Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (6) : 950-962    https://doi.org/10.1007/s11705-022-2162-2
RESEARCH ARTICLE
An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu–Ce–Zr catalysts
Weiwei Wang1(), Xiaoyu Zhang2, Min Guo1, Jianan Li3, Chong Peng4()
1. School of Life Science and Chemistry, MinNan Science and Technology University, Quanzhou 362332, China
2. Sinochem Quanzhou Petrochemical Co., Ltd., Quanzhou 362100, China
3. School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
4. Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(5061 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of Cu–Ce–Zr catalysts with different Ce contents are applied to the hydrogenation of CO2 to CO/CH3OH products. The Cu–Ce–Zr catalyst with 2 wt% Ce loading shows higher CO selectivity (SCO = 0.0%–87.8%) from 200–300 °C, while the Cu–Ce–Zr catalyst with 8 wt% Ce loading presents higher CO2 conversion ( X C O2 = 5.4%–15.6%) and CH3OH selectivity ( S C H3OH = 97.8%–40.6%). The number of hydroxyl groups and solid solution nature play a significant role in changing the reaction pathway. The solid solution enhances the CO2 adsorption ability. At the CO2 adsorption step, a larger number of hydroxyl groups over the Cu–Ce–Zr catalyst with 8 wt% Ce loading leads to the production of H-containing adsorption species. At the CO2 hydrogenation step, a larger number of hydroxyl groups assists in encouraging the further hydrogenation of intermediate species to CH3OH and improving the hydrogenation rate. Hence, the Cu–Ce–Zr catalyst with 8 wt% Ce loading favors CH3OH selectivity and CO2 activation, while CO is preferred on the Cu–Ce–Zr catalyst with 2 wt% Ce loading, a smaller number of hydroxyl groups and a solid solution nature. Additionally, high-pressure in situ diffuse reflectance infrared Fourier transform spectroscopy shows that CO is produced from formate decomposition and that both monodentate formate and bidentate formate are active intermediate species of CO2 hydrogenation to CH3OH.

Keywords CO2 hydrogenation      Cu–Ce–Zr      hydroxyls      CO/CH3OH selectivity     
Corresponding Author(s): Weiwei Wang,Chong Peng   
Online First Date: 22 April 2022    Issue Date: 28 June 2022
 Cite this article:   
Weiwei Wang,Xiaoyu Zhang,Min Guo, et al. An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu–Ce–Zr catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(6): 950-962.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2162-2
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I6/950
Fig.1  (a) CO2 conversion; (b) CH3OH selectivity; (c) CO selectivity of Cu–Ce–Zr catalysts with different Ce contents.
Catalyst SBET a)/(m2·g–1) SCu b)/(m2·g–1) DCu b)/% dCu b)/nm dCuO c)/nm
2 wt% Ce 54.1 32.9 4.8 20.5 16.9
4 wt% Ce 59.7 42.4 6.3 15.9 15.3
6 wt% Ce 77.8 61.1 9.0 11.1 14.1
8 wt% Ce 117.6 64.7 9.6 10.4 13.6
10 wt% Ce 56.2 37.2 5.5 18.2 18.5
Tab.1  The properties of the Cu–Ce–Zr with different Ce contents
Fig.2  (a) XRD patterns, (b) TEM images and (c) energy dispersive spectrometer (EDS) elemental mapping images of Cu–Ce–Zr catalysts with different Ce contents. Cu (blue), Ce (yellow), Zr (green), (1) 2 wt% Ce; (2) 4 wt% Ce; (3) 6 wt% Ce; (4) 8 wt% Ce; (5) 10 wt% Ce.
Catalyst Cu atomic/% Ce atomic/% [Ce3+/(Ce3+ + Ce4+)] /% [(α + β)/(α + β + γ)]/%
2 wt% Ce 8.64 1.77 20.57 44.39
4 wt% Ce 6.77 2.65 22.36 44.45
6 wt% Ce 4.60 1.94 26.18 52.32
8 wt% Ce 2.57 0.40 28.95 72.56
10 wt% Ce 7.56 4.84 25.63 8.17
Tab.2  XPS data measured for Cu–Ce–Zr catalysts with different Ce contents
Fig.3  XPS spectra of (a) Cu 2p, (b) Ce 3d, (c) Zr 3d and (d) O 1s over Cu–Ce–Zr catalysts with different Ce contents.
Fig.4  H2-TPR profiles of Cu–Ce–Zr catalysts with different Ce contents.  
Fig.5  (a) NH3-TPD and (b) CO2-TPD profiles of Cu–Ce–Zr catalysts with different Ce contents.
Fig.6  H2-TPD profiles of Cu–Ce–Zr catalysts with different Ce contents.  
Fig.7  In situ DRIFTS of the hydroxyl groups stretching region taken for (a) 2 wt% Ce and (b) 8 wt% Ce catalysts.
Band/cm–1 Assignment
1213 Hydrogen carbonate
1608 ( HCO3)
1280 C O32
1396
1538
1295 m-HCOO
1567
1371 bi-HCOO
1405
1583
2713
2804
1045 *OCH3
1087
1143
1471
2921
2835 Physisorbed CH3OH
2944
2130 CO
Tab.3  Observed DRIFT vibration frequencies (cm–1) of intermediate species over Cu–Ce–Zr catalysts with different Ce contents in CO2 hydrogenation
Fig.8  In situ DRIFT spectra of CO2 adsorption on (a) 2 wt% Ce and (b) 8 wt% Ce catalysts at 3 MPa and 280 °C.
Fig.9  In situ DRIFT spectra of CO2 + H2 on (a) 2 wt% Ce and (b) 8 wt% Ce sample under 3 MPa and 280 °C.
  Scheme1 The major possible pathway of CO2 hydrogenation on 8 wt% Ce sample and 2 wt% Ce sample.
1 W Zhou, K Cheng, J C Kang, C Zhou, V Subramanian, Q H Zhang, Y Wang. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48( 12): 3193– 3228
https://doi.org/10.1039/C8CS00502H
2 X Nie, X Jiang, H Z Wang, W J Luo, M J Janik, Y G Chen, X W Guo, C S Song. Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol. ACS Catalysis, 2018, 8( 6): 4873– 4892
https://doi.org/10.1021/acscatal.7b04150
3 X M Liu, S F Bai, H D Zhuang, Z F Yan. Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2. Frontiers of Chemical Science and Engineering, 2012, 6( 1): 47– 52
https://doi.org/10.1007/s11705-011-1170-4
4 S Kattel, P Liu, J G Chen. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. Journal of the American Chemical Society, 2017, 139( 29): 9739– 9754
https://doi.org/10.1021/jacs.7b05362
5 K Stangeland, H H Navarro, H L Huynh, W M Tucho, Z X Yu. Tuning the interfacial sites between copper and metal oxides (Zn, Zr, In) for CO2 hydrogenation to methanol. Chemical Engineering Science, 2021, 238 : 116603
https://doi.org/10.1016/j.ces.2021.116603
6 C Zhu, X Wei, W Li, Y Pu, J F Sun, K L Tang, H Q Wan, C Y Ge, W X Zou, L Dong. Crystal-plane effects of CeO2{110} and CeO2{100} on photocatalytic CO2 reduction: synergistic interactions of oxygen defects and hydroxyl groups. ACS Sustainable Chemistry & Engineering, 2020, 8( 38): 14397– 14406
https://doi.org/10.1021/acssuschemeng.0c04205
7 Y X Pan, C J Liu, Q F Ge. Effect of surface hydroxyls on selective CO2 hydrogenation over Ni4/gamma-Al2O3: a density functional theory study. Journal of Catalysis, 2010, 272( 2): 227– 234
https://doi.org/10.1016/j.jcat.2010.04.003
8 C S Yang, R T Mu, G S Wang, J M Song, H Tian, Z J Zhao, J L Gong. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation. Chemical Science (Cambridge), 2019, 10( 11): 3161– 3167
https://doi.org/10.1039/C8SC05608K
9 Y H Peng, L B Wang, Y Cao, Y Z Dai, Z L Li, H L Li, X S Zheng, W S Yan, J L Yang, J Zeng. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol. Chem, 2018, 4( 3): 613– 625
https://doi.org/10.1016/j.chempr.2018.01.019
10 A Jangam, P Hongmanorom, M H Wai, A J Poerjoto, S B Xi, A Borgna, S Kawi. CO2 hydrogenation to methanol over partially reduced Cu–SiO2P catalysts: the crucial role of hydroxyls for methanol selectivity. ACS Applied Energy Materials, 2021, 4( 11): 12149– 12162
https://doi.org/10.1021/acsaem.1c01734
11 X L Xu, L Liu, Y Y Tong, X Z Fang, J W Xu, D Jiang, X Wang. Facile Cr3+ doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: unraveling the roles of surface oxygen vacancies and hydroxyl groups. ACS Catalysis, 2021, 11( 9): 5762– 5775
https://doi.org/10.1021/acscatal.0c05468
12 Y H Wang, W H Gao, K Z Li, W Na, J G Chen, H Wang. Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu–ZnO–ZrO2. Chem, 2020, 6( 2): 419– 430
https://doi.org/10.1016/j.chempr.2019.10.023
13 R G Zhang, B J Wang, H Y Liu, L X Ling. Effect of surface hydroxyls on CO2 hydrogenation over Cu/γ-Al2O3 catalyst: a theoretical study. Journal of Physical Chemistry C, 2011, 115( 40): 19811– 19818
https://doi.org/10.1021/jp206065y
14 S Kattel, B Yan, Y Yang, J G Chen, P Liu. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. Journal of the American Chemical Society, 2016, 138( 38): 12440– 12450
https://doi.org/10.1021/jacs.6b05791
15 X Sun, C Gong, G Lv, F Bin, C L Song. Effect of Ce/Zr molar ratio on the performance of CuCexZr1−x/TiO2 catalyst for selective catalytic reduction of NOx with NH3 in diesel exhaust. Materials Research Bulletin, 2014, 60 : 341– 347
https://doi.org/10.1016/j.materresbull.2014.09.014
16 D Jeong, W Jang, H Na, J O Shim, A Jha, H S Roh. Comparative study on cubic and tetragonal Cu–CeO2–ZrO2 catalysts for water gas shift reaction. Journal of Industrial and Engineering Chemistry, 2015, 27 : 35– 39
https://doi.org/10.1016/j.jiec.2015.01.007
17 X Y Xi, F Zeng, H Zhang, X F Wu, J Ren, T Bisswanger, C Stampfer, J P Hofmann, R Palkovits, H J Heeres. CO2 hydrogenation to higher alcohols over K-promoted bimetallic Fe–In catalysts on a Ce–ZrO2 support. ACS Sustainable Chemistry & Engineering, 2021, 9( 18): 6235– 6249
https://doi.org/10.1021/acssuschemeng.0c08760
18 G Fu, D Mao, S Sun, J Y Zhi, Q Yang. Preparation, characterization and CO oxidation activity of Cu–Ce–Zr mixed oxide catalysts via facile dry oxalate-precursor synthesis. Journal of Industrial and Engineering Chemistry, 2015, 31 : 283– 290
https://doi.org/10.1016/j.jiec.2015.06.038
19 M C Bacariza, I Graça, J M Lopes, C Henriques. Ni–Ce/Zeolites for CO2 hydrogenation to CH4: effect of the metal incorporation order. ChemCatChem, 2018, 10( 13): 2773– 2781
https://doi.org/10.1002/cctc.201800204
20 A Martínez-Arias. Redox interplay at copper oxide-(Ce,Zr)Ox interfaces: influence of the presence of NO on the catalytic activity for CO oxidation over CuO/CeZrO4. Journal of Catalysis, 2003, 214( 2): 261– 272
https://doi.org/10.1016/S0021-9517(02)00084-2
21 L M Acuña, R O Fuentes, M C A Fantini, D G Lamas. Structural studies of mesoporous ZrO2–CeO2 and ZrO2–CeO2/SiO2 mixed oxides for catalytical applications. Journal of Alloys and Compounds, 2016, 671 : 396– 402
https://doi.org/10.1016/j.jallcom.2016.01.213
22 B Yang, W Deng, L M Guo, T Ishihara. Copper-ceria solid solution with improved catalytic activity for hydrogenation of CO2 to CH3OH. Chinese Journal of Catalysis, 2020, 41( 9): 1348– 1359
https://doi.org/10.1016/S1872-2067(20)63605-1
23 J A Rodriguez, S Ma, P Liu, J Hrbek, J Evans, M Pérez. Activity of CeOx and TiOx nanoparticles grown on Au (111) in the water-gas shift reaction. Science, 2007, 318( 5857): 1757– 1759
https://doi.org/10.1126/science.1150038
24 V L’hospital, L Angelo, Y Zimmermann, K Parkhomenko, A C Roger. Influence of the Zn/Zr ratio in the support of a copper-based catalyst for the synthesis of methanol from CO2. Catalysis Today, 2021, 369 : 95– 104
https://doi.org/10.1016/j.cattod.2020.05.018
25 S H Zeng, X H Zhang, X J Fu, L Zhang, H Q Su, H Pan. Co/CexZr1−xO2 solid-solution catalysts with cubic fluorite structure for carbon dioxide reforming of methane. Applied Catalysis B: Environmental, 2013, 136-137 : 308– 316
https://doi.org/10.1016/j.apcatb.2013.02.019
26 I Prymak, V N Kalevaru, S Wohlrab, A Martin. Continuous synthesis of diethyl carbonate from ethanol and CO2 over Ce–Zr–O catalysts. Catalysis Science & Technology, 2015, 5( 4): 2322– 2331
https://doi.org/10.1039/C4CY01400F
27 M Maria, D C Patrick, A Jacques, C Simeon, T Michael, E María, O Stephanie. Tailoring physicochemical and electrical properties of Ni/CeZrOx doped catalysts for high efficiency of plasma catalytic CO2 methanation. Applied Catalysis B: Environmental, 2021, 294 : 120233
https://doi.org/10.1016/j.apcatb.2021.120233
28 W Wang, J L Gong. Methanation of carbon dioxide: an overview. Frontiers of Chemical Science and Engineering, 2011, 5( 1): 2– 10
https://doi.org/10.1007/s11705-010-0528-3
29 Y Cui, L L Xu, M D Chen, X B Lian, C E Wu, B Yang, Z C Miao, F G Wang, X Hu. Facilely fabricating mesoporous nanocrystalline Ce–Zr solid solution supported CuO-based catalysts with advanced low-temperature activity toward CO oxidation. Catalysis Science & Technology, 2019, 9( 20): 5605– 5625
https://doi.org/10.1039/C9CY01612K
30 T C Pu, L Shen, J Xu, C Peng, M H Zhu. Revealing the dependence of CO2 activation on hydrogen dissociation ability over supported nickel catalysts. AIChE Journal. American Institute of Chemical Engineers, 2021, 68( 1): 17458
31 K D Jung, A T Bell. Role of hydrogen spillover in methanol synthesis over Cu/ZrO2. Journal of Catalysis, 2021, 193( 2): 207– 223
https://doi.org/10.1006/jcat.2000.2881
32 H J Guo, Q L Li, H R Zhang, F Peng, L Xiong, S M Yao, C Huang, X D Chen. CO2 hydrogenation over acid-activated Attapulgite/Ce0.75Zr0.25O2 nanocomposite supported Cu–ZnO based catalysts. Molecular Catalysis, 2019, 476 : 110499
https://doi.org/10.1016/j.mcat.2019.110499
33 P Dongapure, S Bagchi, S Mayadevi, R N Devi. Variations in activity of Ru/TiO2 and Ru/Al2O3 catalysts for CO2 hydrogenation: an investigation by in-situ infrared spectroscopy studies. Molecular Catalysis, 2019, 482 : 110700
https://doi.org/10.1016/j.mcat.2019.110700
34 A Karelovic, P Ruiz. CO2 hydrogenation at low temperature over Rh/ gamma-Al2O3 catalysts: effect of the metal particle size on catalytic performances and reaction mechanism. Applied Catalysis B: Environmental, 2012, 113( 12): 237– 249
https://doi.org/10.1016/j.apcatb.2011.11.043
35 M Luo, J Ma, J Lu, Y Song, Y Wang. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. Journal of Catalysis, 2007, 246( 1): 52– 59
https://doi.org/10.1016/j.jcat.2006.11.021
36 N Nomura, T Tagawa, S Goto. In situ FTIR study on hydrogenation of carbon dioxide over titania-supported copper catalysts. Applied Catalysis A: General, 1998, 166( 2): 321– 326
https://doi.org/10.1016/S0926-860X(97)00271-8
37 A Karelovic, P Ruiz. The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts. Catalysis Science & Technology, 2015, 5( 2): 869– 881
https://doi.org/10.1039/C4CY00848K
38 J Zhu, G H Zhang, W H Li, X B Zhang, F S Ding, C S Song, X W Guo. Deconvolution of the particle size effect on CO2 hydrogenation over iron-based catalysts. ACS Catalysis, 2020, 10( 13): 7424– 7433
https://doi.org/10.1021/acscatal.0c01526
39 Z E Hao, J D Shen, S X Lin, X Y Han, X Chang, J Liu, M S Li, X B Ma. Decoupling the effect of Ni particle size and surface oxygen deficiencies in CO2 methanation over ceria supported Ni. Applied Catalysis B: Environmental, 2021, 286 : 119922
https://doi.org/10.1016/j.apcatb.2021.119922
40 H Choi, S Y Oh, S B T Tran, J Y Park. Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol. Journal of Catalysis, 2019, 376 : 68– 76
https://doi.org/10.1016/j.jcat.2019.06.051
41 H Choi, S Y Oh, J Y Park. High methane selective Pt cluster catalyst supported on Ga2O3 for CO2 hydrogenation. Catalysis Today, 2020, 352 : 212– 219
https://doi.org/10.1016/j.cattod.2019.11.005
42 d’Alnoncourt R Naumann, X Xia, J Strunk, E Loffler, O Hinrichsen, M Muhle. The influence of strongly reducing conditions on strong metal-support interactions in Cu/ZnO catalysts used for methanol synthesis. Physical Chemistry Chemical Physics, 2006, 8( 13): 1525– 1538
https://doi.org/10.1039/b515487a
43 S W Li, Y Xu, Y F Chen, W Z Li, L L Lin, M Z Li, Y C Deng, X P Wang, B H Ge, C Yang. et al.. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction. Angewandte Chemie International Edition, 2017, 56( 36): 10761– 10765
https://doi.org/10.1002/anie.201705002
44 X W Zhou, J Qu, F Xu, J P Hu, J S Foord, Z Y Zeng, X L Hong, S C E Tsang. Shape selective plate-form Ga2O3 with strong metal-support interaction to overlying Pd for hydrogenation of CO2 to CH3OH. Chemical Communications, 2013, 49( 17): 1747– 1749
https://doi.org/10.1039/c3cc38455a
45 S B T Tran, H Choi, S Y Oh, J Y Park. Influence of support acidity of Pt/Nb2O5 catalysts on selectivity of CO2 hydrogenation. Catalysis Letters, 2019, 149( 10): 2823– 2835
https://doi.org/10.1007/s10562-019-02822-7
46 P Gao, F Li, H J Zhan, N Zhao, F K Xiao, W Wei, L S Zhong, H Wang, Y H Sun. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Journal of Catalysis, 2013, 298 : 51– 60
https://doi.org/10.1016/j.jcat.2012.10.030
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed