C10H11N3O3S 253.27 9800 [84,85]
Sulfapyridine C11H11N3O2S 249.29 251 [87]
Tetracycline C22H24N2O8 444.44 23 [84]
Trimethoprim C14H18N4O3 290.32 7700 [84,85]
Antimycotics
Fluconazole C13H12F2N6O 306.1 3445 ± 1569 [87]
Antivirals
Oseltamivir C16H31N2O8P 410.4 25 ± 18 [87]
Ritonavir C37H48N6O5S2 720.9 108 ± 94 [87]
Metabolites
N4-Acetylsulfamethoxazole C12H13N3O4S 295.32 2394 ± 2261 [87]
Oseltamivir carboxylate C14H24N2O4 284.35 151 ± 81 [87]
Tab.2  Discharged antivirals, antibacterials, antimycotics, and metabolites in hospital wastewater
Name Chemical formula Molecular weight/(g·mol–1) Concentration upper limit/(µg·L–1) Ref.
Anti-inflammatory preparations
Diclofenac C14H11Cl2N1O2 295.0 0.833 ± 0.179 [87]
Ibuprofen C13H18O2 206.3 7.8 [95]
Indometacin C19H16ClNO4 357.07 0.069 ± 0.080 [87]
Mefenamic acid C15H15NO2 241.2 6.140 ± 1.779 [87]
Naproxen C14H14O3 230.1 <5.6 [87]
Salicylic acid C7H6O3 138.1 45.3 [95]
Anti-neoplastics
Cyclophosphamide C7H15Cl2N2O2P 260.0 0.161 ± 0.026 [87]
Ifosfamide C7H15Cl2N2O2P 260.0 0.895 ± 0.293 [87]
Cardiovascular system preparations
Atenolol C14H22N2O3 266.2 2.315 ± 0.632 [87]
Atenolol acid (metoprolol acid) C14H21N1O4 267.1 9.840 ± 1.859 [87]
Bezafibrate C19H20ClNO4 361.1 0.063 ± 0.075 [87]
Clofibric acid C10H11ClO3 214.0 <0.07 [87]
D617 C17H26N2O2 290.2 0.155 ± 0.114 [87]
Furosemide C12H11ClN2O5S 330.0 2.037 ± 0.595 [87]
Hydrochlorothiazide C7H8ClN3O4S2 297.0 1.995 ± 0.547 [87]
Metoprolol C15H25NO3 267.2 1.325 ± 0.330 [87]
Propranolol C16H21NO2 259.2 0.116 ± 0.041 [87]
Sotalol C12H20N2O3S 272.1 0.700 ± 0.551 [87]
Valsartan C24H29N5O3 435.2 3.032 ± 1.282 [87]
Verapamil C27H38N2O4 454.3 0.030 ± 0.022 [87]
Hormonal preparations
Bisphenol A C15H16O2 228.3 0.833 [84]
Dexamethasone C22H29FO5 392.2 0.147 ± 0.013 [87]
17β-Estradiol C18H24O2 272.4 0.030 [84]
Estriol C18H24O3 288.4 0.092 [84]
Methylprednisolone C22H30O5 374.2 1.420 ± 0.768 [87]
Nervous system preparations
4-Acetamidoantipyrine C13H15N3O2 245.1 225 ± 89 [87]
4-Aminoantipyrine C11H13N3O1 203.1 101 ± 44 [87]
Carbamazepine C15H12N2O 236.1 0.222 ± 0.118 [87]
Diazepam C16H13ClN2O 284.1 0.069 [87]
4-Dimethylaminoantipyrine C13H17N3O 231.1 <0.14 [87]
Fluoxetine C17H18F3NO 309.1 <0.03 [87]
Gabapentin C9H17NO2 171.1 19.40 ± 24.15 [87]
4-Formylaminoantipyrine C12H13N3O2 231.1 47.88 ± 12.39 [87]
Levetiracetam C8H14N2O2 170.1 11.02 ± 6.546 [87]
Lidocaine C14H22N2O 234.2 9.133 ± 8.071 [87]
4-Methylaminoantipyrine C12H15N3O 217.1 218 ± 208 [87]
Morphine C17H19NO3 285.1 3.679 ± 1.834 [87]
Oxazepam C15H11ClN2O2 286.0 1.123 ± 0.335 [87]
Paracetamol (acetaminophen) C8H9N1O2 151.1 107.0 ± 85.7 [87]
Phenazone (antipyrine) C11H12N2O 188.1 0.162 ± 0.079 [87]
Primidone C12H14N2O2 218.1 0.383 ± 0.390 [87]
Ritalinic acid C13H17NO2 219.1 0.295 ± 0.142 [87]
Thiopental C11H18N2O2S 242.1 0.763 ± 0.860 [87]
Tramadol C16H25NO2 263.2 0.958 ± 0.264 [87]
Venlafaxine C17H27NO2 277.2 0.811 ± 0.316 [87]
Other organic compounds
Caffeine C8H10N4O2 194.2 25.8 [95]
Fenofibrate C20H21ClO4 360.8 0.6 [95]
Gemfibrozil C15H22O13 250.3 2.7 [95]
Disinfectant
Triclosan C12H7Cl3O2 289.5 [95]
X-ray contrast media
Diatrizoate (diatrizoic acid) C11H9I3N2O4 613.8 348.7 ± 241.0 [87]
Iohexol C19H26I3N3O9 820.9 <12 [87]
Iomeprol C17H22I3N3O8 776.9 439.0 ± 443.9 [87]
Iopamidol C17H22I3N3O8 776.9 2599 ± 1512 [87]
Iopromide C18H24I3N3O8 790.9 170.6 ± 156.3 [87]
Ioxitalamic acid C12H11I3N2O5 643.8 342.0 ± 197.0 [87]
Tab.3  Persistent organic compounds found in hospital wastewater
Membrane type Material Membrane pore size/μm Ref.
Polymeric membrane PVDF 0.04 [118]
PVDF 0.4 [119]
PVDF <0.1 [120]
PVDF 0.2 [121]
Polyvinyl chloride 0.2 [122]
PTFE 0.2 [123]
PE 0.4 [124]
PE 0.4 [125]
PE 0.2 [126]
High density polyethylene 0.2 [127]
PP 0.03 [128]
Ceramic membrane Ceramic 0.4 [129]
Silicon carbide 0.6 [130]
Ceramic 0.1 [131]
Metallic membrane Flat stainless steel 0.2 [113]
Flat stainless steel 0.2 [132]
Flat stainless steel 0.4 [114]
Tab.4  Different types of membranes in the MBR process
Fig.2  (a) External MBR and (b) submerged MBR. Reprinted with permission from ref. [135], copyright 2007, Elsevier.
Fig.3  (a) Aerobic MBR and (b) anaerobic MBR.
Fig.4  (a) Membrane pore size sieving for different sized compounds/ions; (b) electrostatic interaction for charged compounds/ions.
Fig.5  The mechanism of four main fouling types in membrane processes used in wastewater treatment. (a) Biofouling by bacteria, viruses, the formation, and growth of biofilm. Reprinted with permission from ref. [165], copyright 2017, Elsevier. (b) Colloidal fouling mechanism. Reprinted with permission from ref. [172], copyright 2015, Elsevier. (c) Organic fouling. Reprinted with permission from ref. [180], copyright 2016, Springer Nature. (d) Scaling resistance. Reprinted with permission from ref. [183], copyright 2021, Elsevier.
Fig.6  Schematic diagram of AMBR system. Reprinted with permission from ref. [186], copyright 2020, Elsevier.
Fig.7  Schematic diagram of EMBR system. Reprinted with permission from ref. [197], copyright 2018, Elsevier.
Fig.8  Schematic diagram of NMBR system.
Fig.9  Schematic diagram of OMBR system integrated with an ED unit to regenerate the draw solution. Reprinted with permission from ref. [220], copyright 2019, Elsevier.
Fig.10  The scheme of integrated MBR-RO systems. Reprinted with permission from ref. [238], copyright 2013, Elsevier.
Fig.11  The scheme of integrated MBR-NF systems. Reprinted with permission from ref. [250], copyright 2011, Elsevier.
1 R Wolfel, V M Corman, W Guggemos, M Seilmaier, S Zange, M A Muller, D Niemeyer, T C Jones, P Vollmar, C Rothe, et al.. Virological assessment of hospitalized patients with COVID-2019. Nature, 2020, 581(7809): 465–469
https://doi.org/10.1038/s41586-020-2196-x
2 F Wu, S Zhao, B Yu, Y M Chen, W Wang, Z G Song, Y Hu, Z W Tao, J H Tian, Y Y Pei, et al.. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798): 265–269
https://doi.org/10.1038/s41586-020-2008-3
3 J T Wu, K Leung, M Bushman, N Kishore, R Niehus, P M de Salazar, B J Cowling, M Lipsitch, G M Leung. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nature Medicine, 2020, 26(4): 506–510
https://doi.org/10.1038/s41591-020-0822-7
4 G Qu, X Li, L Hu, G Jiang. An imperative need for research on the role of environmental factors in transmission of novel coronavirus (COVID-19). Environmental Science & Technology, 2020, 54(7): 3730–3732
https://doi.org/10.1021/acs.est.0c01102
5 Y Liu, P Gu, Y Yang, L Jia, M Zhang, G Zhang. Removal of radioactive iodide from simulated liquid waste in an integrated precipitation reactor and membrane separator (PR-MS) system. Separation and Purification Technology, 2016, 171: 221–228
https://doi.org/10.1016/j.seppur.2016.07.034
6 X Feng, Z Zong, S K Elsaidi, J B Jasinski, R Krishna, P K Thallapally, M A Carreon. Kr/Xe separation over a chabazite zeolite membrane. Journal of the American Chemical Society, 2016, 138(31): 9791–9794
https://doi.org/10.1021/jacs.6b06515
7 Y J Liu, S L Lo, Y H Liou, C Y Hu. Removal of nonsteroidal anti-inflammatory drugs (NSAIDs) by electrocoagulation-flotation with a cationic surfactant. Separation and Purification Technology, 2015, 152: 148–154
https://doi.org/10.1016/j.seppur.2015.08.015
8 Y Xu, X Li, B Zhu, H Liang, C Fang, Y Gong, Q Guo, X Sun, D Zhao, J Shen, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature Medicine, 2020, 26(4): 502–505
https://doi.org/10.1038/s41591-020-0817-4
9 Y Luo, L Feng, Y Liu, L Zhang. Disinfection by-products formation and acute toxicity variation of hospital wastewater under different disinfection processes. Separation and Purification Technology, 2020, 238: 116405
https://doi.org/10.1016/j.seppur.2019.116405
10 Q Liu, Y Zhou, L Chen, X Zheng. Application of MBR for hospital wastewater treatment in China. Desalination, 2010, 250(2): 605–608
https://doi.org/10.1016/j.desal.2009.09.033
11 A K Gautam, S Kumar, P C Sabumon. Preliminary study of physico-chemical treatment options for hospital wastewater. Journal of Environmental Management, 2007, 83(3): 298–306
https://doi.org/10.1016/j.jenvman.2006.03.009
12 K Watson, G Shaw, F D Leusch, N L Knight. Chlorine disinfection by-products in wastewater effluent: bioassay-based assessment of toxicological impact. Water Research, 2012, 46(18): 6069–6083
https://doi.org/10.1016/j.watres.2012.08.026
13 W Chen, Y Su, J Peng, X Zhao, Z Jiang, Y Dong, Y Zhang, Y Liang, J Liu. Efficient wastewater treatment by membranes through constructing tunable antifouling membrane surfaces. Environmental Science & Technology, 2011, 45(15): 6545–6552
https://doi.org/10.1021/es200994n
14 Y Zhao, Y Liu, C Wang, E Ortega, X Wang, Y F Xie, J Shen, C Gao, B Van der Bruggen. Electric field-based ionic control of selective separation layers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(8): 4244–4251
https://doi.org/10.1039/C9TA13247C
15 Y P Tang, L Luo, Z Thong, T S Chung. Recent advances in membrane materials and technologies for boron removal. Journal of Membrane Science, 2017, 541: 434–446
https://doi.org/10.1016/j.memsci.2017.07.015
16 S P Nunes, P Z Culfaz-Emecen, G Z Ramon, T Visser, G H Koops, W Jin, M Ulbricht. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science, 2020, 598: 117761
https://doi.org/10.1016/j.memsci.2019.117761
17 X Li, Y Mo, W Qing, S Shao, C Y Tang, J Li. Membrane-based technologies for lithium recovery from water lithium resources: a review. Journal of Membrane Science, 2019, 591: 117317
https://doi.org/10.1016/j.memsci.2019.117317
18 P Li, Z Wang, Z Qiao, Y Liu, X Cao, W Li, J Wang, S Wang. Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 2015, 495: 130–168
https://doi.org/10.1016/j.memsci.2015.08.010
19 A A Uliana, N T Bui, J Kamcev, M K Taylor, J J Urban, J R Long. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science, 2021, 372(6539): 296–299
https://doi.org/10.1126/science.abf5991
20 R M Chaudhry, K L Nelson, J E Drewes. Mechanisms of pathogenic virus removal in a full-scale membrane bioreactor. Environmental Science & Technology, 2015, 49(5): 2815–2822
https://doi.org/10.1021/es505332n
21 M Bodzek, K Konieczny, M Rajca. Membranes in water and wastewater disinfection—review. Archives of Environmental Protection, 2019, 45: 3–18
22 W T Vieira, M B de Farias, M P Spaolonzi, M G Carlos da Silva, M G Adeodato Vieira. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environmental Chemistry Letters, 2020, 18(4): 1113–1143
https://doi.org/10.1007/s10311-020-01000-1
23 J L Bradshaw, N Ashoori, M Osorio, R G Luthy. Modelingcost, energy, and total organic carbon trade-offs for stormwater spreading basin systems receiving recycled water produced using membrane-based, ozone-based, and hybrid advanced treatment trains. Environmental Science & Technology, 2019, 53(6): 3128–3139
https://doi.org/10.1021/acs.est.9b00184
24 C F Carolin, P S Kumar, G J Joshiba, V V Kumar. Analysis and removal of pharmaceutical residues from wastewater using membrane bioreactors: a review. Environmental Chemistry Letters, 2021, 19(1): 329–343
https://doi.org/10.1007/s10311-020-01068-9
25 X Yin, J Li, X Li, Z Hua, X Wang, Y Ren. Self-generated electric field to suppress sludge production and fouling development in a membrane bioreactor for wastewater treatment. Chemosphere, 2020, 261: 128046
https://doi.org/10.1016/j.chemosphere.2020.128046
26 Y Hu, H Cheng, J Ji, Y Y Li. A review of anaerobic membrane bioreactors for municipal wastewater treatment with a focus on multicomponent biogas and membrane fouling control. Environmental Science. Water Research & Technology, 2020, 6(10): 2641–2663
https://doi.org/10.1039/D0EW00528B
27 B Tiwari, B Sellamuthu, S Piche-Choquette, P Drogui, R D Tyagi, M A Vaudreuil, S Sauve, G Buelna, R Dube. Acclimatization of microbial community of submerged membrane bioreactor treating hospital wastewater. Bioresource Technology, 2021, 319: 124223
https://doi.org/10.1016/j.biortech.2020.124223
28 N Taoufik, W Boumya, F Z Janani, A Elhalil, F Z Mahjoubi, N Barka. Removal of emerging pharmaceutical pollutants: a systematic mapping study review. Journal of Environmental Chemical Engineering, 2020, 8(5): 104251
https://doi.org/10.1016/j.jece.2020.104251
29 L Qin, M Gao, M Zhang, L Feng, Q Liu, G Zhang. Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control. Water Research, 2020, 187: 116430
https://doi.org/10.1016/j.watres.2020.116430
30 Z Xu, X Song, M Xie, Y Wang, N Huda, G Li, W Luo. Effects of surfactant addition to draw solution on the performance of osmotic membrane bioreactor. Journal of Membrane Science, 2021, 618: 118634
https://doi.org/10.1016/j.memsci.2020.118634
31 S Wang, J W Chew, Y Liu. Development of an integrated aerobic granular sludge MBR and reverse osmosis process for municipal wastewater reclamation. Science of the Total Environment, 2020, 748: 141309
https://doi.org/10.1016/j.scitotenv.2020.141309
32 W Song, D Xu, X Bi, H Y Ng, X Shi. Intertidal wetland sediment as a novel inoculation source for developing aerobic granular sludge in membrane bioreactor treating high-salinity antibiotic manufacturing wastewater. Bioresource Technology, 2020, 314: 123715
https://doi.org/10.1016/j.biortech.2020.123715
33 M N Pervez, M Balakrishnan, S W Hasan, K H Choo, Y Zhao, Y Cai, T Zarra, V Belgiorno, V. Naddeo A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment. npj Clean Water, 2020, 3: 43
34 P Verlicchi, A Galletti, M Petrovic, D Barceló. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. Journal of Hydrology, 2010, 389(3-4): 416–428
https://doi.org/10.1016/j.jhydrol.2010.06.005
35 B Wiedenheft, S H Sternberg, J A Doudna. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482(7385): 331–338
https://doi.org/10.1038/nature10886
36 D Paez-Espino, E A Eloe-Fadrosh, G A Pavlopoulos, A D Thomas, M Huntemann, N Mikhailova, E Rubin, N N Ivanova, N C Kyrpides. Uncovering Earth’s virome. Nature, 2016, 536(7617): 425–430
https://doi.org/10.1038/nature19094
37 F Schulz, S Roux, D Paez-Espino, S Jungbluth, D A Walsh, V J Denef, K D McMahon, K T Konstantinidis, E A Eloe-Fadrosh, N C Kyrpides, et al.. Giant virus diversity and host interactions through global metagenomics. Nature, 2020, 578(7795): 432–436
https://doi.org/10.1038/s41586-020-1957-x
38 L Casanova, W A Rutala, D J Weber, M D Sobsey. Survival of surrogate coronaviruses in water. Water Research, 2009, 43(7): 1893–1898
https://doi.org/10.1016/j.watres.2009.02.002
39 E Carraro, S Bonetta, C Bertino, E Lorenzi, S Bonetta, G Gilli. Hospital effluents management: chemical, physical, microbiological risks and legislation in different countries. Journal of Environmental Management, 2016, 168: 185–199
https://doi.org/10.1016/j.jenvman.2015.11.021
40 F Hai, T Riley, S Shawkat, S Magram, K Yamamoto. Removal of pathogens by membrane bioreactors: a review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing. Water, 2014, 6(12): 3603–3630
https://doi.org/10.3390/w6123603
41 M V Yates. Adenovirus. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 471–477
42 E M Elmahdy, N I Ahmed, M N F Shaheen, E C B Mohamed, S A Loutfy. Molecular detection of human adenovirus in urban wastewater in Egypt and among children suffering from acute gastroenteritis. Journal of Water and Health, 2019, 17(2): 287–294
https://doi.org/10.2166/wh.2019.303
43 M V Yates. Astroviruses. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 479–491
44 X Q He, L Cheng, D Y Zhang, X M Xie, D H Wang, Z Wang. One-year monthly survey of rotavirus, astrovirus and norovirus in three sewage treatment plants in Beijing, China and associated health risk assessment. Water Science and Technology, 2011, 63(1): 191–198
https://doi.org/10.2166/wst.2011.032
45 R Wathore, A Gupta, H Bherwani, N Labhasetwar. Understanding air and water borne transmission and survival of coronavirus: insights and way forward for SARS-CoV-2. Science of the Total Environment, 2020, 749: 141486
https://doi.org/10.1016/j.scitotenv.2020.141486
46 S Kataki, S Chatterjee, M G Vairale, S Sharma, S K Dwivedi. Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission. Resources, Conservation and Recycling, 2021, 164: 105156
https://doi.org/10.1016/j.resconrec.2020.105156
47 M V Yates. Enterovirus. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 493–504
48 G La Rosa, M Pourshaban, M Iaconelli, M Muscillo. Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy. Environmental Issues of Health Concern, 2010, 46: 266–273
49 M V Yates. Hepatitis A Virus (HAV). In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 505–513
50 M V Yates. Norovirus. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 515–522
51 A I Okoh, T Sibanda, S S Gusha. Inadequately treated wastewater as a source of human enteric viruses in the environment. International Journal of Environmental Research and Public Health, 2010, 7(6): 2620–2637
https://doi.org/10.3390/ijerph7062620
52 M V Yates. Emerging Viruses. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 529–533
53 C Ibrahim, S Hammami, N Chérif, S Mejri, P Pothier, A Hassen. Detection of sapoviruses in two biological lines of Tunisian hospital wastewater treatment. International Journal of Environmental Research and Public Health, 2019, 29(4): 400–413
https://doi.org/10.1080/09603123.2018.1546835
54 R M Chalmers. Cryptosporidium. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 287–326
55 W Jiang, D M Roellig, N Li, L Wang, Y Guo, Y Feng, L Xiao. Contribution of hospitals to the occurrence of enteric protists in urban wastewater. Parasitology Research, 2020, 119(9): 3033–3040
https://doi.org/10.1007/s00436-020-06834-w
56 R M Chalmers. Entamoeba histolytica. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 355–373
57 B Berglund, O Dienus, E Sokolova, E Berglind, A Matussek, T Pettersson, P E Lindgren. Occurrence and removal efficiency of parasitic protozoa in Swedish wastewater treatment plants. Science of the Total Environment, 2017, 598: 821–827
https://doi.org/10.1016/j.scitotenv.2017.04.015
58 L J Robertson. Giardia duodenalis. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 375–405
59 S L Percival, D W Williams. Campylobacter. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 65–78
60 T Rinsoz, S Hilfiker, A Oppliger. Quantification of thermotolerant campylobacter in Swiss water treatment plants, by real-time quantitative polymerase chain reaction. Water Environment Research, 2009, 81(9): 929–933
https://doi.org/10.2175/106143009X407429
61 S L Percival, D W Williams. Escherichia coli. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier. 2014, 89–117
62 G A Kristanto, W Koven. Preliminary study of antibiotic resistant Escherichia coli in hospital wastewater treatment plants in Indonesia. International Journal of Technology, 2019, 10(4): 765
https://doi.org/10.14716/ijtech.v10i4.776
63 S L Percival, D W Williams. Legionella. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 155–175
64 S W Huang, B M Hsu, P H Ma, K T Chien. Legionella prevalence in wastewater treatment plants of Taiwan. Water Science and Technology, 2009, 60(5): 1303–1310
https://doi.org/10.2166/wst.2009.410
65 L Nuñez, J Moretton. Disinfectant-resistant bacteria in Buenos Aires city hospital wastewater. Brazilian Journal of Microbiology, 2007, 38(4): 644–648
https://doi.org/10.1590/S1517-83822007000400012
66 S L Percival, D W Williams. Salmonella. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 209–222
67 S Fekadu, Y Merid, H Beyene, W Teshome, S Gebre-Selassie. Assessment of antibiotic- and disinfectant-resistant bacteria in hospital wastewater, south Ethiopia: a cross-sectional study. Journal of Infection in Developing Countries, 2015, 9(02): 149–156
https://doi.org/10.3855/jidc.4808
68 C T Tsai, J S Lai, S T Lin. Quantification of pathogenic micro-organisms in the sludge from treated hospital wastewater. Journal of Applied Microbiology, 1998, 85(1): 171–176
https://doi.org/10.1046/j.1365-2672.1998.00491.x
69 S L Percival, D W Williams. Shigella. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 223–236
70 S L Percival, D W Williams. Vibrio. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 237–248
71 V Nongogo, A Okoh. Occurrence of vibrio pathotypes in the final effluents of five waste water treatment plants in Amathole and Chris Hani District Municipalities in South Africa. International Journal of Environmental Research and Public Health, 2014, 11(8): 7755–7766
https://doi.org/10.3390/ijerph110807755
72 S Leekha, C L Terrell, R S Edson. General principles of antimicrobial therapy. Mayo Clinic Proceedings, 2011, 86(2): 156–167
https://doi.org/10.4065/mcp.2010.0639
73 A C Singer, J D Jarhult, R Grabic, G A Khan, R H Lindberg, G Fedorova, J Fick, M J Bowes, B Olsen, H Soderstrom. Intra- and inter-pandemic variations of antiviral, antibiotics and decongestants in wastewater treatment plants and receiving rivers. PLoS One, 2014, 9(9): 108621
https://doi.org/10.1371/journal.pone.0108621
74 I Senta, P Kostanjevecki, I Krizman-Matasic, S Terzic, M Ahel. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: possible importance of metabolites, synthesis byproducts, and transformation products. Environmental Science & Technology, 2019, 53(13): 7463–7472
https://doi.org/10.1021/acs.est.9b01420
75 H C Zhang, M Q Zhang, L Yuan, X Zhang, G P Sheng. Synergistic effect of permanganate and in situ synthesized hydrated manganese oxide for removing antibiotic resistance genes from wastewater treatment plant effluent. Environmental Science & Technology, 2019, 53(22): 13374–13381
https://doi.org/10.1021/acs.est.9b05250
76 C Nannou, A Ofrydopoulou, E Evgenidou, H David, E Heath, D Lambropoulou. Antiviral drugs in aquatic environment and wastewater treatment plants: a review on occurrence, fate, removal and ecotoxicity. Science of the Total Environment, 2020, 699: 134322
https://doi.org/10.1016/j.scitotenv.2019.134322
77 O Frederic, P Yves. Pharmaceuticals in hospital wastewater: their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere, 2014, 115: 31–39
https://doi.org/10.1016/j.chemosphere.2014.01.016
78 C Prasse, M P Schlusener, S Ralf, T A Ternes. Antiviral drugs in wastewater and surface waters: a new pharmaceutical class of environmental relevance? Environmental Science & Technology, 2010, 44(5): 1728–1735
https://doi.org/10.1021/es903216p
79 C Accinelli, M L Sacca, I Batisson, J Fick, M Mencarelli, R Grabic. Removal of oseltamivir (Tamiflu) and other selected pharmaceuticals from wastewater using a granular bioplastic formulation entrapping propagules of Phanerochaete chrysosporium. Chemosphere, 2010, 81(3): 436–443
https://doi.org/10.1016/j.chemosphere.2010.06.074
80 F R Slater, A C Singer, S Turner, J J Barr, P L Bond. Pandemic pharmaceutical dosing effects on wastewater treatment: no adaptation of activated sludge bacteria to degrade the antiviral drug oseltamivir (Tamiflu(R)) and loss of nutrient removal performance. FEMS Microbiology Letters, 2011, 315(1): 17–22
https://doi.org/10.1111/j.1574-6968.2010.02163.x
81 V Fugere, M P Hebert, N B da Costa, C C Y Xu, R D H Barrett, B E Beisner, G Bell, G F Fussmann, B J Shapiro, V Yargeau, A Gonzalez. Community rescue in experimental phytoplankton communities facing severe herbicide pollution. Nature Ecology & Evolution, 2020, 4(4): 578–588
https://doi.org/10.1038/s41559-020-1134-5
82 T U Berendonk, C M Manaia, C Merlin, D Fatta-Kassinos, E Cytryn, F Walsh, H Burgmann, H Sorum, M Norstrom, M N Pons, et al.. Tackling antibiotic resistance: the environmental framework. Nature Reviews. Microbiology, 2015, 13(5): 310–317
https://doi.org/10.1038/nrmicro3439
83 S Rodriguez-Mozaz, S Chamorro, E Marti, B Huerta, M Gros, A Sànchez-Melsió, C M Borrego, D Barceló, J L Balcázar. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 2015, 69: 234–242
https://doi.org/10.1016/j.watres.2014.11.021
84 Y Wang, X Wang, M Li, J Dong, C Sun, G Chen. Removal of pharmaceutical and personal care products (PPCPs) from municipal waste water with integrated membrane systems, MBR-RO/NF. International Journal of Environmental Research and Public Health, 2018, 15(2): 269
https://doi.org/10.3390/ijerph15020269
85 L Lien, N Hoa, N Chuc, N Thoa, H Phuc, V Diwan, N Dat, A Tamhankar, C Lundborg. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-A one year study from Vietnam. International Journal of Environmental Research and Public Health, 2016, 13(6): 588
https://doi.org/10.3390/ijerph13060588
86 K Kümmerer. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources: a review. Chemosphere, 2001, 45(6-7): 957–969
https://doi.org/10.1016/S0045-6535(01)00144-8
87 L Kovalova, H Siegrist, H Singer, A Wittmer, C S Mcardell. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environmental Science & Technology, 2012, 46(3): 1536–1545
https://doi.org/10.1021/es203495d
88 M F Moradali, B H A Rehm. Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews. Microbiology, 2020, 18(4): 195–210
https://doi.org/10.1038/s41579-019-0313-3
89 D M Reurink, E Te Brinke, I Achterhuis, H D W Roesink, W M de Vos. Nafion-based low-hydration polyelectrolyte multilayer membranes for enhanced water purification. ACS Applied Polymer Materials, 2019, 1(9): 2543–2551
https://doi.org/10.1021/acsapm.9b00689
90 L A Amaral-Zettler, E R Zettler, T J Mincer. Ecology of the plastisphere. Nature Reviews. Microbiology, 2020, 18(3): 139–151
https://doi.org/10.1038/s41579-019-0308-0
91 M C Barry, K Hristovski, P Westerhoff. Membrane fouling by vesicles and prevention through ozonation. Environmental Science & Technology, 2014, 48(13): 7349–7356
https://doi.org/10.1021/es500435e
92 L Wang, Y Li, W Ben, J Hu, Z Cui, K Qu, Z Qiang. In-situ sludge ozone-reduction process for effective removal of fluoroquinolone antibiotics in wastewater treatment plants. Separation and Purification Technology, 2019, 213: 419–425
https://doi.org/10.1016/j.seppur.2018.12.062
93 S K Loeb, P J J Alvarez, J A Brame, E L Cates, W Choi, J Crittenden, D D Dionysiou, Q Li, G Li-Puma, X Quan, et al. The Technology horizon for photocatalytic water treatment: sunrise or sunset? Environmental Science & Technology, 2019, 53(6): 2937–2947
https://doi.org/10.1021/acs.est.8b05041
94 J Lienert, M Koller, J Konrad, C S McArdell, N Schuwirth. Multiple-criteria decision analysis reveals high stakeholder preference to remove pharmaceuticals from hospital wastewater. Environmental Science & Technology, 2011, 45(9): 3848–3857
https://doi.org/10.1021/es1031294
95 C I Kosma, D A Lambropoulou, T A Albanis. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. Journal of Hazardous Materials, 2010, 179(1-3): 804–817
https://doi.org/10.1016/j.jhazmat.2010.03.075
96 K Gurung, M C Ncibi, S K Thangaraj, J Jänis, M Seyedsalehi, M Sillanpää. Removal of pharmaceutically active compounds (PhACs) from real membrane bioreactor (MBR) effluents by photocatalytic degradation using composite Ag2O/P-25 photocatalyst. Separation and Purification Technology, 2019, 215: 317–328
https://doi.org/10.1016/j.seppur.2018.12.069
97 X Dong, Q Ge. Metal ion-bridged forward osmosis membranes for efficient pharmaceutical wastewater reclamation. ACS Applied Materials & Interfaces, 2019, 11(40): 37163–37171
https://doi.org/10.1021/acsami.9b14162
98 M Kramer, E Scifoni, C Schuy, M Rovituso, W Tinganelli, A Maier, R Kaderka, W Kraft-Weyrather, S Brons, T Tessonnier, et al. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality. Medical Physics, 2016, 43(4): 1995–2004
https://doi.org/10.1118/1.4944593
99 F Soyekwo, C Liu, L Zhao, H Wen, W Huang, C Cai, P Kanagaraj, Y Hu. Nanofiltration membranes with metal cation-immobilized aminophosphonate networks for efficient heavy metal ion removal and organic dye degradation. ACS Applied Materials & Interfaces, 2019, 11(33): 30317–30331
https://doi.org/10.1021/acsami.9b10208
100 M N Sepehr, S Nasseri, M Zarrabi, M R Samarghandi, A Amrane. Removal of Cr(III) from tanning effluent by Aspergillus niger in airlift bioreactor. Separation and Purification Technology, 2012, 96: 256–262
https://doi.org/10.1016/j.seppur.2012.06.013
101 T Saitoh, K Shibata, K Fujimori, Y Ohtani. Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions. Separation and Purification Technology, 2017, 187: 76–83
https://doi.org/10.1016/j.seppur.2017.06.036
102 Y Zhao, C Zhou, J Wang, H Liu, Y Xu, J W Seo, J Shen, C Gao, B Van der Bruggen. Formation of morphologically confined nanospaces via self-assembly of graphene and nanospheres for selective separation of lithium. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(39): 18859–18864
https://doi.org/10.1039/C8TA06945J
103 Y Zhao, Y Qiu, Z Mai, E Ortega, J Shen, C Gao, B van der Bruggen. Symmetrically recombined nanofibers in a high-selectivity membrane for cation separation in high temperature and organic solvent. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(34): 20006–20012
https://doi.org/10.1039/C9TA07416C
104 Y Zhao, K Tang, H Liu, B van der Bruggen, A Sotto Díaz, J Shen, C Gao. An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity. Journal of Membrane Science, 2016, 520: 262–271
https://doi.org/10.1016/j.memsci.2016.07.026
105 A Helmi, F Gallucci. Latest developments in membrane (bio)reactors. Processes (Basel, Switzerland), 2020, 8(10): 1239
https://doi.org/10.3390/pr8101239
106 B Gunder, K Krauth. Replacement of secondary clarification by membrane separation-results with plate and hollow fibre modules. Water Science and Technology, 1998, 40(4-5): 311–320
https://doi.org/10.2166/wst.1999.0605
107 W Lv, Z Xiang, Y Min, Z Yu, L Ying, J Liu. Virus removal performance and mechanism of a submerged membrane bioreactor. Process Biochemistry, 2006, 41(2): 299–304
https://doi.org/10.1016/j.procbio.2005.06.005
108 D C Stuckey. Recent developments in anaerobic membrane reactors. Bioresource Technology, 2012, 122: 137–148
https://doi.org/10.1016/j.biortech.2012.05.138
109 A L Ahmad, A A Abdulkarim, B S Ooi, S Ismail. Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chemical Engineering Journal, 2013, 223: 246–267
https://doi.org/10.1016/j.cej.2013.02.130
110 F Meng, S R Chae, A Drews, M Kraume, H S Shin, F Yang. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Research, 2009, 43(6): 1489–1512
https://doi.org/10.1016/j.watres.2008.12.044
111 S M Samaei, S Gato-Trinidad, A Ali. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters: a review. Separation and Purification Technology, 2018, 200: 198–220
https://doi.org/10.1016/j.seppur.2018.02.041
112 C Mbaab, C Zzab. Ceramic membrane technology for water and wastewater treatment: a critical review of performance, full-scale applications, membrane fouling and prospects. Chemical Engineering Journal, 2021, 418: 129418
113 S Zhang, Y Qu, Y Liu, F Yang, Y Yamada. Experimental study of domestic sewage treatment with a metal membrane bioreactor. Desalination, 2005, 177(1-3): 83–93
https://doi.org/10.1016/j.desal.2004.10.034
114 Y H Xie, T Zhu, C H Xu, T Nozaki, K Furukawa. Treatment of domestic sewage by a metal membrane bioreactor. Water Science and Technology, 2012, 65(6): 1102–1108
https://doi.org/10.2166/wst.2012.422
115 L Dumée, H Li, L Bao, F M Ailloux, L Kong. The fabrication and surface functionalization of porous metal frameworks—a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(48): 15185
https://doi.org/10.1039/c3ta13240d
116 D S Dlamini, J Li, B B Mamba. Critical review of montmorillonite/polymer mixed-matrix filtration membranes: possibilities and challenges. Applied Clay Science, 2019, 168: 21–30
https://doi.org/10.1016/j.clay.2018.10.016
117 M R Bilad, L Marbelia, C Laine, I Vankelecom. A PVC-silica mixed-matrix membrane (MMM) as novel type of membrane bioreactor (MBR) membrane. Journal of Membrane Science, 2015, 493: 19–27
https://doi.org/10.1016/j.memsci.2015.05.074
118 V L Mathioudakis, A Soares, H Briers, I Martin-Garcia, B Jefferson. Treatment and energy efficiency of a granular sludge anaerobic membrane reactor handling domestic sewage. Procedia Engineering, 2012, 44: 1977–1979
https://doi.org/10.1016/j.proeng.2012.09.013
119 H J Lin, K Xie, B Mahendran, D M Ba Gley, K T Leung, S N Liss, B Q Liao. Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs). Water Research, 2009, 43(15): 3827–3837
https://doi.org/10.1016/j.watres.2009.05.025
120 H Lin, J Chen, F Wang, L Ding, H Hong. Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment. Desalination, 2011, 280(1-3): 120–126
https://doi.org/10.1016/j.desal.2011.06.058
121 R Chen, Y Nie, H Kato, J Wu, T Utashiro, J Lu, S Yue, H Jiang, L Zhang, Y Y Li. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature. Bioresource Technology, 2017, 228: 69–76
https://doi.org/10.1016/j.biortech.2016.12.089
122 Y Nie, H Kato, T Sugo, T Hojo, X Tian, Y Y Li. Effect of anionic surfactant inhibition on sewage treatment by a submerged anaerobic membrane bioreactor: efficiency, sludge activity and methane recovery. Chemical Engineering Journal, 2017, 315: 83–91
https://doi.org/10.1016/j.cej.2017.01.022
123 C Hui, H Yutaka, H Toshimasa, Y Y Li. Upgrading methane fermentation of food waste by using a hollow fiber type anaerobic membrane bioreactor. Bioresource Technology, 2018, 267: 386–394
https://doi.org/10.1016/j.biortech.2018.07.045
124 A P Trzcinski, D C Stuckey. Continuous treatment of the organic fraction of municipal solid waste in an anaerobic two-stage membrane process with liquid recycle. Water Research, 2009, 43(9): 2449–2462
https://doi.org/10.1016/j.watres.2009.03.030
125 A Akram, D C Stuckey. Flux and performance improvement in a submerged anaerobic membrane bioreactor (SAMBR) using powdered activated carbon (PAC). Process Biochemistry, 2008, 43(1): 93–102
https://doi.org/10.1016/j.procbio.2007.10.020
126 Y Nie, R Chen, X Tian, Y Y Li. Impact of water characteristics on the bioenergy recovery from sewage treatment by anaerobic membrane bioreactor via a comprehensive study on the response of microbial community and methanogenic activity. Energy, 2017, 139(15): 459–467
https://doi.org/10.1016/j.energy.2017.07.168
127 D Jang, Y Hwang, H Shin, W Lee. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors. Bioresource Technology, 2013, 141: 50–56
https://doi.org/10.1016/j.biortech.2013.02.062
128 S Tan, C Cui, X Chen, W Li. Effect of bioflocculation on fouling-related biofoulants in a membrane bioreactor during saline wastewater treatments. Bioresource Technology, 2017, 224: 285–291
https://doi.org/10.1016/j.biortech.2016.10.066
129 P M Biesheuvel, H Verweij. Design of ceramic membrane supports: permeability, tensile strength and stress. Journal of Membrane Science, 1999, 156(1): 141–152
https://doi.org/10.1016/S0376-7388(98)00335-4
130 S A Sownya, G M Madhu, A Raizada, C D Madhusoodana. Studies on effective treatment of waste water using submerged ceramic membrane bioreactor. Materials Today: Proceedings, 2020, 24: 1251–1262
https://doi.org/10.1016/j.matpr.2020.04.440
131 E Trouve, V Urbain, J Manem. Treatment of municipal wastewater by a membrane bioreactor: results of a semi-industrial pilot-scale study. Water Science and Technology, 1994, 30(4): 151–157
https://doi.org/10.2166/wst.1994.0180
132 S Zhang, F Yang, Y Liu, X Zhang, Y Yamada, K Furukawa. Performance of a metallic membrane bioreactor treating simulated distillery wastewater at temperatures of 30 to 45 °C. Desalination, 2006, 194(1-3): 146–155
https://doi.org/10.1016/j.desal.2005.10.029
133 R Reif, A Besancon, K Le Corre, B Jefferson, J M Lema, F. OmilComparison of PPCPs removal on a parallel-operated MBR and AS system and evaluation of effluent post-treatment on vertical flow reed beds. Water ence & Technology, 2011, 63: 2411–2417
134 J Wang, S Wang. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. Journal of Environmental Management, 2016, 182: 620–640
https://doi.org/10.1016/j.jenvman.2016.07.049
135 A Ng, A S Kim. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination, 2007, 212(1-3): 261–281
https://doi.org/10.1016/j.desal.2006.10.013
136 A Yurtsever, E Sahinkaya, Z Akta, D Uar, Z Wang. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater. Bioresource Technology, 2015, 192: 564–573
https://doi.org/10.1016/j.biortech.2015.06.024
137 A L Smith, L B Stadler, L Cao, N G Love, L Raskin, S J Skerlos. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environmental Science & Technology, 2014, 48(10): 5972–5981
https://doi.org/10.1021/es5006169
138 W Liu, X Song, N Huda, M Xie, G Li, W Luo. Comparison between aerobic and anaerobic membrane bioreactors for trace organic contaminant removal in wastewater treatment. Environmental Technology & Innovation, 2020, 17: 100564
https://doi.org/10.1016/j.eti.2019.100564
139 A Monteoliva-Garcia, J Martin-Pascual, M M Munio, J M Poyatos. Effects of carrier addition on water quality and pharmaceutical removal capacity of a membrane bioreactor—advanced oxidation process combined treatment. Science of the Total Environment, 2020, 708: 135104
https://doi.org/10.1016/j.scitotenv.2019.135104
140 K Xiao, S Liang, X Wang, C Chen, X Huang. Current state and challenges of full-scale membrane bioreactor applications: a critical review. Bioresource Technology, 2019, 271: 473–481
https://doi.org/10.1016/j.biortech.2018.09.061
141 G Blandin, C Gautier, M Sauchelli Toran, H Monclús, I Rodriguez-Roda, J Comas. Retrofitting membrane bioreactor (MBR) into osmotic membrane bioreactor (OMBR): a pilot scale study. Chemical Engineering Journal, 2018, 339: 268–277
https://doi.org/10.1016/j.cej.2018.01.103
142 X Li, Y Liu, J Wang, J Gascon, J Li, B van der Bruggen. Metal-organic frameworks based membranes for liquid separation. Chemical Society Reviews, 2017, 46(23): 7124–7144
https://doi.org/10.1039/C7CS00575J
143 X Chen, A Selloni. Introduction: titanium dioxide (TiO2) nanomaterials. Chemical Reviews, 2014, 114(19): 9281–9282
https://doi.org/10.1021/cr500422r
144 J N Tiwari, R N Tiwari, K S Kim. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 2012, 57(4): 724–803
https://doi.org/10.1016/j.pmatsci.2011.08.003
145 B Sutisna, V Musteata, B Pulido, T Puspasari, D M Smilgies, N Hadjichristidis, S P Nunes. High flux membranes, based on self-assembled and H-bond linked triblock copolymer nanospheres. Journal of Membrane Science, 2019, 585: 10–18
https://doi.org/10.1016/j.memsci.2019.04.045
146 W Yan, M Shi, Z Wang, Y Zhou, L Liu, S Zhao, Y Ji, J Wang, C Gao. Amino-modified hollow mesoporous silica nanospheres-incorporated reverse osmosis membrane with high performance. Journal of Membrane Science, 2019, 581: 168–177
https://doi.org/10.1016/j.memsci.2019.03.042
147 D Zou, X Chen, E Drioli, X Ke, M Qiu, Y Fan. Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation. Journal of Membrane Science, 2020, 593: 117402
https://doi.org/10.1016/j.memsci.2019.117402
148 B J Hinds, N Chopra, T Rantell, R Andrews, V Gavalas, L G Bachas. Aligned multiwalled carbon nanotube membranes. Science, 2004, 303(5654): 62–65
https://doi.org/10.1126/science.1092048
149 D S Sholl, J K Johnson. Making high-flux membranes with carbon nanotubes. Science, 2006, 312(5776): 1003–1004
https://doi.org/10.1126/science.1127261
150 X Zhao, L Cheng, R Wang, N Jia, L Liu, C Gao. Bioinspired synthesis of polyzwitterion/titania functionalized carbon nanotube membrane with superwetting property for efficient oil-in-water emulsion separation. Journal of Membrane Science, 2019, 589: 117257
https://doi.org/10.1016/j.memsci.2019.117257
151 J Li, X Li, B van der Bruggen. An MXene-based membrane for molecular separation. Environmental Science. Nano, 2020, 7(5): 1289–1304
https://doi.org/10.1039/C9EN01478K
152 Y Zhao, M Wu, Y Guo, N Mamrol, X Yang, C Gao, B van der Bruggen. Metal-organic framework based membranes for selective separation of target ions. Journal of Membrane Science, 2021, 634: 119407
https://doi.org/10.1016/j.memsci.2021.119407
153 H Yang, L Yang, H Wang, Z Xu, Y Zhao, Y Luo, N Nasir, Y Song, H Wu, F Pan, Z Jiang. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nature Communications, 2019, 10(1): 2101
https://doi.org/10.1038/s41467-019-10157-5
154 Z F Gao, Y Feng, D Ma, T S Chung. Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration. Journal of Membrane Science, 2019, 574: 124–135
https://doi.org/10.1016/j.memsci.2018.12.064
155 Z F Gao, A Naderi, W Wei, T S Chung. Selection of crosslinkers and control of microstructure of vapor-phase crosslinked composite membranes for organic solvent nanofiltration. Journal of Membrane Science, 2020, 616: 118582
https://doi.org/10.1016/j.memsci.2020.118582
156 T H Lee, J Y Oh, S P Hong, J M Lee, S M Roh, S H Kim, H B Park. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: importance of particle deposition. Journal of Membrane Science, 2019, 570–571: 23–33
https://doi.org/10.1016/j.memsci.2018.10.015
157 D L Zhao, Q Zhao, T S Chung. Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination. Desalination, 2021, 516: 115230
https://doi.org/10.1016/j.desal.2021.115230
158 Z Zhang, P Li, X Y Kong, G Xie, Y Qian, Z Wang, Y Tian, L Wen, L Jiang. Bioinspired heterogeneous ion pump membranes: unidirectional selective pumping and controllable gating properties stemming from asymmetric ionic group distribution. Journal of the American Chemical Society, 2018, 140(3): 1083–1090
https://doi.org/10.1021/jacs.7b11472
159 S Yan, S Luan, H Shi, X Xu, J Zhang, S Yuan, Y Yang, J Yin. Hierarchical polymer brushes with dominant antibacterial mechanisms switching from bactericidal to bacteria repellent. Biomacromolecules, 2016, 17(5): 1696–1704
https://doi.org/10.1021/acs.biomac.6b00115
160 M K Shahid, Y G Choi. The comparative study for scale inhibition on surface of RO membranes in wastewater reclamation: CO2 purging versus three different antiscalants. Journal of Membrane Science, 2018, 546: 61–69
https://doi.org/10.1016/j.memsci.2017.09.087
161 Z Wang, Z Wu, X Yin, L Tian. Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: membrane foulant and gel layer characterization. Journal of Membrane Science, 2008, 325(1): 238–244
https://doi.org/10.1016/j.memsci.2008.07.035
162 S Mikhaylin, L Bazinet. Fouling on ion-exchange membranes: classification, characterization and strategies of prevention and control. Advances in Colloid and Interface Science, 2016, 229: 34–56
https://doi.org/10.1016/j.cis.2015.12.006
163 M D Firouzjaei, S F Seyedpour, S A Aktij, M Giagnorio, N Bazrafshan, A Mollahosseini, F Samadi, S Ahmadalipour, F D Firouzjaei, M R Esfahani, et al.. Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. Journal of Membrane Science, 2020, 596: 117604
https://doi.org/10.1016/j.memsci.2019.117604
164 L Malaeb, P Le-Clech, J S Vrouwenvelder, G M Ayoub, P E Saikaly. Do biological-based strategies hold promise to biofouling control in MBRs? Water Research, 2013, 47(15): 5447–5463
https://doi.org/10.1016/j.watres.2013.06.033
165 A Bogler, S Lin, E Bar-Zeev. Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: principles, impacts and future directions. Journal of Membrane Science, 2017, 542: 378–398
https://doi.org/10.1016/j.memsci.2017.08.001
166 O Sánchez. Microbial diversity in biofilms from reverse osmosis membranes: a short review. Journal of Membrane Science, 2018, 545: 240–249
https://doi.org/10.1016/j.memsci.2017.09.082
167 E Bar-Zeev, U Passow, S R Castrillon, M Elimelech. Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling. Environmental Science & Technology, 2015, 49(2): 691–707
https://doi.org/10.1021/es5041738
168 H S Oh, C H Lee. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. Journal of Membrane Science, 2018, 554: 331–345
https://doi.org/10.1016/j.memsci.2018.03.019
169 H F Ridgway, J Orbell, S Gray. Molecular simulations of polyamide membrane materials used in desalination and water reuse applications: recent developments and future prospects. Journal of Membrane Science, 2017, 524: 436–448
https://doi.org/10.1016/j.memsci.2016.11.061
170 V Kochkodan, D J Johnson, N Hilal. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling. Advances in Colloid and Interface Science, 2014, 206: 116–140
https://doi.org/10.1016/j.cis.2013.05.005
171 J M Dickhout, J Moreno, P M Biesheuvel, L Boels, R G H Lammertink, W M de Vos. Produced water treatment by membranes: a review from a colloidal perspective. Journal of Colloid and Interface Science, 2017, 487: 523–534
https://doi.org/10.1016/j.jcis.2016.10.013
172 M A Al Mamun, M Sadrzadeh, R Chatterjee, S Bhattacharjee, S De. Colloidal fouling of nanofiltration membranes: a novel transient electrokinetic model and experimental study. Chemical Engineering Science, 2015, 138: 153–163
https://doi.org/10.1016/j.ces.2015.08.022
173 B Dersoir, A B Schofield, M R de Saint Vincent, H Tabuteau. Dynamics of pore fouling by colloidal particles at the particle level. Journal of Membrane Science, 2019, 573: 411–424
https://doi.org/10.1016/j.memsci.2018.12.025
174 J Lohaus, Y M Perez, M Wessling. What are the microscopic events of colloidal membrane fouling? Journal of Membrane Science, 2018, 553: 90–98
https://doi.org/10.1016/j.memsci.2018.02.023
175 M Haddad, L Bazinet, O Savadogo, J Paris. Electrochemical acidification of Kraft black liquor: impacts of pulsed electric field application on bipolar membrane colloidal fouling and process intensification. Journal of Membrane Science, 2017, 524: 482–492
https://doi.org/10.1016/j.memsci.2016.10.043
176 Y L Lin. Effects of organic, biological and colloidal fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. Journal of Membrane Science, 2017, 542: 342–351
https://doi.org/10.1016/j.memsci.2017.08.023
177 B Mi, M Elimelech. Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 2010, 348(1-2): 337–345
https://doi.org/10.1016/j.memsci.2009.11.021
178 X M Wang, T D Waite. Role of gelling soluble and colloidal microbial products in membrane fouling. Environmental Science & Technology, 2009, 43(24): 9341–9347
https://doi.org/10.1021/es9013129
179 Q Wang, Z Wang, Z Wu, J Ma, Z Jiang. Insights into membrane fouling of submerged membrane bioreactors by characterizing different fouling layers formed on membrane surfaces. Chemical Engineering Journal, 2012, 179: 169–177
https://doi.org/10.1016/j.cej.2011.10.074
180 Y Zhao, H Liu, K Tang, Y Jin, J Pan, B Van der Bruggen, J Shen, C Gao. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane. Scientific Reports, 2016, 6(1): 37285
https://doi.org/10.1038/srep37285
181 G Amy. Fundamental understanding of organic matter fouling of membranes. Desalination, 2008, 231(1-3): 44–51
https://doi.org/10.1016/j.desal.2007.11.037
182 T Tong, A F Wallace, S Zhao, Z Wang. Mineral scaling in membrane desalination: mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes. Journal of Membrane Science, 2019, 579: 52–69
https://doi.org/10.1016/j.memsci.2019.02.049
183 Y Zhao, M Yao, P Shen, C Uytterhoeven, N Marmrol, J Shen, C Gao, B Van der Bruggen. Composite anti-scaling membrane made of interpenetrating networks of nanofibers for selective separation of lithium. Journal of Membrane Science, 2021, 618: 118668
https://doi.org/10.1016/j.memsci.2020.118668
184 L I Tinggang, J Liu, R Bai, F S Wong. Membrane-aerated biofilm reactor for the treatment of acetonitrile wastewater. Environmental Science & Technology, 2008, 42(6): 2099–2104
https://doi.org/10.1021/es702150f
185 H Tian, Y Hu, X Xu, M Hui, B Li. Enhanced wastewater treatment with high o-aminophenol concentration by two-stage MABR and its biodegradation mechanism. Bioresource Technology, 2019, 289: 121649
https://doi.org/10.1016/j.biortech.2019.121649
186 H Tian, X Xu, J Qu, H Li, Y Hu, L Huang, W He, B Li. Biodegradation of phenolic compounds in high saline wastewater by biofilms adhering on aerated membranes. Journal of Hazardous Materials, 2020, 392: 122463
https://doi.org/10.1016/j.jhazmat.2020.122463
187 A G Livingston. Extractive membrane bioreactors: a new process technology for detoxifying chemical industry wastewaters. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1994, 60(2): 117–124
https://doi.org/10.1002/jctb.280600202
188 B J Yeo, S Goh, A G Livingston, A G Fane. Controlling biofilm development in the extractive membrane bioreactor. Separation and Purification Technology, 2017, 52: 113–121
189 G Skouteris, D Saroj, P Melidis, F I Hai, S Ouki. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation—A critical review. Bioresource Technology, 2015, 185: 399–410
https://doi.org/10.1016/j.biortech.2015.03.010
190 B J Yeo, S Goh, J Zhang, A G Livingston, A G Fane. Novel MBRs for the removal of organic priority pollutants from industrial wastewaters: a review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2015, 90(11): 1949–1967
https://doi.org/10.1002/jctb.4782
191 G Busca, S Berardinelli, C Resini, L Arrighi. Technologies for the removal of phenol from fluid streams: a short review of recent developments. Journal of Hazardous Materials, 2008, 160(2-3): 265–288
https://doi.org/10.1016/j.jhazmat.2008.03.045
192 A G Livingston, J P Arcangeli, A T Boam, S Zhang, M Marangon, L M F D Santos. Extractive membrane bioreactors for detoxification of chemical industry wastes: process development. Journal of Membrane Science, 1998, 151(1): 29–44
https://doi.org/10.1016/S0376-7388(98)00237-3
193 A G Livingston. A novel membrane bioreactor for detoxifying industrial wastewater: I. Biodegradation of phenol in a synthetically concocted wastewater. Biotechnology and Bioengineering, 1993, 41(10): 915–926
https://doi.org/10.1002/bit.260411002
194 M Xiao, J Zhou, Y Tan, A Zhang, Y Xia, L Ji. Treatment of highly-concentrated phenol wastewater with an extractive membrane reactor using silicone rubber. Desalination, 2006, 195(1-3): 281–293
https://doi.org/10.1016/j.desal.2005.12.006
195 L F Ren, M Adeel, J Li, C Xu, Z Xu, X Zhang, J Shao, Y He. Phenol separation from phenol-laden saline wastewater by membrane aromatic recovery system-like membrane contactor using superhydrophobic/organophilic electrospun PDMS/PMMA membrane. Water Research, 2018, 135: 31–43
https://doi.org/10.1016/j.watres.2018.02.011
196 L F Ren, H H Ngo, C Bu, C Ge, S Q Ni, J Shao, Y He. Novel external extractive membrane bioreactor (EMBR) using electrospun polydimethylsiloxane/polymethyl methacrylate membrane for phenol-laden saline wastewater. Chemical Engineering Journal, 2020, 383: 123179
https://doi.org/10.1016/j.cej.2019.123179
197 Y Liao, S Goh, M Tian, R Wang, A G Fane. Design, development and evaluation of nanofibrous composite membranes with opposing membrane wetting properties for extractive membrane bioreactors. Journal of Membrane Science, 2018, 551: 55–65
https://doi.org/10.1016/j.memsci.2018.01.029
198 M Y Jin, Y Liao, C H Loh, C H Tan, R Wang. Preparation of polydimethylsiloxane-polyvinylidene fluoride composite membranes for phenol removal in extractive membrane bioreactor. Industrial & Engineering Chemistry Research, 2017, 56(12): 3436–3445
https://doi.org/10.1021/acs.iecr.7b00191
199 L M D Freitas Santos, U Hömmerich, A G Livingston. Dichloroethane removal from gas streams by an extractive membrane bioreactor. Biotechnology Progress, 1995, 11(2): 194–201
https://doi.org/10.1021/bp00032a011
200 L F Dos Santos, G L Biundo. Treatment of pharmaceutical industry process wastewater using the extractive membrane bioreactor. Environment and Progress, 1999, 18(1): 34–39
https://doi.org/10.1002/ep.670180118
201 S Chuichulcherm, S Nagpal, L Peeva, A Livingston. Treatment of metal—containing wastewaters with a novel extractive membrane reactor using sulfate—reducing bacteria. Environmental & Clean Technology, 2001, 76(1): 61–68
https://doi.org/10.1002/1097-4660(200101)76:1<61::AID-JCTB357>3.0.CO;2-O
202 W Luo, F I Hai, W E Price, W Guo, H H Ngo, K Yamamoto, L D Nghiem. High retention membrane bioreactors: challenges and opportunities. Bioresource Technology, 2014, 167: 539–546
https://doi.org/10.1016/j.biortech.2014.06.016
203 Y L Liu, X M Wang, H W Yang, Y F Xie, X Huang. Preparation of nanofiltration membranes for high rejection of organic micropollutants and low rejection of divalent cations. Journal of Membrane Science, 2019, 572(15): 152–160
https://doi.org/10.1016/j.memsci.2018.11.013
204 J H Choi, K Fukushi, K Yamamoto. A submerged nanofiltration membrane bioreactor for domestic wastewater treatment: the performance of cellulose acetate nanofiltration membranes for long-term operation. Separation and Purification Technology, 2007, 52(3): 470–477
https://doi.org/10.1016/j.seppur.2006.05.027
205 F Zaviska, P Drogui, A Grasmick, A Azais, M Héran. Nanofiltration membrane bioreactor for removing pharmaceutical compounds. Journal of Membrane Science, 2013, 429: 121–129
https://doi.org/10.1016/j.memsci.2012.11.022
206 D Li, H Wang. Recent developments in reverse osmosis desalination membranes. Journal of Materials Chemistry, 2010, 20(22): 4551–4566
https://doi.org/10.1039/b924553g
207 F T Ming, S Lee, H Xu, K Jeong, T H Chong. Impact of salt accumulation in the bioreactor on the performance of nanofiltration membrane bioreactor (NF-MBR) + reverse osmosis (RO) process for water reclamation. Water Research, 2019, 170: 115352
208 M Waszak, A Markowska-Szczupak, M Gryta. Application of nanofiltration for production of 1,3-propanediol in membrane bioreactor. Catalysis Today, 2016, 268(15): 164–170
https://doi.org/10.1016/j.cattod.2016.02.024
209 J Snowdon, K S Singh, G Zanatta. Optimization of an external nanofiltration anaerobic membrane bioreactor treating a high-strength starch-based wastewater. Journal of Environmental Engineering, 2018, 144(6): 04018032
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001376
210 E R Cornelissen, D Harmsen, K Korte, C J Ruiken, J J Qin, H Oo, L P Wessels. Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science, 2008, 319(1-2): 158–168
https://doi.org/10.1016/j.memsci.2008.03.048
211 R W Holloway, A Achilli, T Y Cath. The osmotic membrane bioreactor: a critical review. Environmental Science & Technology, 2015, 1: 581–605
212 X Wang, V Chang, C Y Tang. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future. Journal of Membrane Science, 2016, 504: 113–132
https://doi.org/10.1016/j.memsci.2016.01.010
213 A Achilli, T Y Cath, E A Marchand, A E Childress. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination, 2009, 239(1-3): 10–21
https://doi.org/10.1016/j.desal.2008.02.022
214 J Y Wei, J Zhang, W Lay, B Cao, A G Fane, L Yu. State of the art of osmotic membrane bioreactors for water reclamation. Bioresource Technology, 2012, 122: 217–222
https://doi.org/10.1016/j.biortech.2012.03.060
215 W C L Lay, Q Zhang, J Zhang, D McDougald, C Tang, R Wang, Y Liu, A G Fane. Effect of pharmaceuticals on the performance of a novel osmotic membrane bioreactor (OMBR). Separation Science and Technology, 2012, 47(4): 543–554
https://doi.org/10.1080/01496395.2011.630249
216 A Alturki, J Mcdonald, S J Khan, F I Hai, D N Long. Performance of a novel osmotic membrane bioreactor (OMBR) system: flux stability and removal of trace organics. Bioresource Technology, 2012, 113: 201–206
https://doi.org/10.1016/j.biortech.2012.01.082
217 D Kwon, S J Kwon, J Kim, J H Lee. Feasibility of the highly-permselective forward osmosis membrane process for the post-treatment of the anaerobic fluidized bed bioreactor effluent. Desalination, 2020, 485: 114451
https://doi.org/10.1016/j.desal.2020.114451
218 S Tan, I Acquah, W Li. Cultivation of marine activated sludge to treat saline wastewater. Fresenius Environmental Bulletin, 2016, 25: 3134–3141
219 Y Lu, Z He. Mitigation of salinity buildup and recovery of wasted salts in a hybrid osmotic membrane bioreactor-electrodialysis system. Environmental Science & Technology, 2015, 49(17): 10529–10535
https://doi.org/10.1021/acs.est.5b01243
220 N D Viet, J Cho, Y Yoon, A Jang. Enhancing the removal efficiency of osmotic membrane bioreactors: a comprehensive review of influencing parameters and hybrid configurations. Chemosphere, 2019, 236: 124363
https://doi.org/10.1016/j.chemosphere.2019.124363
221 Y K Geng, Y Wang, X R Pan, G P Sheng. Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor. Bioresource Technology, 2018, 247: 471–476
https://doi.org/10.1016/j.biortech.2017.09.118
222 Y K Wang, Y K Geng, X R Pan, G P Sheng. In situ utilization of generated electricity for nutrient recovery in urine treatment using a selective electrodialysis membrane bioreactor. Chemical Engineering Science, 2017, 171(2): 451–458
https://doi.org/10.1016/j.ces.2017.06.002
223 J Mamo, M J García-Galán, M Stefani, S Rodríguez-Mozaz, D Barceló, H Monclús, I Rodriguez-Roda, J Comas. Fate of pharmaceuticals and their transformation products in integrated membrane systems for wastewater reclamation. Chemical Engineering Journal, 2018, 331: 450–461
https://doi.org/10.1016/j.cej.2017.08.050
224 M Racar, D Dolar, K Karadakić, N Čavarović, N Glumac, D Ašperger, K Košutić. Challenges of municipal wastewater reclamation for irrigation by MBR and NF/RO: physico-chemical and microbiological parameters, and emerging contaminants. Science of the Total Environment, 2020, 722: 137959
https://doi.org/10.1016/j.scitotenv.2020.137959
225 O Díaz, E Gonzalez, L Vera, L Porlán, J Rodríguez-Sevilla, C Afonso-Olivares, Z Ferrera, J J Santana Rodriguez. Nanofiltration/reverse osmosis as pretreatment technique for water reuse: ultrafiltration versus tertiary membrane reactor. Clean (Weinheim), 2017, 45(5): 1600014
https://doi.org/10.1002/clen.201600014
226 K Dhangar, M Kumar. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: a review. Science of the Total Environment, 2020, 738: 140320
https://doi.org/10.1016/j.scitotenv.2020.140320
227 S Beier, S Köster, K Veltmann, H Schröder, J Pinnekamp. Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis. Water Science and Technology, 2010, 61(7): 1691–1698
https://doi.org/10.2166/wst.2010.119
228 L S Tam, T W Tang, G N Lau, K R Sharma, G H Chen. A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems. Desalination, 2007, 202(1-3): 106–113
https://doi.org/10.1016/j.desal.2005.12.045
229 A M Comerton, R C Andrews, D M Bagley. Evaluation of an MBR-RO system to produce high quality reuse water: microbial control, DBP formation and nitrate. Water Research, 2005, 39(16): 3982–3990
https://doi.org/10.1016/j.watres.2005.07.014
230 T Prado, A De Castro Bruni, M R F Barbosa, S C Garcia, A M De Jesus Melo, M I Z Sato. Performance of wastewater reclamation systems in enteric virus removal. Science of the Total Environment, 2019, 678: 33–42
https://doi.org/10.1016/j.scitotenv.2019.04.435
231 T Prado, A De Castro Bruni, M R F Barbosa, S C Garcia, L Z Moreno, M I Z Sato. Noroviruses in raw sewage, secondary effluents and reclaimed water produced by sand-anthracite filters and membrane bioreactor/reverse osmosis system. Science of the Total Environment, 2019, 646: 427–437
https://doi.org/10.1016/j.scitotenv.2018.07.301
232 A Plevri, C Noutsopoulos, D Mamais, C Makropoulos, A Andreadakis, E Lytras, S Samios. Priority pollutants and other micropollutants removal in an MBR-RO wastewater treatment system. Desalination and Water Treatment, 2018, 127: 121–131
https://doi.org/10.5004/dwt.2018.22857
233 A Plevri, D Mamais, C Noutsopoulos, C Makropoulos, A Andreadakis, K Rippis, E Smeti, E Lytras, C Lioumis. Promoting on-site urban wastewater reuse through MBR-RO treatment. Desalination and Water Treatment, 2017, 91: 2–11
https://doi.org/10.5004/dwt.2017.20804
234 C Li, C Cabassud, C Guigui. Evaluation of membrane bioreactor on removal of pharmaceutical micropollutants: a review. Desalination and Water Treatment, 2014, 55(4): 845–858
https://doi.org/10.1080/19443994.2014.926839
235 E Sahar, I David, Y Gelman, H Chikurel, A Aharoni, R Messalem, A Brenner. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination, 2011, 273(1): 142–147
https://doi.org/10.1016/j.desal.2010.11.004
236 D Dolar, M Gros, S Rodriguez-Mozaz, J Moreno, J Comas, I Rodriguez-Roda, D Barceló. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. Journal of Hazardous Materials, 2012, 239–240: 64–69
https://doi.org/10.1016/j.jhazmat.2012.03.029
237 M Aziz, T Ojumu. Exclusion of estrogenic and androgenic steroid hormones from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application. Membranes, 2020, 10(3): 37
https://doi.org/10.3390/membranes10030037
238 B Wu, T Kitade, T H Chong, T Uemura, A G Fane. Impact of membrane bioreactor operating conditions on fouling behavior of reverse osmosis membranes in MBR-RO processes. Desalination, 2013, 311(15): 37–45
https://doi.org/10.1016/j.desal.2012.11.020
239 G Wang, Z Fan, D Wu, L Qin, G Zhang, C Gao, Q Meng. Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate. Desalination, 2014, 349: 136–144
https://doi.org/10.1016/j.desal.2014.06.030
240 J Wang, K Li, Y Wei, Y Cheng, D Wei, M Li. Performance and fate of organics in a pilot MBR-NF for treating antibiotic production wastewater with recycling NF concentrate. Chemosphere, 2015, 121: 92–100
https://doi.org/10.1016/j.chemosphere.2014.11.034
241 M C Hacıfazlıoğlu, İ Parlar, T Ö Pek, N Kabay. Evaluation of chemical cleaning to control fouling on nanofiltration and reverse osmosis membranes after desalination of MBR effluent. Desalination, 2019, 466: 44–51
https://doi.org/10.1016/j.desal.2019.05.003
242 R Rautenbach, R Mellis. Waste water treatment by a combination of bioreactor and nanofiltration. Desalination, 1994, 95(2): 171–188
https://doi.org/10.1016/0011-9164(94)00012-3
243 T Tran, T Nguyen, H Ho, D Le, T Lam, D Nguyen, A Hoang, T Do, L Hoang, T Nguyen, et al. Integration of membrane bioreactor and nanofiltration for the treatment process of real hospital wastewater in Ho Chi Minh City, Vietnam. Processes (Basel, Switzerland), 2019, 7(3): 123
https://doi.org/10.3390/pr7030123
244 I Parlar, M Hacıfazlıoğlu, N Kabay, T Ö Pek, M Yüksel. Performance comparison of reverse osmosis (RO) with integrated nanofiltration (NF) and reverse osmosis process for desalination of MBR effluent. Journal of Water Process Engineering, 2019, 29: 100640
https://doi.org/10.1016/j.jwpe.2018.06.002
245 Y Lan, K Groenen-Serrano, C Coetsier, C Causserand. Fouling control using critical, threshold and limiting fluxes concepts for cross-flow NF of a complex matrix: membrane bioreactor effluent. Journal of Membrane Science, 2017, 524: 288–298
https://doi.org/10.1016/j.memsci.2016.11.001
246 Y Lan, K Groenen-Serrano, C Coetsier, C Causserand. Nanofiltration performances after membrane bioreactor for hospital wastewater treatment: fouling mechanisms and the quantitative link between stable fluxes and the water matrix. Water Research, 2018, 146: 77–87
https://doi.org/10.1016/j.watres.2018.09.004
247 L Geoswami, R V Kumar, S N Borah, N A Manikandan, K Pakshirajan, G Pugazhenthi. Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: A review. Journal of Water Process Engineering, 2018, 26: 314–328
https://doi.org/10.1016/j.jwpe.2018.10.024
248 K Arola, H Hatakka, M Mänttäri, M Kallioinen. Novel process concept alternatives for improved removal of micropollutants in wastewater treatment. Separation and Purification Technology, 2017, 186: 333–341
https://doi.org/10.1016/j.seppur.2017.06.019
249 A A Alturki, N Tadkaew, J A Mcdonald, S J Khan, W E Price, L D Nghiem. Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. Journal of Membrane Science, 2010, 365(1-2): 206–215
https://doi.org/10.1016/j.memsci.2010.09.008
250 K Chon, S Sarp, S Lee, J H Lee, J A Lopez-Ramirez, J Cho. Evaluation of a membrane bioreactor and nanofiltration for municipal wastewater reclamation: trace contaminant control and fouling mitigation. Desalination, 2011, 272(1-3): 128–134
https://doi.org/10.1016/j.desal.2011.01.002
[1] Hiep Thuan Lu, Wen Li, Ehsan Soroodan Miandoab, Shinji Kanehashi, Guoping Hu. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review[J]. Front. Chem. Sci. Eng., 2021, 15(3): 464-482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed