Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (6) : 854-873    https://doi.org/10.1007/s11705-022-2156-0
REVIEW ARTICLE
Recent progress in hydrodynamic characteristics research and application of annular centrifugal extractors
Hang Yang1, Xiaoyong Yang1, Xiao Dong1, Zhaojin Lu1, Zhishan Bai1(), Yinglei Wang2, Fulei Gao2
1. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
2. Xi’an Modern Chemistry Research Institute, Xi’an 710000, China
 Download: PDF(8454 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The annular centrifugal extractor (ACE) integrates mixing and separation. It has been widely used in many industrial fields because of its low residence time, compact structure, and high mass transfer efficiency. Most of the literature has focused on flow instabilities, flow visualization, and computational fluid dynamics simulations. More recently, research on hydrodynamic behavior and structural optimization has received widespread attention. With the development of ACE technology, applications have been broadened into several new areas. Hence, this paper reviews research progress regarding ACE in terms of hydrodynamic characteristics and the structural improvements. The latest applications covering hydrometallurgy, nuclear fuel reprocessing, bio-extraction, catalytic reaction, and wastewater treatment are presented. We also evaluate future work in droplet breakup and coalescence mechanisms, structural improvements specific to different process requirements, scaling-up methods, and stability and reliability after scaling-up.

Keywords annular centrifugal extractor      hydrodynamic characteristics      structure optimization      the latest application     
Corresponding Author(s): Zhishan Bai   
Online First Date: 29 April 2022    Issue Date: 28 June 2022
 Cite this article:   
Hang Yang,Xiaoyong Yang,Xiao Dong, et al. Recent progress in hydrodynamic characteristics research and application of annular centrifugal extractors[J]. Front. Chem. Sci. Eng., 2022, 16(6): 854-873.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2156-0
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I6/854
Fig.1  Schematic diagram of the ACE.
Fig.2  Hydrodynamic studies parameters and factors affecting the hydrodynamics of ACE.
Sr. no. Rotation Orientation Flow pattern Method Ref.
Inner Outer
1 Horizontal (1) Emulsion flow, (2) roller flow, and (3) banded flow Oil phase dyeing + photography [17]
2 Horizontal (1) Banded flow, (2) spatially homogeneous flow, and (3) oscillatory flow between (1) and (2) Oil phase dyeing + photography [18]
3 Horizontal (1) Two-layer flow and (2) “barber pole” pattern LIFa) + video [23]
4 Horizontal (1) Banded flow and (2) homogeneous flow Oil phase dyeing + video [19]
5 Vertical (1) Stratified flow, (2) segregated dispersion, (3) banded dispersion, and (4) homogeneous dispersion Fluent + PLIFb) + high speed photography [20]
6 Vertical (1) Spiral flow, (2) ring flow, and (3) ring flow with emulsion. Fluent + ultrasonic velocity profiling [24]
7 Vertical (1) Disordered droplet flow, (2) banded droplet flow, and (3) flooding Oil phase dyeing + video [25]
8 Vertical (1) Pseudo-homogenous flow, (2) weakly banded flow, (3) horizontally banded flow, and (4) helical flow Oil phase dyeing + video [21]
Tab.1  Liquid–liquid two-phase flow pattern in the annulus a)
Fig.3  Flow pattern and flow map in a closed vertical Taylor–Couette device. Reprinted with permission from Ref. [20], copyright 2010, American Chemical Society.
Fig.4  Water−vapor interface in the rotor zone at different rotational speeds. (a) PIV; (b) CFD. Reprinted with permission from Ref. [29], copyright 2019, East China University of Science and Technology.
Correlation Geometry/mm System/system physical property Ref.
ϕ =C 2 (ωr m0.5Δr1.5 ρC rir0μ C) 2 VD 0.5Δ r3 15.2 < D < 351 < ? r < 3.5 2.5% TBPa) in ultrasene/0.0042 mol·L–1 uranyl nitrate in 5 mol·L–1 HNO3 [34]
ϕ =G[C1+C2( (vc+ vd) dRn)3] (1We)0.673 ( 1F rΔpρc) 2.177 D = 50?r = 25 ShellSol T/water [35]
ϕ =0.583 (PV)0.11 ( QD QC +Q D) 0.93( σ3Δρμ C4g) 0.03 (μD μC)0.04 30 < D < 250 2 < ? r < 25 50 < Δ ρ < 600 kg·m –32.2 < σ < 58 mN·m –11 < μc < 6.5 mPa·s –10.7 < μd < 27 mPa·s –1 [33]
Tab.2  Related correlation of dispersed phase hold-up a)
Fig.5  Dispersed phase hold-up in the annular region and in the rotor region. Reprinted with permission from Ref. [36], copyright 2021, Elsevier.
Method System/system physical property Mean droplet size range/μm Ref.
Image analysis PDMSa)/water 100–400 [37]
Kerosene/water 1200–2600 [20]
Hexane/water 900–2700 [38]
40% TBP in dodecane/37.5% Al(NO3)3 in 1 mol·L–1 HNO3 58–107 [39]
PDPA 0.013 < σ < 0.033 N·m –1,85.1 < Δ ρ < 219.37 kg·m –30.00072 < μd < 0.032 Pa 28–206 [40]
FBRM 1,2-dichloroethane/water 50–600 [41]
Laser-based drop size analyzer 30% TBP in dodecane/0.1 mol·L–1 HNO3 30–80 [42]
Calculation from dispersed phase hold-up and effective interfacial area 50 < Δ ρ < 600 kg·m –3,2.2 < σ < 58 mN·m –1 8–55 [33]
Tab.3  Measurement method of droplet size in the annulus a)
Sr. no. Correlation Geometry/mm System/system physical property Ref.
1 dD=150(W e)0.65(Re)0.2 (μd μc)0.5 ( DI D)0.5 27 < D < 32,1.58 < Δ r < 3.38 790 < ρc < 1380 kg·m –3,9 < σ < 34 mN·m –1,0.45 < μd < 70 mPa·s –1 [46]
2 d3,2=2.2× 102(PV)0.33( ρC) 0.19 σ0.6 (μD μC)0.1 (1+8.5 ϕ) 30 < D < 250,2 < Δ r < 25 50 < Δ ρ < 600 kg·m –3,2.2 < σ < 58 mN·m –1,1 < μc < 6.5 mPa·s –1,0.7 < μd < 27 mPa·s –1 [33]
3 dd =0.145 (ucvd)0.4 (σ)1.43 ( pV ) 0.39(1+ϕ)3.33 D = 39,5.5 < Δ r < 10.5 85.1 < Δ ρ < 219.37 kg·m –3,0.013 < σ < 0.033 N·m –1,0.72 < μd < 32 mPa·s –1 [40]
4 D32(v )lm=0.08We 35 (1+9.9 (ρc ρd) 12μdγ (D32 lm2γ˙3 ) 13) 35 D = 225,Δr = 7.5 82 < Δ ρ < 238 kg·m –3,0.0159 < σ < 0.0237 N·m –1,0.00049 < μd < 0.07 kg·m –1·s–1 [47]
Tab.4  Principal correlation of Sauter mean droplet diameter in the annular region
Fig.6  (a) Schematic illustration for droplet size measurement; (b) droplet size distribution at different locations of ACE; (c) droplet size distribution at different rotational speeds; (d) Sauter mean droplet at different rotational speeds. Reprinted with permission from Ref. [37], copyright 2013, John Wiley and Sons.
Fig.7  (a) Experimental setup for the observation of sedimentation and coalescence; (b) photographic region for evaluation of mixing and separation process; (c) sedimentation and coalescence curve for cyclohexanone-water system (Vorg:Vaq = 1:2); (d) sedimentation and coalescence curve for n-butanol-water system (Vorg:Vaq = 1:1). Reprinted with permission from Ref. [50], copyright 2017, Elsevier.
Fig.8  (a) Experimental setup for droplet behavior studies in the annulus; (b) breakup and coalescence of the organic droplet in the annulus. Reprinted with permission from Ref. [52], copyright 2014, Elsevier.
Fig.9  (a) RTD curve under different aspect ratios; (b) effect of ribbed design on RTD. Reprinted with permission from Ref. [57], copyright 2008, American Chemical Society.
Schematic illustration Main conclusion Ref.
(1) Four straight vanes have a larger hold-up and higher liquid level than eight straight vanes and eight curved vanes;(2) The mean diameter for four straight vanes is significantly decreased versus eight curved vanes [ 39, 64]
(1) The ribbed design makes the RTD of the ACE narrower and more similar to an ideal plug flow;(2) The ribs stabilize the vortex and reduce axial mixing [ 55, 57, 66]
The recirculation tube design increases the residence time in the mixing zone [ 62]
(1) The inclined overflow pipe structure has a higher flooding capacity compared to the horizontal overflow pipe structure;(2) The operating flux of the inclined overflow pipe design is much higher than the horizontal overflow pipe design under rotor damage conditions [ 63]
The curved blade design has a significant impact on the pressure drop, hold-up, and interface radius of the rotor; it requires less energy than straight blades [ 69]
Design 3 is more stable and less likely to form a liquid seal compared to other design [ 28, 31]
Tab.5  Structure optimization of ACE in recent years
Fig.10  Schematic diagram of lithium extraction by continuous ACE technique. Reprinted with permission from Ref. [71], copyright 2018, Elsevier.
Fig.11  (a) Schematic diagram of the UACE structure. Reprinted with permission from Ref. [84], copyright 2021, Elsevier. (b) Status of operating of UACE. Reprinted with permission from Ref. [86], copyright 2021, Elsevier.
Fig.12  Application of ACE in the treatment of EDW. Reprinted with permission from Ref. [95], copyright 2013, Elsevier.
Fig.13  Schematic diagram of microemulsion extraction mechanism. Reprinted with permission from Ref. [100], copyright 2018, Elsevier.
1 V Heredia, J Pruvost, O Gonçalves, D Drouin, L Marchal. Lipid recovery from nannochloropsis gaditana using the wet pathway: investigation of the operating parameters of bead milling and centrifugal extraction. Algal Research, 2021, 56 : 102318
https://doi.org/10.1016/j.algal.2021.102318
2 J B Deshpande, G R Navale, M S Dharne, A A Kulkarni. Continuous interfacial centrifugal separation and recovery of silver nanoparticles. Chemical Engineering & Technology, 2020, 43( 3): 582– 592
https://doi.org/10.1002/ceat.201800722
3 P L Zhang, S C Wang, K W Tang, W F Xu, Y R Qiu, B Q Xiong, Y Liu. Multistage enantioselective reactive extraction of terbutaline enantiomers by hydrophobic phase transfer: experiment and modeling. Separation and Purification Technology, 2018, 191 : 208– 215
https://doi.org/10.1016/j.seppur.2017.09.035
4 P L Zhang, S C Wang, K W Tang, W F Xu, F He, Y R Qiu. Modeling multiple chemical equilibrium in chiral extraction of metoprolol enantiomers from single-stage extraction to fractional extraction. Chemical Engineering Science, 2018, 177 : 74– 88
https://doi.org/10.1016/j.ces.2017.11.007
5 P L Zhang, X F Feng, K W Tang, W F Xu. Study on enantioseparation of α-cyclopentyl-mandelic acid enantiomers using continuous liquid–liquid extraction in centrifugal contactor separators: experiments and modeling. Chemical Engineering and Processing, 2016, 107 : 168– 176
https://doi.org/10.1016/j.cep.2016.04.002
6 K W Tang, Y Q Wang, P L Zhang, Y Huang, J Hua. Optimization study on continuous separation of equol enantiomers using enantioselective liquid–liquid extraction in centrifugal contactor separators. Process Biochemistry, 2016, 51( 1): 113– 123
https://doi.org/10.1016/j.procbio.2015.11.021
7 X H Jing, P G Ning, H B Cao, Z Sun, J Y Wang. Separation of V(V) and Cr(VI) in leaching solution using annular centrifugal contactors. Chemical Engineering Journal, 2017, 315 : 373– 381
https://doi.org/10.1016/j.cej.2017.01.014
8 X H Jing, J Y Wang, H B Cao, P G Ning, Z Sun. Rapid selective extraction of V(V) from leaching solution using annular centrifugal contactors and stripping for NH4VO3. Separation and Purification Technology, 2017, 187 : 407– 414
https://doi.org/10.1016/j.seppur.2017.06.078
9 Q D Miao, T X Sun, H L Chen, Q Zheng, W H Duan. Comparison of the hydraulic characteristics of the 30% TRPO/kerosene-HNO3 and iPr-C[4]C-6/n-octanol-HNO3 systems in an annular centrifugal extractor. Progress in Nuclear Energy, 2021, 136 : 103734
https://doi.org/10.1016/j.pnucene.2021.103734
10 P K Mohapatra, P K Verma, D R Prabhu, D R Raut. Extraction of 137Cs from acidic feed by centrifugal contactors using a solution of calix[4]arene-bis-1,2-benzo-crown-6 in phenyltrifluoromethyl sulphone. Nuclear Technology, 2019, 205( 8): 1119– 1125
https://doi.org/10.1080/00295450.2019.1575126
11 B Schuur, J G M Winkelman, J G de Vries, H J Heeres. Experimental and modeling studies on the enantio-separation of 3,5-dinitrobenzoyl-(R),(S)-leucine by continuous liquid–liquid extraction in a cascade of centrifugal contactor separators. Chemical Engineering Science, 2010, 65( 16): 4682– 4690
https://doi.org/10.1016/j.ces.2010.05.015
12 G Bernstein, D Grosvenor, J Lenc, N Levitz. A high-capacity annular centrifugal contactor. Nuclear Technology, 1973, 20( 3): 200– 202
https://doi.org/10.13182/NT73-A31358
13 S Vedantam, J B Joshi. Annular centrifugal contactors—a review. Chemical Engineering Research & Design, 2006, 84( 7): 522– 542
https://doi.org/10.1205/cherd.05219
14 S Vedantam, K E Wardle, T V Tamhane, V V Ranade, J B Joshi. CFD simulation of annular centrifugal extractors. International Journal of Chemical Engineering, 2012, 2012 : 759397
https://doi.org/10.1155/2012/759397
15 W H Duan, M M Zhao, C Q Wang, S Cao. Recent advances in the development and application of annular centrifugal contactors in the nuclear industry. Solvent Extraction and Ion Exchange, 2014, 32( 1): 1– 26
https://doi.org/10.1080/07366299.2013.833741
16 X H Jing, P G Ning, H B Cao, J Y Wang, Z Sun. A review of application of annular centrifugal contactors in aspects of mass transfer and operational security. Hydrometallurgy, 2018, 177 : 41– 48
https://doi.org/10.1016/j.hydromet.2018.02.005
17 D D Joseph, K Nguyen, G S Beavers. Non-uniqueness and stability of the configuration of flow of immiscible fluids with different viscosities. Journal of Fluid Mechanics, 1984, 141 : 319– 345
https://doi.org/10.1017/S0022112084000872
18 R J Campero, R D Vigil. Spatiotemporal patterns in liquid–liquid Taylor–Couette–Poiseuille flow. Physical Review Letters, 1997, 79( 20): 3897– 3900
https://doi.org/10.1103/PhysRevLett.79.3897
19 X Zhu, R D Vigil. Banded liquid–liquid Taylor–Couette–Poiseuille flow. AIChE Journal. American Institute of Chemical Engineers, 2001, 47( 9): 1932– 1940
https://doi.org/10.1002/aic.690470905
20 M J Sathe, S S Deshmukh, J B Joshi, S B Koganti. Computational fluid dynamics simulation and experimental investigation: study of two-phase liquid–liquid flow in a vertical Taylor–Couette contactor. Industrial & Engineering Chemistry Research, 2010, 49( 1): 14– 28
https://doi.org/10.1021/ie900185z
21 C Campbell, M G Olsen, R Dennis Vigil. Flow regimes in two-phase hexane/water semibatch vertical Taylor vortex flow. Journal of Fluids Engineering, 2019, 141( 11): 111203
https://doi.org/10.1115/1.4043493
22 C Campbell, M G Olsen, R D Vigil. Jet breakup regimes in liquid–liquid Taylor vortex flow. International Journal of Multiphase Flow, 2020, 131 : 103401
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103401
23 G Baier, M D Graham. Two-fluid Taylor–Couette flow: experiments and linear theory for immiscible liquids between corotating cylinders. Physics of Fluids, 1998, 10( 12): 294– 303
https://doi.org/10.1063/1.869833
24 M Nakase, R Makabe, K Takeshita. Relation between oil–water flow and extraction performance in liquid–liquid countercurrent centrifugal extractors with Taylor vortices. Journal of Nuclear Science and Technology, 2013, 50( 3): 287– 295
https://doi.org/10.1080/00223131.2013.772445
25 M X Chen, T L Xie, C Xu. Continuous counter-current centrifugal extraction column with high throughput using a spiral inner cylinder. Chemical Engineering and Processing, 2018, 125 : 1– 7
https://doi.org/10.1016/j.cep.2017.12.016
26 Y Xu, J G Wang, S L Zhao, Z S Bai. PIV experimental study on the flow field in the rotor zone of an annular centrifugal contactor. Chemical Engineering Research & Design, 2015, 94 : 691– 701
https://doi.org/10.1016/j.cherd.2014.10.009
27 J Patra, N K Pandey, U K Muduli, R Natarajan, J B Joshi. Hydrodynamic study of flow in the rotor region of annular centrifugal contactors using CFD simulation. Chemical Engineering Communications, 2013, 200( 4): 471– 493
https://doi.org/10.1080/00986445.2012.706838
28 K E Wardle, T R Allen, R Swaney. CFD simulation of the separation zone of an annular centrifugal contactor. Separation Science and Technology, 2009, 44( 3): 517– 542
https://doi.org/10.1080/01496390802634398
29 X Y Yang. Study on synergetic treatment of sodium sulfate wastewater from coal tar processing by ternary solvent and centrifugal extraction. Dissertation for the Doctoral Degree. Shanghai: East China University of Science and Technology, 2019, 97– 106 (in Chinese)
30 S W Li, W H Duan, J Chen, J C Wang. CFD simulation of gas-liquid–liquid three-phase flow in an annular centrifugal contactor. Industrial & Engineering Chemistry Research, 2012, 51( 34): 11245– 11253
https://doi.org/10.1021/ie300821t
31 A Gandhir, K E Wardle. CFD analysis of fluid flow above the upper weir of an annular centrifugal contactor. Separation Science and Technology, 2012, 47( 1): 1– 10
https://doi.org/10.1080/01496395.2011.617026
32 S V N Ayyappa, M Balamurugan, S Kumar, U Kamachi Mudali. Mass transfer and hydrodynamic studies in a 50 mm diameter centrifugal extractor. Chemical Engineering and Processing, 2016, 105 : 30– 37
https://doi.org/10.1016/j.cep.2016.04.005
33 B D Kadam, J B Joshi, S B Koganti, R N Patil. Dispersed phase hold-up, effective interfacial area and Sauter mean drop diameter in annular centrifugal extractors. Chemical Engineering Research & Design, 2009, 87( 10): 1379– 1389
https://doi.org/10.1016/j.cherd.2009.03.005
34 M W Davis, E J Weber. Liquid–liquid extraction between rotating concentric cylinders. Industrial & Engineering Chemistry, 1960, 52( 11): 929– 934
https://doi.org/10.1021/ie50611a027
35 A Grafschafter, M Siebenhofer. Design rules for the Taylor–Couette disc contactor. Chemie Ingenieur Technik (Weinheim), 2017, 89( 4): 409– 415
https://doi.org/10.1002/cite.201600142
36 A De Santis, B C Hanson, M Fairweather. Hydrodynamics of annular centrifugal contactors: a CFD analysis using a novel multiphase flow modelling approach. Chemical Engineering Science, 2021, 242 : 116729
https://doi.org/10.1016/j.ces.2021.116729
37 N B Wyatt, T J O’Hern, B Shelden. Drop-size distributions and spatial distributions in an annular centrifugal contactor. AIChE Journal. American Institute of Chemical Engineers, 2013, 59( 6): 2219– 2226
https://doi.org/10.1002/aic.14109
38 C Campbell, M Olsen, R Vigil. Droplet size distributions in liquid–liquid semi-batch Taylor vortex flow. AIP Advances, 2020, 10( 8): 085316
https://doi.org/10.1063/5.0018065
39 K E Wardle. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options. Solvent Extraction and Ion Exchange, 2015, 33( 7): 671– 690
https://doi.org/10.1080/07366299.2015.1082835
40 T V Tamhane, J B Joshi, K Mudali, R Natarajan, R N Patil. Measurement of drop size characteristics in annular centrifugal extractors using phase doppler particle analyzer (PDPA). Chemical Engineering Research & Design, 2012, 90( 8): 985– 597
https://doi.org/10.1016/j.cherd.2011.11.007
41 B Schuur, G N Kraai, J G M Winkelman, H J Heeres. Hydrodynamic features of centrifugal contactor separators: experimental studies on liquid hold-up, residence time distribution, phase behavior and drop size distributions. Chemical Engineering and Processing, 2012, 55 : 8– 19
https://doi.org/10.1016/j.cep.2012.02.008
42 S Kumar, K Mudali. Experimental measurements of drop size distributions in 30 mm diameter annular centrifugal contactor with 30% TBP-nitric acid biphasic system. International Journal of Nuclear Energy, 2013, 2013 : 402505
https://doi.org/10.1155/2013/402505
43 S Drewery, E Heeres, S Percival, C Rhodes, M S George, E Wilbers, D A Woodhead. Experimental and modelling studies of mass transfer in centrifugal contactors. Procedia Chemistry, 2012, 7 : 341– 348
https://doi.org/10.1016/j.proche.2012.10.054
44 M Nakase, H Kinuhata, K Takeshita. Multi-staging for extraction of cesium from nitric acid by a single liquid–liquid countercurrent centrifugal extractor with Taylor vortices. Journal of Nuclear Science and Technology, 2013, 50( 11): 1089– 1098
https://doi.org/10.1080/00223131.2013.835248
45 M Nakase, K Takeshita. Numerical and experimental study on oil-water dispersion in new countercurrent centrifugal extractor. Procedia Chemistry, 2012, 7 : 288– 294
https://doi.org/10.1016/j.proche.2012.10.046
46 P A Haas. Turbulent dispersion of aqueous drops in organic liquids. AIChE Journal. American Institute of Chemical Engineers, 1987, 33( 6): 987– 995
https://doi.org/10.1002/aic.690330611
47 R Farzad, S Puttinger, S Pirker, S Schneiderbauer. Investigation of droplet size distribution for liquid–liquid emulsions in Taylor−Couette flows. Journal of Dispersion Science and Technology, 2017, 39( 2): 250– 258
https://doi.org/10.1080/01932691.2017.1312431
48 C A Coulaloglou, L L Tavlarides. Description of interaction processes in agitated liquid–liquid dispersions. Chemical Engineering Science, 1977, 32( 11): 1289– 1297
https://doi.org/10.1016/0009-2509(77)85023-9
49 D Eskin, S D Taylor, D Yang. Modeling of droplet dispersion in a turbulent Taylor–Couette flow. Chemical Engineering Science, 2017, 161 : 36– 47
https://doi.org/10.1016/j.ces.2016.12.008
50 A Eggert, S Sibirtsev, D Menne, A Jupke. Liquid–liquid centrifugal separation—new equipment for optical (photographic) evaluation at laboratory scale. Chemical Engineering Research & Design, 2017, 127 : 170– 179
https://doi.org/10.1016/j.cherd.2017.09.005
51 E Fridjonsson, T Chandrasekera, A J Sederman, M Johns, C Zhao, A Middelberg. Imaging the effects of peptide bio-surfactants on droplet deformation in a Taylor–Couette shear cell. Soft Matter, 2011, 7( 6): 2961– 2967
https://doi.org/10.1039/c0sm00951b
52 J Qiao, R S Deng, C H Wang. Droplet behavior in a Taylor vortex. International Journal of Multiphase Flow, 2014, 67 : 132– 139
https://doi.org/10.1016/j.ijmultiphaseflow.2014.08.011
53 K Wardle. Hybrid multiphase CFD simulation for liquid–liquid interfacial area prediction in annular centrifugal contactors. In: Proceedings of International Nuclear Fuel Cycle Conference, GLOBAL 2013: Nuclear Energy at a Crossroads. La Grange Pork, IL: Americen Nuclear Society, 2013
54 A D Martin. Interpretation of residence time distribution data. Chemical Engineering Science, 2000, 55( 23): 5907– 5917
https://doi.org/10.1016/S0009-2509(00)00108-1
55 T V Tamhane, J B Joshi, U Kamachi Mudali, R Natarajan, R N Patil. Axial mixing in annular centrifugal extractors. Chemical Engineering Journal, 2012, 207-208 : 462– 472
https://doi.org/10.1016/j.cej.2012.06.151
56 O Levenspiel. Chemical Reaction Engineering. New York: John Wiley & Sons, 1999: 321– 324
57 S S Deshmukh, M J Sathe, J B Joshi, S B Koganti. Residence time distribution and flow patterns in the single-phase annular region of annular centrifugal extractor. Industrial & Engineering Chemistry Research, 2009, 48( 1): 37– 46
https://doi.org/10.1021/ie800231d
58 S Vedantam, J B Joshi, S B Koganti. CFD Simulation of RTD and mixing in the annular region of a Taylor–Couette contactor. Industrial & Engineering Chemistry Research, 2006, 45( 18): 6360– 6367
https://doi.org/10.1021/ie050825n
59 W H Duan, T X Sun, J H Wang. Separation of Nd3+ and Fe3+ by non-equilibrium solvent extraction using an annular centrifugal contactor. Separation and Purification Technology, 2015, 146 : 108– 113
https://doi.org/10.1016/j.seppur.2015.03.044
60 M M Zhao, S Cao, W H Duan. Effects of some parameters on mass-transfer efficiency of a ϕ20 mm annular centrifugal contactor for nuclear solvent extraction processes. Progress in Nuclear Energy, 2014, 74 : 154– 159
https://doi.org/10.1016/j.pnucene.2014.02.024
61 Z S Bai, J Zhang, R W Gan, Y Xu, W J Liu. Effect of cylinder rotation on flow characteristics of the annular region in annular centrifugal extractor. Separation Science and Technology, 2015, 50( 6): 813– 819
https://doi.org/10.1080/01496395.2014.965259
62 M A Brown, K E Wardle, G Lumetta, A V Gelis. Accomplishing equilibrium in ALSEP: demonstrations of modified process chemistry on 3D printed enhanced annular centrifugal contactors. Procedia Chemistry, 2016, 21 : 167– 173
https://doi.org/10.1016/j.proche.2016.10.024
63 B Manavalan, J B Joshi, N K Pandey. Design modification in the stationary bowl of annular centrifugal extractors to handle adverse conditions. Industrial & Engineering Chemistry Research, 2020, 59( 25): 11757– 11766
https://doi.org/10.1021/acs.iecr.0c00181
64 K E Wardle, T R Allen, M H Anderson, R E Swaney. Analysis of the effect of mixing vane geometry on the flow in an annular centrifugal contactor. AIChE Journal. American Institute of Chemical Engineers, 2009, 55( 9): 2244– 2259
https://doi.org/10.1002/aic.11855
65 R Deng, D Yohanes Arifin, M Ye Chyn, C H Wang. Taylor vortex flow in presence of internal baffles. Chemical Engineering Science, 2010, 65( 16): 4598– 4605
https://doi.org/10.1016/j.ces.2010.05.001
66 S S Deshmukh, J B Joshi, S B Koganti. Flow visualization and three-dimensional CFD simulation of the annular region of an annular centrifugal extractor. Industrial & Engineering Chemistry Research, 2008, 47( 10): 3677– 3686
https://doi.org/10.1021/ie070959w
67 Y G Su, J X Tang, X X Yang, R J Wang. Effect of geometrical parameters on extraction efficiency of the annular centrifugal contactor. Separations, 2021, 8( 102): 1– 11
https://doi.org/10.3390/separations8070102
68 Z Fan Z S Bai Y Xu X Y Yang. Effects of centrifugal extractor cylinder inlet radius on the cylinder flow field. Chemical Industry and Engineering Progress, 2015, 34(5): 1232– 1235 (in Chinese)
69 H Ghaya, R Guizani, H Mhiri, P Bournot. CFD study of the effect of geometrical shape of separation blades on the rotor performance of an annular centrifugal extractor (ACE). Journal of Applied Fluid Mechanics, 2019, 12( 4): 1189– 1202
https://doi.org/10.29252/jafm.12.04.29579
70 X B Fan, X P Yu, Y F Guo, T L Deng. Recovery of boron from underground brine by continuous centrifugal extraction with 2-ethyl-1,3-hexanediol (EHD) and its mechanism. Journal of Chemistry, 2018, 2018 : 7530837
https://doi.org/10.1155/2018/7530837
71 X P Yu, X B Fan, Y F Guo, T L Deng. Recovery of lithium from underground brine by multistage centrifugal extraction using tri-isobutyl phosphate. Separation and Purification Technology, 2019, 211 : 790– 798
https://doi.org/10.1016/j.seppur.2018.10.054
72 A M Abramov, O I Volobuev, Z N Galieva, Y B Sobol’, A V Solodovnikov, A A Yachmenov, G I Kuznetsov, A V Kosogorov, N N Trusilov. Separating rare-earth elements on centrifugal extractors: developing technology, designing equipment, and engineering production. Theoretical Foundations of Chemical Engineering, 2020, 54( 4): 762– 768
https://doi.org/10.1134/S0040579520040028
73 Q He J Qiu J F Chen M M Zan Y F Xiao. Progress in green and efficient enrichment of rare earth from the leaching liquor of ion adsorption type rare earth ores. Journal of Rare Earths, 2021, (in press)
74 L S Wang, Y Yu, Y Liu, Z Q Long. Centrifugal extraction of rare earths from wet-process phosphoric acid. Rare Metals, 2011, 30( 3): 211– 215
https://doi.org/10.1007/s12598-011-0370-x
75 H L Chen, Q Zheng, W H Duan. Hydraulic characteristics of n-octanol/aqueous solution systems in a 25-mm annular centrifugal extractor. Separation Science and Technology, 2020, 55( 8): 1515– 1523
https://doi.org/10.1080/01496395.2019.1597887
76 H L Chen, J C Wang, W H Duan, J Chen. Hydrodynamic characteristics of 30% TBP/kerosene-HNO3 solution system in an annular centrifugal contactor. Nuclear Science and Techniques, 2019, 30( 89): 1– 12
https://doi.org/10.1007/s41365-019-0615-1
77 W H Duan, T X Sun, J C Wang. An industrial-scale annular centrifugal extractor for the TRPO process. Nuclear Science and Techniques, 2018, 29( 46): 1– 9
https://doi.org/10.1007/s41365-018-0395-z
78 M Takeuchi, H Ogino, H Nakabayashi, Y Arai, T Washiya, T Kase, Y Nakajima. Extraction and stripping tests of engineering-scale centrifugal contactor cascade system for spent nuclear fuel reprocessing. Journal of Nuclear Science and Technology, 2009, 46( 3): 217– 225
https://doi.org/10.1080/18811248.2007.9711524
79 D H Meikrantz, T G Garn, J D Law, L L Macaluso. A centrifugal contactor design to facilitate remote replacement. Nuclear Technology, 2011, 173( 3): 289– 299
https://doi.org/10.13182/NT11-A11662
80 J D Law, D H Meikrantz, T G Garn, L L Macaluso. Advanced remote maintenance design for pilot-scale centrifugal contactors. Nuclear Technology, 2011, 173( 2): 191– 199
https://doi.org/10.13182/NT11-A11548
81 W R Wang, P L Zhang, J Ou, F S Liu, K W Tang, W F Xu. Selective extraction of ECG from tea polyphenols by one step in centrifugal contactor separators: modeling and application. Industrial & Engineering Chemistry Research, 2019, 58( 5): 2027– 2035
https://doi.org/10.1021/acs.iecr.8b06042
82 D Michailidis, A Angelis, N Aligiannis, S Mitakou, L Skaltsounis. Recovery of sesamin, sesamolin, and minor lignans from sesame oil using solid support-free liquid–liquid extraction and chromatography techniques and evaluation of their enzymatic inhibition properties. Frontiers in Pharmacology, 2019, 10 : 1– 13
https://doi.org/10.3389/fphar.2019.00723
83 A Angelis, D Michailidis, L Antoniadi, P Stathopoulos, V Tsantila, J M Nuzillard, J H Renault, L A Skaltsounis. Pilot continuous centrifugal liquid–liquid extraction of extra virgin olive oil biophenols and gram-scale recovery of pure oleocanthal, oleacein, MFOA, MFLA and hydroxytyrosol. Separation and Purification Technology, 2021, 255 : 117692
https://doi.org/10.1016/j.seppur.2020.117692
84 Y C Zhang, R Y Liu, C M Liu, S N Li, R Tsao. Development of ultrasound-assisted mixture extraction and online extraction solution concentration coupled with countercurrent chromatography for the preparation of pure phytochemicals from Phellinus vaninii. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2021, 1171 : 122619
https://doi.org/10.1016/j.jchromb.2021.122619
85 Y C Zhang, R Y Liu, C M Liu, S N Li, W C Hou. Development of ultrasound-assisted centrifugal extraction combined with two countercurrent chromatography systems for the simultaneous extraction and isolation of phytochemicals. Journal of Separation Science, 2021, 44( 11): 2279– 2289
https://doi.org/10.1002/jssc.202100049
86 Y C Zhang, C M Liu, S N Li, W C Hou, R Tsao. Development of ultrasound-assisted centrifugal extraction and online solvent concentration coupled with parallel countercurrent chromatography for the preparation of purified phytochemicals: application to Lycium ruthenicum. Industrial Crops and Products, 2021, 162 : 113266
https://doi.org/10.1016/j.indcrop.2021.113266
87 G N Kraai, F van Zwol, B Schuur, H J Heeres, J G de Vries. Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator. Angewandte Chemie, 2007, 120( 21): 3969– 3972
https://doi.org/10.1002/ange.200705426
88 G N Kraai, B Schuur, F van Zwol, H H van de Bovenkamp, H J Heeres. Novel highly integrated biodiesel production technology in a centrifugal contactor separator device. Chemical Engineering Journal, 2009, 154( 1): 384– 389
https://doi.org/10.1016/j.cej.2009.04.047
89 M Y Abduh, W van Ulden, V Kalpoe, H H van de Bovenkamp, R Manurung, H J Heeres. Biodiesel synthesis from Jatropha curcas L. oil and ethanol in a continuous centrifugal contactor separator. European Journal of Lipid Science and Technology, 2013, 115( 1): 123– 131
https://doi.org/10.1002/ejlt.201200173
90 M Y Abduh, W van Ulden, H H van de Bovenkamp, T Buntara, F Picchioni, R Manurung, H J Heeres. Synthesis and refining of sunflower biodiesel in a cascade of continuous centrifugal contactor separators. European Journal of Lipid Science and Technology, 2015, 117( 2): 242– 254
https://doi.org/10.1002/ejlt.201400206
91 E Fayyazi, B Ghobadian, S M Safieddin Ardebili, G Najafi, S M Mousavi, B Hosseinzadeh Samani, J Yue. Biodiesel fuel purification in a continuous centrifugal contactor separator: an environmental-friendly approach. Sustainable Energy Technologies and Assessments, 2021, 47 : 101511
https://doi.org/10.1016/j.seta.2021.101511
92 M Ilmi, A Kloekhorst, J G M Winkelman, G J W Euverink, C Hidayat, H J Heeres. Process intensification of catalytic liquid–liquid solid processes: continuous biodiesel production using an immobilized lipase in a centrifugal contactor separator. Chemical Engineering Journal, 2017, 321 : 76– 85
https://doi.org/10.1016/j.cej.2017.03.070
93 E Fayyazi, B Ghobadian, H H van de Bovenkamp, G Najafi, B Hosseinzadehsamani, H J Heeres, J Yue. Optimization of biodiesel production over chicken eggshell-derived CaO catalyst in a continuous centrifugal contactor separator. Industrial & Engineering Chemistry Research, 2018, 57( 38): 12742– 12755
https://doi.org/10.1021/acs.iecr.8b02678
94 Y Xu, K Tang, Z S Bai, H L Wang. Hydrodynamic and mass-transfer characteristics of annular centrifugal contactors on the caprolactam recovery from waste liquor. Applied Mechanics and Materials, 2013, 330 : 792– 798
https://doi.org/10.4028/www.scientific.net/AMM.330.792
95 M M Hao, Z S Bai, H L Wang, W J Liu. Removal of oil from electric desalting wastewater using centrifugal contactors. Journal of Petroleum Science Engineering, 2013, 111 : 37– 41
https://doi.org/10.1016/j.petrol.2013.10.017
96 X Y Yang, B J Wang, H Q Luo, S L Yan, J Dai, Z S Bai. Efficient recovery of phenol from coal tar processing wastewater with tributylphosphane/diethyl carbonate/cyclohexane: extraction cycle and mechanism study. Chemical Engineering Research & Design, 2020, 157 : 104– 113
https://doi.org/10.1016/j.cherd.2020.03.005
97 X Y Yang, Z S Bai, B J Wang, F P Jie. Optimal ternary extractant for phenol removal from wastewater: modeling and application. Separation Science and Technology, 2019, 54( 1): 69– 78
https://doi.org/10.1080/01496395.2018.1501394
98 F P Jie, Z S Bai, X Y Yang. Study on extraction of cobalt(II) by sodium laurate/pentan-1-ol/heptane/NaCl microemulsion system. Journal of Radioanalytical and Nuclear Chemistry, 2018, 315( 3): 581– 593
https://doi.org/10.1007/s10967-017-5685-0
99 F P Jie, Z S Bai, X Y Yang. Extraction of Mn(II) from NaCl solution by NaCl/sodium oleate/n-pentanol/n-heptane microemulsion system. Separation Science and Technology, 2018, 53( 9): 1351– 1360
https://doi.org/10.1080/01496395.2018.1445108
100 X Y Yang, F P Jie, B J Wang, Z S Bai. High-efficient synergistic extraction of Co(II) and Mn(II) from wastewater via novel microemulsion and annular centrifugal extractor. Separation and Purification Technology, 2019, 209 : 997– 1006
https://doi.org/10.1016/j.seppur.2018.09.057
101 A Eggert, T Kogl, W Arlt, A Jupke. Computer tomographic detection of the liquid–liquid mixing and separation within the annular centrifugal contactor/extractor. Chemical Engineering Research & Design, 2019, 142 : 143– 153
https://doi.org/10.1016/j.cherd.2018.11.034
[1] Nikolaus I. Vollmer, Resul Al, Krist V. Gernaey, Gürkan Sin. Synergistic optimization framework for the process synthesis and design of biorefineries[J]. Front. Chem. Sci. Eng., 2022, 16(2): 251-273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed