Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (6) : 996-1002    https://doi.org/10.1007/s11705-022-2138-2
RESEARCH ARTICLE
Deep eutectic solvent inclusions for high-k composite dielectric elastomers
Changgeng Zhang, Qi Zhang()
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
 Download: PDF(2227 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent advances in novel electroactive devices have placed new requirements on material development. High-performance dielectric elastomers with good mechanical stretchability and high dielectric constant are under high demand. However, the current strategy for fabricating these materials suffers from high cost or low thermal stability, which greatly hinders large-scale industrial production. Herein, we have successfully developed a novel strategy for improving the dielectric constant of polymeric elastomers via deep eutectic solvent inclusion by taking advantage of the low cost, convenient and environmentally benign synthesis process and high ionic conductivity from deep eutectic solvents. The as-prepared composite elastomers showed good stretchability and a greatly enhanced dielectric constant with a negligible increase in dielectric dissipation. Moreover, we have proven the universality of our strategy by using different types of deep eutectic solvents. It is believed that low-cost, easy-synthesis and environmentally friendly deep eutectic solvents including composite elastomers are highly suitable for large-scale industrial production and can greatly broaden the application fields of dielectric elastomers.

Keywords composite materials      deep eutectic solvent      dielectric elastomer      high dielectric constant     
Corresponding Author(s): Qi Zhang   
Online First Date: 31 March 2022    Issue Date: 28 June 2022
 Cite this article:   
Changgeng Zhang,Qi Zhang. Deep eutectic solvent inclusions for high-k composite dielectric elastomers[J]. Front. Chem. Sci. Eng., 2022, 16(6): 996-1002.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2138-2
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I6/996
Fig.1  Photos of the raw materials and products for the preparation of DES/PDMS precursor emulsion. From left to right: LiTFSI powder; urea powder; urea/LiTFSI DES; PDMS precursor (polymer base and curing agent at 10:1 molar ratio); 20 vol% DES-PDMS emulsion.
Fig.2  The preparation scheme of the DES included composite elastomers.
Fig.3  Properties of emulsions for DES (urea/LiTFSI) included composite elastomers. The rheological properties, including storage modulus G' and loss modulus G'', of emulsions versus (a) different shear rates and (b) different DES loadings. The average droplet size of DES fillers inside the emulsions of (c) different shear rates and (d) different DES loadings. The inserts are photographs of emulsions with dyed DES droplets taken by 3D confocal microscopy (red scale bar: 25 μm).
Fig.4  Mechanical and dielectric properties of DES (urea/LiTFSI)-included composite elastomers. (a) Digital photos of prepared stretchable composite elastomers; (b) strain-stress curves of composite elastomers with different DES volume percentage loadings; (c) elastic modulus versus DES loading (calculated from 0 to 10% strain); (d) hysteresis loops of 20 vol% DES including elastomer, from 50% strain to 200% strain; (e) dielectric constant of DES including composite elastomers with different loadings; (f) relationship of dielectric constant (left, black square) and dielectric loss (right, blue hexagon) at 105 Hz as a function of DES loading.
Fig.5  Dielectric constant versus temperature (The DES loading for the sample was 20 vol%).
DES notation HBD HBA
EG/LiTFSI DES EG LiTFSI
Urea/LiTFSI DES Urea LiTFSI
EG/ChCl DES EG ChCl
Urea/ChCl DES Urea ChCl
Tab.1  Details of different types of DESs
Fig.6  Dielectric properties of composite elastomers with four types of DES inclusions.
Fig.7  Pictures of stretchable composite elastomers with different types of DES inclusions (All the DES loading for the samples were 30 vol%).
1 S Shian, K Bertoldi, D R Clarke. Dielectric elastomer based “grippers” for soft robotics. Advanced Materials, 2015, 27( 43): 6814– 6819
https://doi.org/10.1002/adma.201503078
2 A Rafsanjani, Y Zhang, B Liu, S M Rubinstein, K Bertoldi. Kirigami skins make a simple soft actuator crawl. Science Robotics, 2018, 3( 15): eaar7555
https://doi.org/10.1126/scirobotics.aar7555
3 M Duduta, R J Wood, D R Clarke. Multilayer dielectric elastomers for fast, programmable actuation without prestretch. Advanced Materials, 2016, 28( 36): 8058– 8063
https://doi.org/10.1002/adma.201601842
4 A Poulin, S Rosset, H R Shea. Printing low-voltage dielectric elastomer actuators. Applied Physics Letters, 2015, 107( 24): 244104
https://doi.org/10.1063/1.4937735
5 E Hajiesmaili, D R Clarke. Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nature Communications, 2019, 10( 1): 1– 7
https://doi.org/10.1038/s41467-018-08094-w
6 L Shi, R Yang, S Lu, K Jia, C Xiao, T Lu, T Wang, W Wei, H Tan, S Ding. Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency. NPG Asia Materials, 2018, 10( 8): 821– 826
https://doi.org/10.1038/s41427-018-0077-7
7 Y Ke, J Chen, G Lin, S Wang, Y Zhou, J Yin, P S Lee, Y Long. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Advanced Energy Materials, 2019, 9( 39): 1902066
https://doi.org/10.1002/aenm.201902066
8 H N Kim, S Yang. Responsive smart windows from nanoparticle–polymer composites. Advanced Functional Materials, 2020, 30( 2): 1902597
https://doi.org/10.1002/adfm.201902597
9 H N Kim, D Ge, E Lee, S Yang. Multistate and on-demand smart windows. Advanced Materials, 2018, 30( 43): 1803847
https://doi.org/10.1002/adma.201803847
10 C Xu, G T Stiubianu, A A Gorodetsky. Adaptive infrared-reflecting systems inspired by cephalopods. Science, 2018, 359( 6383): 1495– 1500
https://doi.org/10.1126/science.aar5191
11 R Pelrine, R Kornbluh, Q Pei, J Joseph. High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287( 5454): 836– 839
https://doi.org/10.1126/science.287.5454.836
12 S C Mannsfeld, B C Tee, R M Stoltenberg, C V H Chen, S Barman, B V Muir, A N Sokolov, C Reese, Z Bao. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials, 2010, 9( 10): 859– 864
https://doi.org/10.1038/nmat2834
13 F Carpi, S Bauer, D De Rossi. Stretching dielectric elastomer performance. Science, 2010, 330( 6012): 1759– 1761
https://doi.org/10.1126/science.1194773
14 F Carpi, G Frediani, S Turco, D De Rossi. Bioinspired tunable lens with muscle-like electroactive elastomers. Advanced Functional Materials, 2011, 21( 21): 4152– 4158
https://doi.org/10.1002/adfm.201101253
15 J E Q Quinsaat, M Alexandru, F A Nüesch, H Hofmann, A Borgschulte, D M Opris. Highly stretchable dielectric elastomer composites containing high volume fractions of silver nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3( 28): 14675– 14685
https://doi.org/10.1039/C5TA03122B
16 J Biggs, K Danielmeier, J Hitzbleck, J Krause, T Kridl, S Nowak, E Orselli, X Quan, D Schapeler, W Sutherland, J Wagner. Electroactive polymers: developments of and perspectives for dielectric elastomers. Angewandte Chemie International Edition, 2013, 52( 36): 9409– 9421
https://doi.org/10.1002/anie.201301918
17 W Sun, J Mao, S Wang, L Zhang, Y Cheng. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications. Frontiers of Chemical Science and Engineering, 2021, 15( 1): 18– 34
https://doi.org/10.1007/s11705-020-1939-4
18 P Li, Y Wang, U Gupta, J Liu, L Zhang, D Du, C C Foo, J Ouyang, J Zhu. Transparent soft robots for effective camouflage. Advanced Functional Materials, 2019, 29( 37): 1901908
https://doi.org/10.1002/adfm.201901908
19 D Zhalmuratova, H J Chung. Reinforced gels and elastomers for biomedical and soft robotics applications. ACS Applied Polymer Materials, 2020, 2( 3): 1073– 1091
https://doi.org/10.1021/acsapm.9b01078
20 M Ilami, H Bagheri, R Ahmed, E O Skowronek, H Marvi. Materials, actuators, and sensors for soft bioinspired robots. Advanced Materials, 2021, 33( 19): 2003139
https://doi.org/10.1002/adma.202003139
21 N Ning, Q Ma, S Liu, M Tian, L Zhang, T Nishi. Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly(dopamine) encapsulated graphene oxide. ACS Applied Materials & Interfaces, 2015, 7( 20): 10755– 10762
https://doi.org/10.1021/acsami.5b00808
22 M Panahi, B Zahiri, M Noroozi. Graphene-based composite for dielectric elastomer actuator: a comprehensive review. Sensors and Actuators. A, Physical, 2019, 293 : 222– 241
https://doi.org/10.1016/j.sna.2019.05.003
23 E Cakmak, X Fang, O Yildiz, P D Bradford, T K Ghosh. Carbon nanotube sheet electrodes for anisotropic actuation of dielectric elastomers. Carbon, 2015, 89 : 113– 120
https://doi.org/10.1016/j.carbon.2015.03.011
24 H Zhao, L Zhang, M H Yang, Z M Dang, J Bai. Temperature-dependent electro-mechanical actuation sensitivity in stiffness-tunable BaTiO3/polydimethylsiloxane dielectric elastomer nanocomposites. Applied Physics Letters, 2015, 106( 9): 092904
https://doi.org/10.1063/1.4914012
25 S Luo, S Yu, R Sun, C P Wong. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. ACS Applied Materials & Interfaces, 2014, 6( 1): 176– 182
https://doi.org/10.1021/am404556c
26 M D Bartlett, A Fassler, N Kazem, E J Markvicka, P Mandal, C Majidi. Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Advanced Materials, 2016, 28( 19): 3726– 3731
https://doi.org/10.1002/adma.201506243
27 C Pan, E J Markvicka, M H Malakooti, J Yan, L Hu, K Matyjaszewski, C Majidi. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials. Advanced Materials, 2019, 31( 23): e1900663
https://doi.org/10.1002/adma.201900663
28 T N Ankit, F Ho, F Krisnadi, M R Kulkarni, L L Nguyen, S J A Koh, N Mathews. High-k, ultrastretchable self-enclosed ionic liquid-elastomer composites for soft robotics and flexible electronics. ACS Applied Materials & Interfaces, 2020, 12( 33): 37561– 37570
https://doi.org/10.1021/acsami.0c08754
29 L Shi, C Zhang, Y Du, H Zhu, Q Zhang, S Zhu. Improving dielectric constant of polymers through liquid electrolyte inclusion. Advanced Functional Materials, 2021, 31( 8): 2007863
https://doi.org/10.1002/adfm.202007863
30 M Zhong, Q F Tang, Y W Zhu, X Y Chen, Z J Zhang. An alternative electrolyte of deep eutectic solvent by ChCl and EG for wide temperature range supercapacitors. Journal of Power Sources, 2020, 452 : 227847
https://doi.org/10.1016/j.jpowsour.2020.227847
31 J Zhao, J Zhang, W Yang, B Chen, Z Zhao, H Qiu, S Dong, X Zhou, G Cui, L Chen. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57 : 625– 634
https://doi.org/10.1016/j.nanoen.2018.12.086
32 E R Parnham, E A Drylie, P S Wheatley, A M Slawin, R E Morris. Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angewandte Chemie International Edition, 2006, 118( 30): 5084– 5088
https://doi.org/10.1002/ange.200600290
33 S García-Argüelles, M Serrano, M C Gutiérrez, M L Ferrer, L Yuste, F Rojo, Monte F del. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties. Langmuir, 2013, 29( 30): 9525– 9534
https://doi.org/10.1021/la401353r
34 C Zhang, Y Ding, L Zhang, X Wang, Y Zhao, X Zhang, G Yu. A sustainable redox-flow battery with an aluminum-based, deep-eutectic-solvent anolyte. Angewandte Chemie International Edition, 2017, 56( 26): 7454– 7459
https://doi.org/10.1002/anie.201703399
35 J Wu, Q Liang, X Yu, Q F Lü, L Ma, X Qin, G Chen, B Li. Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective. Advanced Functional Materials, 2021, 31( 22): 2011102
https://doi.org/10.1002/adfm.202011102
36 T F Tadros. Fundamental principles of emulsion rheology and their applications. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 1994, 91 : 39– 55
https://doi.org/10.1016/0927-7757(93)02709-N
37 R W Style, R Boltyanskiy, B Allen, K E Jensen, H P Foote, J S Wettlaufer, E R Dufresne. Stiffening solids with liquid inclusions. Nature Physics, 2015, 11( 1): 82– 87
https://doi.org/10.1038/nphys3181
38 C W Nan, R Birringer, D R Clarke, H Gleiter. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 1997, 81( 10): 6692– 6699
https://doi.org/10.1063/1.365209
[1] Muhammad Faisal, Azeem Haider, Quret ul Aein, Aamer Saeed, Fayaz Ali Larik. Deep eutectic ionic liquids based on DABCO-derived quaternary ammonium salts: A promising reaction medium in gaining access to terpyridines[J]. Front. Chem. Sci. Eng., 2019, 13(3): 586-598.
[2] Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar. Nanocomposite materials in orthopedic applications[J]. Front. Chem. Sci. Eng., 2019, 13(1): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed