| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis  | 
  					 
  					  										
						Yingjie Zhao1, Xinyue Wang1, Xiahan Sang3, Sixing Zheng1, Bin Yang1,2, Lecheng Lei1,2, Yang Hou1,2, Zhongjian Li1,2( ) | 
					 
															
						1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China 2. Institute of Zhejiang University-Quzhou, Quzhou 324000, China 3. Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  Unlocking of the extremely inert C=O bond during electrochemical CO2 reduction demands subtle regulation on a key “resource”, protons, necessary for intermediate conversion but also readily trapped in water splitting, which is still challenging for developing efficient single-atom catalysts limited by their structural simplicity usually incompetent to handle this task. Incorporation of extra functional units should be viable. Herein, a proton deployment strategy is demonstrated via “atomic and nanostructured iron (A/N-Fe) pairs”, comprising atomically dispersed iron active centers spin-polarized by nanostructured iron carbide ferromagnets, to boost the critical protonation steps. The as-designed catalyst displays a broad window (300 mV) for CO selectivity > 90% (98% maximum), even outperforming numerous cutting-edge M–N–C systems. The well-placed control of proton dynamics by A/N-Fe can promote *COOH/*CO formation and simultaneously suppress H2 evolution, benefiting from the magnetic-proximity-induced exchange splitting (spin polarization) that properly adjusts energy levels of the Fe sites’ d-shells, and further those of the adsorbed intermediates’ antibonding molecular orbitals. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				CO2 electrolysis  
																		  																																				single-atom catalysts  
																		  																																				spin polarization  
																		  																																				proton dynamics  
																		  																																				in situ IR spectroscopy  
																		  																																				kinetic isotope effect  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Zhongjian Li   
																													     		
													     	 | 
														 
																																										
															| 
																																														Online First Date: 14 October 2022   
																																														Issue Date: 19 December 2022
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														      R G Grim, Z Huang, M T Guarnieri, J R Ferrell, L Tao, J A Schaidle. Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy & Environmental Science, 2020, 13(2): 472–494 
														     														     	 
														     															     		https://doi.org/10.1039/C9EE02410G
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														      R Kortlever, J Shen, K J P Schouten, F Calle-Vallejo, M T M Koper. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. Journal of Physical Chemistry Letters, 2015, 6(20): 4073–4082 
														     														     	 
														     															     		https://doi.org/10.1021/acs.jpclett.5b01559
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														      Y Y Birdja, E Perez-Gallent, M C Figueiredo, A J Gottle, F Calle-Vallejo, M T M Koper. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy, 2019, 4(9): 732–745 
														     														     	 
														     															     		https://doi.org/10.1038/s41560-019-0450-y
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														      M B Ross, P De Luna, Y Li, C T Dinh, D Kim, P Yang, E H Sargent. Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis, 2019, 2(8): 648–658 
														     														     	 
														     															     		https://doi.org/10.1038/s41929-019-0306-7
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														      Y J Zhang, V Sethuraman, R Michalsky, A A Peterson. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catalysis, 2014, 4(10): 3742–3748 
														     														     	 
														     															     		https://doi.org/10.1021/cs5012298
														     															     															     															 | 
																  
																														
															| 6 | 
															 
														      E R Cave, C Shi, K P Kuhl, T Hatsukade, D N Abram, C Hahn, K Chan, T F Jaramillo. Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals. ACS Catalysis, 2018, 8(4): 3035–3040 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.7b03807
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														      T Zheng, K Jiang, H Wang. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Advanced Materials, 2018, 30(48): 1802066 
														     														     	 
														     															     		https://doi.org/10.1002/adma.201802066
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														      Y Wang, Y Liu, W Liu, J Wu, Q Li, Q Feng, Z Chen, X Xiong, D Wang, Y Lei. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy & Environmental Science, 2020, 13(12): 4609–4624 
														     														     	 
														     															     		https://doi.org/10.1039/D0EE02833A
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														      Y Pan, C Zhang, Z Liu, C Chen, Y D Li. Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter, 2020, 2(1): 78–110 
														     														     	 
														     															     		https://doi.org/10.1016/j.matt.2019.11.014
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														      W Zang, Z Kou, S J Pennycook, J Wang. Heterogeneous single atom electrocatalysis, where “singles” are “married”. Advanced Energy Materials, 2020, 10(9): 1903181 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.201903181
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														      J Jiao, R Lin, S Liu, W C Cheong, C Zhang, Z Chen, Y Pan, J Tang, K Wu, S F Hung, H M Chen, L Zheng, Q Lu, X Yang, B Xu, H Xiao, J Li, D Wang, Q Peng, C Chen, Y Li. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11(3): 222–228 
														     														     	 
														     															     		https://doi.org/10.1038/s41557-018-0201-x
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														      C Liu, Y Wu, K Sun, J Fang, A Huang, Y Pan, W C Cheong, Z Zhuang, Z Zhuang, Q Yuan, H L Xin, C Zhang, J Zhang, H Xiao, C Chen, Y Li. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem, 2021, 7(5): 1297–1307 
														     														     	 
														     															     		https://doi.org/10.1016/j.chempr.2021.02.001
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														      C J Bondue, M Graf, A Goyal, M T M Koper. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. Journal of the American Chemical Society, 2021, 143(1): 279–285 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.0c10397
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														      W Ma, S Xie, X G Zhang, F Sun, J Kang, Z Jiang, Q Zhang, D Y Wu, Y Wang. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10(1): 892 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-019-08805-x
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														      X Wang, X Sang, C L Dong, S Yao, L Shuai, J Lu, B Yang, Z Li, L Lei, M Qiu, L Dai, Y Hou. Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites. Angewandte Chemie International Edition, 2021, 60(21): 11959–11965 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202100011
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														      W Ju, A Bagger, G P Hao, A Sofia Varela, I Sinev, V Bon, B Roldan Cuenya, S Kaskel, J Rossmeisl, P Strasser. Understanding activity and selectivity of metal−nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8(1): 944 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-017-01035-z
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														      H Zhang, J Li, S Xi, Y Du, X Hai, J Wang, H Xu, G Wu, J Zhang, J Lu, J Wang. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angewandte Chemie International Edition, 2019, 58(42): 14871–14876 
														     														     	 
														     															     		https://doi.org/10.1002/anie.201906079
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														      J Li, S Mao, Y Hou, L Lei, C Yuan. 3D edge-enriched Fe3C@C nanocrystals with a core-shell structure grown on reduced graphene oxide networks for efficient oxygen reduction reaction. ChemSusChem, 2018, 11(18): 3292–3298 
														     														     	 
														     															     		https://doi.org/10.1002/cssc.201801084
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														      W Zhang, J Yin, M Sun, W Wang, C Chen, M Altunkaya, A H Emwas, Y Han, U Schwingenschlogl, H N Alshareef. Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Advanced Materials, 2020, 32(25): 2000732 
														     														     	 
														     															     		https://doi.org/10.1002/adma.202000732
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														      Y Shao, R Pang, X Shi. Stability of two-dimensional iron carbides suspended across graphene pores: first-principles particle swarm optimization. Journal of Physical Chemistry C, 2015, 119(40): 22954–22960 
														     														     	 
														     															     		https://doi.org/10.1021/acs.jpcc.5b06555
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														      I Zutic, A Matos-Abiague, B Scharf, H Dery, K Belashchenko. Proximitized materials. Materials Today, 2019, 22: 85–107 
														     														     	 
														     															     		https://doi.org/10.1016/j.mattod.2018.05.003
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														      J Stöhr, H C Siegmann. Magnetism: From Fundamentals to Nanoscale Dynamics. Berlin: Springer, 2006, 235–240
														     															 | 
																  
																														
															| 23 | 
															 
														      M P Marder. Condensed Matter Physics. Hoboken: Wiley, 2010, 811–813
														     															 | 
																  
																														
															| 24 | 
															 
														      J K Norskov, T Bligaard, J Rossmeisl, C H Christensen. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46 
														     														     	 
														     															     		https://doi.org/10.1038/nchem.121
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														      Z J Zhao, S Liu, S Zha, D Cheng, F Studt, G Henkelman, J Gong. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Reviews Materials, 2019, 4(12): 792–804 
														     														     	 
														     															     		https://doi.org/10.1038/s41578-019-0152-x
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														      X Ren, T Z Wu, Y M Sun, Y Li, G Y Xian, X H Liu, C M Shen, J Gracia, H J Gao, H T Yang, Z J Xu. Spin-polarized oxygen evolution reaction under magnetic field. Nature Communications, 2021, 12(1): 2608 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-021-22865-y
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														      T Z Wu, X Ren, Y M Sun, S N Sun, G Y Xian, G G Scherer, A C Fisher, D Mandler, J W Ager, A Grimaud, J Wang, C Shen, H Yang, J Gracia, H J Gao, Z J Xu. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nature Communications, 2021, 12(1): 3634 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-021-23896-1
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														      W Demtröder. Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- and Quantum Physics. Berlin: Springer, 2018, 320–322
														     															 | 
																  
																														
															| 29 | 
															 
														      X Zhang, X Q Li, D Zhang, N Q Su, W T Yang, H O Everitt, J Liu. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nature Communications, 2017, 8(1): 14542 
														     														     	 
														     															     		https://doi.org/10.1038/ncomms14542
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														      W J Jiang, L Gu, L Li, Y Zhang, X Zhang, L J Zhang, J Q Wang, J S Hu, Z Wei, L J Wan. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. Journal of the American Chemical Society, 2016, 138(10): 3570–3578 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.6b00757
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														      J Hu, S Wang, J Yu, W Nie, J Sun, S Wang. Duet Fe3C and FeNx sites for H2O2 generation and activation toward enhanced electro-Fenton performance in wastewater treatment. Environmental Science & Technology, 2021, 55(2): 1260–1269 
														     														     	 
														     															     		https://doi.org/10.1021/acs.est.0c06825
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														      J Li, S Ghoshal, W Liang, M T Sougrati, F Jaouen, B Halevi, S McKinney, G McCool, C Ma, X Yuan, Z F Ma, S Mukerjee, Q Jia. Structural and mechanistic basis for the high activity of Fe−N−C catalysts toward oxygen reduction. Energy & Environmental Science, 2016, 9(7): 2418–2432 
														     														     	 
														     															     		https://doi.org/10.1039/C6EE01160H
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														      J Gu, C S Hsu, L Bai, H M Chen, X Hu. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science, 2019, 364(6445): 1091–1094 
														     														     	 
														     															     		https://doi.org/10.1126/science.aaw7515
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														      T Burdyny, W A Smith. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy & Environmental Science, 2019, 12(5): 1442–1453 
														     														     	 
														     															     		https://doi.org/10.1039/C8EE03134G
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														      N J Firet, W A Smith. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catalysis, 2017, 7(1): 606–612 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.6b02382
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														      S Zhu, B Jiang, W B Cai, M Shao. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. Journal of the American Chemical Society, 2017, 139(44): 15664–15667 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.7b10462
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														      H Günzler, H U I R Gremlich. Spectroscopy: an Introduction. Weinheim: Wiley, 2002, 14–16
														     															 | 
																  
																														
															| 38 | 
															 
														      D W H Rankin, N W Mitzel, C A Morrison. Structural Methods in Molecular Inorganic Chemistry. Chichester: Wiley, 2013, 237–238
														     															 | 
																  
																														
															| 39 | 
															 
														      S F A Kettle. Physical Inorganic Chemistry: A Coordination Chemistry Approach. Berlin: Springer, 1996, 229–230
														     															 | 
																  
																														
															| 40 | 
															 
														      R P Bell. The Proton in Chemistry. London: Chapman & Hall, 1973, 232–235
														     															 | 
																  
																														
															| 41 | 
															 
														      A Goyal, G Marcandalli, V A Mints, M T M Koper. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. Journal of the American Chemical Society, 2020, 142(9): 4154–4161 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.9b10061
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														      S Hammes-Schiffer. Theory of proton-coupled electron transfer in energy conversion processes. Accounts of Chemical Research, 2009, 42(12): 1881–1889 
														     														     	 
														     															     		https://doi.org/10.1021/ar9001284
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														      E Liu, L Jiao, J Li, T Stracensky, Q Sun, S Mukerjee, Q Jia. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy & Environmental Science, 2020, 13(9): 3064–3074 
														     														     	 
														     															     		https://doi.org/10.1039/D0EE01754J
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														      Z K Goldsmith, Y C Lam, A V Soudackov, S Hammes-Schiffer. Proton discharge on a gold electrode from triethylammonium in acetonitrile: theoretical modeling of potential-dependent kinetic isotope effects. Journal of the American Chemical Society, 2019, 141(2): 1084–1090 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.8b11826
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														      Y C Lam, A V Soudackov, S Hammes-Schiffer. Theory of electrochemical proton-coupled electron transfer in diabatic vibronic representation: application to proton discharge on metal electrodes in alkaline solution. Journal of Physical Chemistry C, 2020, 124(50): 27309–27322 
														     														     	 
														     															     		https://doi.org/10.1021/acs.jpcc.0c08096
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														      D H Deng, L Yu, X Q Chen, G X Wang, L Jin, X L Pan, J Deng, G Q Sun, X H Bao. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angewandte Chemie International Edition, 2013, 52(1): 371–375 
														     														     	 
														     															     		https://doi.org/10.1002/anie.201204958
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														      Y Hu, J O Jensen, W Zhang, L N Cleemann, W Xing, N J Bjerrum, Q Li. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angewandte Chemie International Edition, 2014, 53(14): 3675–3679 
														     														     	 
														     															     		https://doi.org/10.1002/anie.201400358
														     															     															     															 | 
																  
																														
															| 48 | 
															 
														      J Xie, Y Wang. Recent development of CO2 electrochemistry from Li–CO2 batteries to Zn–CO2 batteries. Accounts of Chemical Research, 2019, 52(6): 1721–1729 
														     														     	 
														     															     		https://doi.org/10.1021/acs.accounts.9b00179
														     															     															     															 | 
																  
																														
															| 49 | 
															 
														      X Wang, J Xie, M A Ghausi, J Lv, Y Huang, M Wu, Y Wang, J Yao. Rechargeable Zn–CO2 electrochemical cells mimicking two-step photosynthesis. Advanced Materials, 2019, 31(17): 1807807 
														     														     	 
														     															     		https://doi.org/10.1002/adma.201807807
														     															     															     															 | 
																  
																														
															| 50 | 
															 
														      X Liang, J Xiao, W Weng, W Xiao. Electrochemical reduction of carbon dioxide and iron oxide in molten salts to Fe/Fe3C modified carbon for electrocatalytic oxygen evolution. Angewandte Chemie International Edition, 2021, 60(4): 2120–2124 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202013257
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |