Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (12) : 1743-1750    https://doi.org/10.1007/s11705-022-2184-9
RESEARCH ARTICLE
High-precision standard enthalpy of formation for polycyclic aromatic hydrocarbons predicting from general connectivity based hierarchy with discrete correction of atomization energy
Zihan Xu1, Huajie Xu1, Lu Liu1, Rongpei Jiang2, Haisheng Ren1,3(), Xiangyuan Li1,3
1. School of Chemical Engineering, Sichuan University, Chengdu 610065, China
2. Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
3. Engineering Research Center of Combustion and Cooling for Aerospace Power Ministry of Education, Chengdu 610065, China
 Download: PDF(2108 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The standard enthalpy of formation is an important predictor of the reaction heat of a chemical reaction. In this work, a high-precision method was developed to calculate accurate standard enthalpies of formation for polycyclic aromatic hydrocarbons based on the general connectivity based hierarchy (CBH) with the discrete correction of atomization energy. Through a comparison with available experimental findings and other high-precision computational results, it was found that the present method can give a good description of enthalpy of formation for polycyclic aromatic hydrocarbons. Since CBH schemes can broaden the scope of application, this method can be used to investigate the energetic properties of larger polycyclic aromatic hydrocarbons to achieve a high-precision calculation at the CCSD(T)/CBS level. In addition, the energetic properties of CBH fragments can be accurately calculated and integrated into a database for future use, which will increase computational efficiency. We hope this work can give new insights into the energetic properties of larger systems.

Keywords standard enthalpy of formation      polycyclic aromatic hydrocarbons      connectivity based hierarchy      high-precision calculation     
Corresponding Author(s): Haisheng Ren   
Online First Date: 29 August 2022    Issue Date: 19 December 2022
 Cite this article:   
Zihan Xu,Huajie Xu,Lu Liu, et al. High-precision standard enthalpy of formation for polycyclic aromatic hydrocarbons predicting from general connectivity based hierarchy with discrete correction of atomization energy[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1743-1750.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2184-9
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I12/1743
Computational scheme hC hH
CCSD(T)/cc-pVTZ 38.0492 0.5805
B3LYP/6-31G* 38.1168 0.5809
CBS-QB3 38.0559 0.5805
W1 38.1234 0.5807
G2 38.0548 0.5807
G4 38.1047 0.5821
DLPNO-CCSD(T)/def2-TZVP a) 38.0423 0.5775
DLPNO-CCSD(T)/def2-QZVP a) 38.0516 0.5811
This work from discrete least squares method 38.0598 0.5816
Tab.1  Constants hi/a.u. in equation for different computational schemes
Fig.1  Flow chart for calculating the values of hC and hH by the discrete least squares method.
Fig.2  The geometric structures of 19 fragments used in the CBH-4 rung scheme.
Fig.3  The optimized cis and trans isomers in the CBH-4 reaction scheme with their energies (unit in a.u.). (a1 and a2), (b1 and b2), (c1 and c2), (d1 and d2), and (e1 and e2) are the cis and trans isomers of C4H8, C5H8, C6H10, C8H12, and C9H14, respectively. The bond lengths are in Å. The isomers on the top row are used as the CBH fragments.
Chemical name Single-point energies/a.u. Energy deviations/( k ca l?m ol 1)
CBH-4 CCSD(T)/CBS
Benzene ?231.9207 ?231.9212 ?0.31
Naphthalene ?385.3468 ?385.3481 ?0.82
1,3-Cyclopentadiene ?193.8327 ?193.8336 ?0.56
Tab.2  Single-point energies at CBH-4 and CCSD(T)/CBS methods and their corresponding deviations
No. Molecule Chemical name Enthalpy of formation/(kcal·mol−1)
Expt. GA a) ATOMIC b) This work c)
1 C6H6 Benzene 19.81 d) 19.8 20.10 ± 0.9 19.83
2 C10H8 Naphthalene 35.85 e) 35.02 35.70 ± 1.6 35.38
3 C10H8 Azulene 73.61 e) 85.03 71.80 ± 1.4 72.96
4 C12H8 Acenaphthylene 62.91 e) 51.73 62.80 ± 2.1 63.55
5 C13H10 Fluorene 42.23 e) 45.00 ± 2.7 45.01
6 C13H10 1H-Phenalene 50.13
7 C14H8 Pyracyclene 97.66 e) 68.43 103.40 ± 2.5 106.9
8 C14H10 Anthracene 54.83 e) 50.24 54.70 ± 2.5 54.74
9 C14H10 Phenanthrene 48.28 e) 48.04 49.00 ± 3.1 47.28
10 C16H10 Pyrene 53.90 e) 50.31 53.80 ± 2.9 54.04
11 C16H10 Fluoranthene 69.65 e) 57.02 68.20 ± 3.4 69.43
12 C17H12 1H-Benz[de]anthracene 42.99
13 C18H12 Naphthacene 81.88 e) 65.46 75.70 ± 4.0 78.16
14 C18H12 Benz[a]anthracene 69.38 e) 63.26 65.98
15 C18H12 Chrysene 64.22 e) 61.06 64.00 ± 4.1 64.07
16 C18H12 Benzo[c]phenanthrene 69.60 e) 63.26 69.80 ± 3.8 70
17 C18H12 Triphenylene 64.56 e) 58.86 63.60 ± 4.2 64.03
18 C20H10 Corannulene 110.33 e) 118.57 115.40 ± 4.1 117.6
19 C20H12 Perylene 76.08 e) 67.73 75.20 ± 4.5 76.75
20 C22H14 Pentacene 80.69 101.46
21 C22H14 Benzo[a]naphthacene 78.49 87.48
22 C22H14 Pentaphene 78.49 83.91
23 C22H14 Picene 74.09 78.41
24 C22H14 Benzo(c)chrysene 76.29 83.3
25 C22H14 Naphtho[1,2-a]anthracene 78.49 89.09
26 C22H14 Dibenzo[c,g]phenanthrene 78.49 88.27
27 C22H14 Benzo[ghi]perylene 63.39 71.35
28 C22H14 Benzo[b]chrysene 76.29 83.36
29 C22H14 Benzo(g)chrysene 74.09 83.3
30 C22H14 Dibenz[a,j]anthracene 76.29 79.9
31 C22H14 Dibenz[a,h]anthracene 76.29 79.68
32 C24H12 Coronene 70.51 e) 65.66 69.70 ± 5.1 70.07
33 C26H16 Dibenzo[g,p]chrysene 87.11 105.4
34 C26H16 Hexahelicene 93.71 103.45
35 C26H16 Dibenzo[a,c]naphthacene 89.31 104.03
36 C26H16 Benzo[a]pentacene 93.71 112.18
37 C26H16 Naphtho[1,2-b]triphenylene 87.11 95.1
38 C26H16 Hexaphene 93.71 106.91
39 C26H16 Benzo[c]pentaphene 91.51 97.6
40 C26H16 Dibenzo[b,k]chrysene 91.51 102.87
41 C26H16 Naphtho[2,3-g]chrysene 89.31 103.89
42 C26H16 Benzo[b]picene 89.31 97.46
43 C26H16 Naphtho[2,1-a]naphthacene 91.51 105.15
44 C26H16 Benzo[h]pentaphene 89.31 100.49
45 C26H16 Naphtho[1,2-b]chrysene 89.31 121.59
46 C26H16 Naphtho[1,2-a]naphthacene 93.71 109.69
47 C26H16 Dibenzo[a,j]naphthacene 91.51 100.05
48 C26H16 Hexacene 95.91 124.12
49 C26H16 Naphtho[2,1-b]chrysene 89.31 93.15
50 C28H14 Phenanthro[1,10,9,8-opqra]perylene 76.48 115.82
Tab.3  Enthalpies of formation (298 K) from different methods and available experimental values
Fig.4  X-axis using the value of experimental standard enthalpy of formation to represent the species. The experimental value is shown in Table 3. Y-axis are the values of standard enthalpies of formation from different methods.
1 X Dong, Y Chang, B Niu, M Jia. Development of a practical reaction model of polycyclic aromatic hydrocarbon (PAH) formation and oxidation for diesel surrogate fuel. Fuel, 2020, 267 : 117159
https://doi.org/10.1016/j.fuel.2020.117159
2 Z H Jin, J T Chen, S B Song, D X Tian, Z Y Tian. Pyrolysis study of a three-component surrogate jet fuel. Combustion and Flame, 2021, 226 : 190– 199
https://doi.org/10.1016/j.combustflame.2020.12.016
3 X Liu, Y Pan, P Zhang, Y Wang, G Xu, Z Su, F Yang. Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn–Ti/HZSM-5 catalyst. Frontiers of Chemical Science and Engineering, 2022, 16( 3): 384– 396
https://doi.org/10.1007/s11705-021-2045-y
4 P Liu, Y Liu, Y Lv, W Xiong, F Hao, H Luo. Zinc modification of Ni–Ti as efficient NixZnyTi1 catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics. Frontiers of Chemical Science and Engineering, 2022, 16( 4): 461– 474
https://doi.org/10.1007/s11705-021-2072-8
5 Y Cui, Z Zeng, J Zheng, Z Huang, J Yang. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite. Frontiers of Chemical Science and Engineering, 2021, 15( 5): 1125– 1133
https://doi.org/10.1007/s11705-020-2012-z
6 J Zhang, F Tian, J Chen, Y Shi, H Cao, P Ning, Y Xie. Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts. Frontiers of Chemical Science and Engineering, 2021, 15( 2): 288– 298
https://doi.org/10.1007/s11705-020-1932-y
7 H H Rahman, D Niemann, S H Munson-McGee. Association among urinary polycyclic aromatic hydrocarbons and depression: a cross-sectional study from NHANES 2015–2016. Environmental Science and Pollution Research International, 2022, 29( 9): 13089– 13097
https://doi.org/10.1007/s11356-021-16692-3
8 B Kärcher, F Mahrt, C Marcolli. Process-oriented analysis of aircraft soot-cirrus interactions constrains the climate impact of aviation. Communications Earth & Environment, 2021, 2( 1): 1– 9
https://doi.org/10.1038/s43247-021-00175-x
9 K O Johansson, M P Head-Gordon, P E Schrader, K R Wilson, H A Michelsen. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science, 2018, 361( 6406): 997– 1000
https://doi.org/10.1126/science.aat3417
10 M Thomson, T Mitra. A radical approach to soot formation. Science, 2018, 361( 6406): 978– 979
https://doi.org/10.1126/science.aau5941
11 L Liu, S Chen, H Xu, Q Zhu, H Ren. Effect of alkyl substituent for cyclohexane on pyrolysis towards sooting tendency from theoretical principle. Journal of Analytical and Applied Pyrolysis, 2022, 161 : 105386
https://doi.org/10.1016/j.jaap.2021.105386
12 P P Plehiers, I Lengyel, D H West, G B Marin, C V Stevens, K M Van Geem. Fast estimation of standard enthalpy of formation with chemical accuracy by artificial neural network correction of low-level-of-theory ab initio calculations. Chemical Engineering Journal, 2021, 426 : 131304
https://doi.org/10.1016/j.cej.2021.131304
13 E Paulechka, A Kazakov. Efficient Ab initio estimation of formation enthalpies for organic compounds: extension to sulfur and critical evaluation of experimental data. Journal of Physical Chemistry A, 2021, 125( 36): 8116– 8131
https://doi.org/10.1021/acs.jpca.1c05882
14 R E Lyon. Thermal dynamics of bomb calorimeters. Review of Scientific Instruments, 2015, 86( 12): 125103
https://doi.org/10.1063/1.4936568
15 L Constantinou, R Gani. New group contribution method for estimating properties of pure compounds. AIChE Journal. American Institute of Chemical Engineers, 1994, 40( 10): 1697– 1710
https://doi.org/10.1002/aic.690401011
16 W J Hehre, R Ditchfield, L Radom, J A Pople. Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. Journal of the American Chemical Society, 1970, 92( 16): 4796– 4801
https://doi.org/10.1021/ja00719a006
17 J W Ochterski. Thermochemistry in gaussian. Gaussian Inc, 2000, 1 : 1– 19
18 W C Herndon, P C Nowak, D A Connor, P Lin. Empirical model calculations for thermodynamic and structural properties of condensed polycyclic aromatic hydrocarbons. Journal of the American Chemical Society, 1992, 114( 1): 41– 47
https://doi.org/10.1021/ja00027a005
19 H S Wu, S I Sandler. Use of ab initio quantum mechanics calculations in group contribution methods. 1. Theory and the basis for group identifications. Industrial & Engineering Chemistry Research, 1991, 30( 5): 881– 889
https://doi.org/10.1021/ie00053a010
20 R Sivaramakrishnan, R S Tranter, K Brezinsky. Ring conserved isodesmic reactions: a new method for estimating the heats of formation of aromatics and PAHs. Journal of Physical Chemistry A, 2005, 109( 8): 1621– 1628
https://doi.org/10.1021/jp045076m
21 G A Petersson, D K Malick, W G Wilson, J W Ochterski, J A Jr Montgomery, M Frisch. Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry. Journal of Chemical Physics, 1998, 109( 24): 10570– 10579
https://doi.org/10.1063/1.477794
22 L A Curtiss, P C Redfern, K Raghavachari. Gaussian-4 theory. Journal of Chemical Physics, 2007, 126( 8): 084108
https://doi.org/10.1063/1.2436888
23 K Raghavachari, G W Trucks, J A Pople, M Head-Gordon. Reprint of: A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 2013, 589 : 37– 40
https://doi.org/10.1016/j.cplett.2013.08.064
24 R O Ramabhadran, K Raghavachari. The successful merger of theoretical thermochemistry with fragment-based methods in quantum chemistry. Accounts of Chemical Research, 2014, 47( 12): 3596– 3604
https://doi.org/10.1021/ar500294s
25 C Dykstra, G Frenking, K Kim, G Scuseria. Theory and Applications of Computational Chemistry: The First Forty Years. Amsterdam: Elsevier, 2011, 1336
26 E Paulechka, A Kazakov. Efficient DLPNO–CCSD(T)-based estimation of formation enthalpies for C-, H-, O-, and N-containing closed-shell compounds validated against critically evaluated experimental data. Journal of Physical Chemistry A, 2017, 121( 22): 4379– 4387
https://doi.org/10.1021/acs.jpca.7b03195
27 A D Becke. Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 1993, 98( 7): 5648– 5652
https://doi.org/10.1063/1.464913
28 Y Zhao, D G Truhlar. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 2008, 120( 1): 215– 241
https://doi.org/10.1007/s00214-007-0310-x
29 D G Truhlar. Basis-set extrapolation. Chemical Physics Letters, 1998, 294( 1-3): 45– 48
https://doi.org/10.1016/S0009-2614(98)00866-5
30 09 Gaussion. Revision A.02. Wallingford, CT: Gaussian Inc, 2009
31 E J Prosen, R Gilmont, F D Rossini. Heats of combustion of benzene, toluene, ethylbenzene, ortho-xylene, meta-xylene, para-xylene, normal-propylbenzene, and styrene. Journal of Research of the National Bureau of Standards, 1945, 34( 1): 65– 71
https://doi.org/10.6028/jres.034.034
32 W V Steele R D Chirico A Nguyen I A Hossenlopp N K Smith. Determination of ideal-gas enthalpies of formation for key compounds. NIPER Technical Report, 1991
33 D Bakowies. Estimating systematic error and uncertainty in ab initio thermochemistry: II. ATOMIC(hc) enthalpies of formation for a large set of hydrocarbons. Journal of Chemical Theory and Computation, 2019, 16( 1): 399– 426
https://doi.org/10.1021/acs.jctc.9b00974
34 K B Wiberg, S Hao. Enthalpies of hydration of alkenes. 4. Formation of acyclic tert-alcohols. Journal of Organic Chemistry, 1991, 56( 17): 5108– 5110
https://doi.org/10.1021/jo00017a022
35 A Molnar, R Rachford, G V Smith, R Liu. Heats of hydrogenation by a simple and rapid flow calorimetric method. Applied Catalysis, 1984, 9( 2): 219– 223
https://doi.org/10.1016/0166-9834(84)80066-4
36 J A Manion. Evaluated enthalpies of formation of the stable closed shell C1 and C2 chlorinated hydrocarbons. Journal of Physical and Chemical Reference Data, 2002, 31( 1): 123– 172
https://doi.org/10.1063/1.1420703
37 C W Gao, J W Allen, W H Green, R H West. Reaction mechanism generator: automatic construction of chemical kinetic mechanisms. Computer Physics Communications, 2016, 203 : 212– 225
https://doi.org/10.1016/j.cpc.2016.02.013
[1] FCE-22012-OF-XZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed