Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (12) : 1735-1742    https://doi.org/10.1007/s11705-022-2167-x
RESEARCH ARTICLE
Extractive desulfurization of model fuels with a nitrogen-containing heterocyclic ionic liquid
Guojia Yu, Dongyu Jin, Xinyu Li, Fan Zhang, Shichao Tian, Yixin Qu, Zhiyong Zhou(), Zhongqi Ren()
College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
 Download: PDF(4487 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A nitrogen-containing ionic liquid was synthesized using an aromatic nitrogen-containing heterocyclic and an amino acid, and applied to the extractive desulfurization process to remove benzothiophene, dibenzothiophene, and 4,6-dimethyldibenzothiphene from a model fuel oil. Chemical characterizations and simulation using Gaussian 09 software confirmed the rationality of an ionic liquid structure. Classification of non-covalent interactions between the ionic liquid and the three sulfur-containing contaminants was studied by reduced density gradient analysis. The viscosity of the ionic liquid was adjusted by addition of polyethylene glycol. Under extraction conditions of the volume of ionic liquid to oil as 1:1 and temperature as room temperature, the desulfurization selectivity of ionic liquid followed the order of 4,6-dimethyldibenzothiphene (15 min) < benzothiophene (15 min) ≈ dibenzothiophene (10 min). Addition of p-xylene and cyclohexene to the fuel oil had little effect. The extractant remained stable and effective after multiple regeneration cycles.

Keywords extractive desulfurization      nitrogen-containing heterocyclic ionic liquid      reduced density gradient analysis      desulfurization selectivity     
Corresponding Author(s): Zhiyong Zhou,Zhongqi Ren   
Online First Date: 18 August 2022    Issue Date: 19 December 2022
 Cite this article:   
Guojia Yu,Dongyu Jin,Xinyu Li, et al. Extractive desulfurization of model fuels with a nitrogen-containing heterocyclic ionic liquid[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1735-1742.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2167-x
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I12/1735
Fig.1  (a) Synthetic pathway of [DBU][L-Pyro] and (b) appearance of (I) [DBU][L-Pyro] and (II) [IL][PEG200].
IL-[DBU][L-Pyro] BT DBT DMDBT
Extraction efficiency/% 64.25 69.05 30.94
Tab.1  Desulfurization efficiency of [DBU][L-Pyro] ILa)
Fig.2  Comparison between experimental and calculated vibrational spectra determined using the M06-2X/6-31++G(d,p) method for the IL systems.
Bond Source Calculation/cm?1 Experiment/cm?1
–C=N –C=N in DBU 1662.8 1593.8
–C=O –C=O in carbonyl group 1713.6 1648.1
–C=O –C=O in –COOH 1798.9 1680.7
–OH O–H in –COOH 3327.3 3392.2
–NH –NH in –NH···C=O 3041.4 3236.2
–CH2–CH2 Six-membered ring 2989.8 2934.1
–CH2–CH2 Seven-membered ring 3038.5 3102.2
–C–N –C–N in DBU 1342.7 1400.3
?C–N –C–N in L-Pyro 1227.1 1292.3
–CH –CH2 766.9 693.1
Tab.2  Comparison of experimental and calculated vibrational frequencies at the M06-2X/6-31++G(d,p) level
Fig.3  Optimized structures of (a) DBU, L-Pyro, IL, and the IL and (b) tetradecane interacting with BT, DBT, and DMDBT. Color keys: white, hydrogen; grey, carbon; blue, nitrogen; yellow, sulfur; red, oxygen.
Fig.4  Gradient isosurfaces (s = 0.5 au) for the most stable configuration during extractive desulfurization. The surfaces are colored on a red?green?blue scale according to values of sin(λ)ρ, ranging from ?0.035 to 0.02 au. Red areas indicate strong attractive interactions and blue areas indicate strong nonbonded overlap. Color keys: white, hydrogen; blue?green, carbon; blue, nitrogen; yellow, sulfur; red, oxygen.
ILs Molar ratio S-removal efficiency/%
BT DBT DMDBT
[IL][PEG200] 1:2 65.55 67.82 31.55
1:1 67.32 70.83 36.16
2:1 67.15 70.31 35.22
Tab.3  Desulfurization efficiency of IL with different molar ratios of PEG200 a)
Fig.5  Effect of extraction time on sulfur removal by [IL][PEG200].
Fig.6  Effect of volume ratio of [IL][PEG200] to oil on sulfide extraction efficiency.
Fig.7  Sulfur concentration in fuel oil with multiple cycles of extractive desulfurization.
Fig.8  Effect of olefins and aromatic additions to model fuel on desulfurization efficiency.
Fig.9  Effects of (a) recycling and (b) regeneration of IL on desulfurization efficiency.
Fig.10  1H NMR (CDCl3, 500 MHz) characterization of [IL][PEG200] on EDS.
Extractants vext:voil T/°C S-contents/ppm Model oil Extraction cycle Sulfur removal/% Ref.
TEA:BA 1.5:1 30 500 n-Octane 1 70.61 (BT) [35]
TEA:2OHBA 1.5:1 30 500 n-Octane 1 81.0 (DBT) [35]
TBAB:HCOOH 1:0.5 30 500 n-Octane 1 80.47 (DBT) [11]
TBAC:2MA 1:1 30 1000 n-Octane 5 99.2 (BT) [36]
[C4mpip]FeCl4 1 g:5 mL 45 500 Tetradecane 5 96 [37]
ChCl·2CH3COOH 1:5 30 500 ? 1 7.8 (DBT) [38]
[C2(Mim)2](HSO4)2 1:1 (w:w) 30 ? FCC 1 56.9 [22]
TBAB/2EG 1.2:1 25 500 Isooctane 1 81.2 (DBT) [39]
[DBU][Im] 1:1 room temperature 500 n-Octane 1 79.2 (DBT) [25]
[Epy][NTf2] 1:1(w:w) 25 500 n-Octane 1 43.94 (BT) [40]
[Bpy][NTf2] 1:1(w:w) 25 500 n-Octane 1 58.50 (BT) [40]
[Hpy][NTf2] 1:1(w:w) 25 500 n-Octane 1 63.86 (BT) [40]
[TMG][Im] 1:1 room temperature 500 n-Octane 1 69.4 (DBT) [25]
TBAB:FA 1:1 30 500 1 60 (DBT) [41]
TDA:SA 1:1(w:w) 25 500 n-Dodecane 5 72.68 (TH) [23]
76.31 (BT) [23]
83.94 (DBT) [23]
[IL][PEG200] 1:1 20 500 Tetradecane 4 98.8 (BT/DBT) This work
Tab.4  Comparison of different desulfurization systems
1 M F Majid, H F M Zaid, C F Kait, K Jumbri, L C Yuan, S Rajasuriyan. Futuristic advance and perspective of deep eutectic solvent for extractive desulfurization of fuel oil: a review. Journal of Molecular Liquids, 2020, 306 : 112870
https://doi.org/10.1016/j.molliq.2020.112870
2 G J Yu, X J Wu, L Wei, Z Y Zhou, W Liu, F Zhang, Y X Qu, Z Q Ren. Desulfurization of diesel fuel by one-pot method with morpholinium-based Brønsted acidic ionic liquid. Fuel, 2021, 296 : 120551
https://doi.org/10.1016/j.fuel.2021.120551
3 W Jiang, L Dong, W Liu, T Guo, H P Li, S Yin, W S Zhu, H M Li. Biodegradable choline-like deep eutectic solvents for extractive desulfurization of fuel. Chemical Engineering and Processing, 2017, 115 : 34– 38
https://doi.org/10.1016/j.cep.2017.02.004
4 L W Hao, M R Wang, W J Shan, C L Deng, W Z Ren, Z Z Shi, H Y Lü. L-Proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel. Journal of Hazardous Materials, 2017, 339 : 216– 222
https://doi.org/10.1016/j.jhazmat.2017.06.050
5 Z G Zhu, H Y Lu, M Zhang, H Q Yang. Deep eutectic solvents as non-traditionally multifunctional media for the desulfurization process of fuel oil. Physical Chemistry Chemical Physics, 2021, 23( 2): 785– 805
https://doi.org/10.1039/D0CP05153E
6 J Liu, W Y Li, J Feng, X Gao. Effects of Fe species on promoting the dibenzothiophene hydrodesulfurization over the Pt/gamma-Al2O3 catalysts. Catalysis Today, 2021, 371 : 247– 257
https://doi.org/10.1016/j.cattod.2020.07.035
7 L G Chen, Y Xu, B H Wang, J Yun, F Dehghani, Y T Xie, X Liang. Mg-modified CoMo/Al2O3 with enhanced catalytic activity for the hydrodesulfurization of 4,6-dimethyldibenzothiophene. Catalysis Communications, 2021, 155 : 106316
https://doi.org/10.1016/j.catcom.2021.106316
8 M Rezaee, F Feyzi, M R Dehghani. Extractive desulfurization of dibenzothiophene from normal octane using deep eutectic solvents as extracting agent. Journal of Molecular Liquids, 2021, 333 : 115991
https://doi.org/10.1016/j.molliq.2021.115991
9 F Lima, J Gouvenaux, L C Branco, A J D Silvestre, I M Marrucho. Towards a sulfur clean fuel: deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents. Fuel, 2018, 234 : 414– 421
https://doi.org/10.1016/j.fuel.2018.07.043
10 K H Almashjary, M Khalid, S Dharaskar, P Jagadish, R Walvekar, T C S M Gupta. Optimisation of extractive desulfurization using choline chloride-based deep eutectic solvents. Fuel, 2018, 234 : 1388– 1400
https://doi.org/10.1016/j.fuel.2018.08.005
11 J J Li, H Xiao, X D Tang, M Zhou. Green carboxylic acid-based deep eutectic solvents as solvents for extractive desulfurization. Energy & Fuels, 2016, 30( 7): 5411– 5418
https://doi.org/10.1021/acs.energyfuels.6b00471
12 S H Ali, D M Hamad, B H Albusairi, M A Fahim. Removal of dibenzothiophenes from fuels by oxy-desulfurization. Energy & Fuels, 2009, 23( 12): 5986– 5994
https://doi.org/10.1021/ef900683d
13 T Welton. Ionic liquids in catalysis. Coordination Chemistry Reviews, 2004, 248( 21-24): 2459– 2477
https://doi.org/10.1016/j.ccr.2004.04.015
14 L C Player, B Chan, M Y Lui, A F Masters, T Maschmeyer. Toward an understanding of the forces behind extractive desulfurization of fuels with ionic liquids. ACS Sustainable Chemistry & Engineering, 2019, 7( 4): 4087– 4093
https://doi.org/10.1021/acssuschemeng.8b05585
15 D Camargo, R S Andrade, G A Ferreira, H Mazzer, L Cardozo, M Iglesias. Investigation of the rheological properties of protic ionic liquids. Journal of Physical Organic Chemistry, 2016, 29( 11): 604– 612
https://doi.org/10.1002/poc.3553
16 N E Paucar, P Kiggins, B Blad, K De Jesus, F Afrin, S Pashikanti, K Sharma. Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: a review. Environmental Chemistry Letters, 2021, 19( 2): 1205– 1228
https://doi.org/10.1007/s10311-020-01135-1
17 R Abro, A A Abdeltawab, S S Al-Deyab, G R Yu, A B Qazi, S R Gao, X C Chen. A review of extractive desulfurization of fuel oils using ionic liquids. RSC Advances, 2014, 4( 67): 35302– 35317
https://doi.org/10.1039/C4RA03478C
18 J D Holbrey, I Lo’pez-Martin, G Rothenberg, K R Seddon, G Silvero, X Zheng. Desulfurisation of oils using ionic liquids: selection of cationic and anionic components to enhance extraction efficiency. Green Chemistry, 2008, 10( 1): 87– 92
https://doi.org/10.1039/B710651C
19 H S Butt, K C Lethesh, A Fiksdahl. Fuel oil desulfurization with dual functionalized imidazolium based ionic liquids. Separation and Purification Technology, 2020, 248 : 116959
https://doi.org/10.1016/j.seppur.2020.116959
20 J J Raj, S Magaret, M Pranesh, K C Lethesh, W C Devi, M A Mutalib. Dual functionalized imidazolium ionic liquids as a green solvent for extractive desulfurization of fuel oil: toxicology and mechanistic studies. Journal of Cleaner Production, 2019, 213 : 989– 998
https://doi.org/10.1016/j.jclepro.2018.12.207
21 M H Ibrahim, M Hayyan, M A Hashim, A Hayyan. The role of ionic liquids in desulfurization of fuels: a review. Renewable & Sustainable Energy Reviews, 2017, 76 : 1534– 1549
https://doi.org/10.1016/j.rser.2016.11.194
22 J J Li, X J Lei, X D Tang, X P Zhang, Z Y Wang, S Jiao. Acid dicationic ionic liquids as extractants for extractive desulfurization. Energy & Fuels, 2019, 33( 5): 4079– 4088
https://doi.org/10.1021/acs.energyfuels.9b00307
23 Q Wang, T Zhang, S L Zhang, Y C Fan, B Chen. Extractive desulfurization of fuels using trialkylamine-based protic ionic liquids. Separation and Purification Technology, 2020, 231 : 115923
https://doi.org/10.1016/j.seppur.2019.115923
24 H S Butt, K C Lethesh, A Fiksdahl. Fuel oil desulfurization with dual functionalized imidazolium based ionic liquids. Separation and Purification Technology, 2020, 248 : 116959
https://doi.org/10.1016/j.seppur.2020.116959
25 M X Li, Z Y Zhou, F Zhang, W S Chai, L L Zhang, Z Q Ren. Deep oxidative-extractive desulfurization of fuels using benzyl-based ionic liquid. AIChE Journal. American Institute of Chemical Engineers, 2016, 62( 11): 4023– 4034
https://doi.org/10.1002/aic.15326
26 Z Q Ren, L Wei, Z Y Zhou, F Zhang, W Liu. Extractive desulfurization of model oil with protic ionic liquids. Energy & Fuels, 2018, 32( 9): 9172– 9181
https://doi.org/10.1021/acs.energyfuels.8b01936
27 O U Ahmed, F S Mjalli, A W Talal, Y Al-Wahaibi, I M Nashef. Extractive desulfurization of liquid fuel using modified pyrollidinium and phosphonium based ionic liquid solvents. Journal of Solution Chemistry, 2018, 47( 3): 468– 483
https://doi.org/10.1007/s10953-018-0732-1
28 J L Wang, R J Zhao, B X Han, N Tang, K X Li. Extractive and oxidative desulfurization of model oil in polyethylene glycol. RSC Advances, 2016, 6( 41): 35071– 35075
https://doi.org/10.1039/C6RA00996D
29 W Jiang, K Zhu, H P Li, L H Zhu, M Q Hua, J Xiao, C Wang, Z Z Yang, G Y Chen, W S Zhu, H Li, S Dai. Synergistic effect of dual Brønsted acidic deep eutectic solvents for oxidative desulfurization of diesel fuel. Chemical Engineering Journal, 2020, 394 : 124831
https://doi.org/10.1016/j.cej.2020.124831
30 I M Alecu, J J Zheng, Y Zhao, D G Truhlar. Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. Journal of Chemical Theory and Computation, 2010, 6( 9): 2872– 2887
https://doi.org/10.1021/ct100326h
31 X Wang, W Jiang, W S Zhu, H P Li, S Yin, Y H Chang, H M Li. A simple and cost-effective extractive desulfurization process with novel deep eutectic solvents. RSC Advances, 2016, 6( 36): 30345– 30352
https://doi.org/10.1039/C5RA27266A
32 T Lu, F W Chen. Multiwfn: a multifunctional wavefunction analyzer. Journal of Computational Chemistry, 2012, 33( 5): 580– 592
https://doi.org/10.1002/jcc.22885
33 D V Wagle, C A Deakyne, G A Baker. Quantum chemical insight into the interactions and thermodynamics present incholine chloride based deep eutectic solvents. Journal of Physical Chemistry B, 2016, 120( 27): 6739– 6746
https://doi.org/10.1021/acs.jpcb.6b04750
34 W Jiang, H Li, C Wang, W Liu, T Guo, H Liu, W S Zhu, H M Li. Synthesis of ionic liquid-based deep eutectic solvents for extractive desulfurization of fuel. Energy & Fuels, 2016, 30( 10): 8164– 8170
https://doi.org/10.1021/acs.energyfuels.6b01976
35 X Zhao, G Zhu, L Jiao, F Yu, C Xie. Formation and extractive desulfurization mechanisms of aromatic acid based deep eutectic solvents: an experimental and theoretical study. Chemistry, 2018, 24( 43): 11021– 11032
https://doi.org/10.1002/chem.201801631
36 C Shu, T Sun. Extractive desulfurisation of gasoline with tetrabutyl ammonium chloride-based deep eutectic solvents. Separation and Purification Technology, 2016, 51( 8): 1336– 1343
37 W Jiang, W Zhu, H Li, W Xin, Y Sheng, Y Chang, H M Li. Temperature-responsive ionic liquid extraction and separation of the aromatic sulfur compounds. Fuel, 2015, 140 : 590– 596
https://doi.org/10.1016/j.fuel.2014.09.083
38 W Zhu, C Wang, H Li, P Wu, S Xun, W Jiang, Z G Chen, Z Zhao, H M Li. One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent. Green Chemistry, 2015, 17( 4): 2464– 2472
https://doi.org/10.1039/C4GC02425G
39 N Khan, V C Srivastava. Quaternary ammonium salts-based deep eutectic solvents: utilization in extractive desulfurization. Energy & Fuels, 2021, 35( 15): 12734– 12745
https://doi.org/10.1021/acs.energyfuels.1c01220
40 J M Wu, X M Wu, P P Zhao, Z H Wang, L Z Zhang, D M Xu, J Gao. Extraction desulphurization of fuels using ZIF-8-based porous liquid. Fuel, 2021, 300 : 121013
https://doi.org/10.1016/j.fuel.2021.121013
41 P Makos, G Boczkaj. Deep eutectic solvents based highly efficient extractive desulfurization of fuels-eco-friendly approach. Journal of Molecular Liquids, 2019, 296 : 111916
https://doi.org/10.1016/j.molliq.2019.111916
[1] FCE-21101-of-YG_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed