Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (2) : 226-235    https://doi.org/10.1007/s11705-022-2198-3
RESEARCH ARTICLE
Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage
Haoxiang Yu1,2, Leiyu Fan2, Chenchen Deng2, Huihui Yan2, Lei Yan2, Jie Shu2(), Zhen-Bo Wang1()
1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
2. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
 Download: PDF(5238 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.

Keywords nickel ferrocyanides      NH4+      electrochemistry      Prussian blue      aqueous ammonium ion batteries     
Corresponding Author(s): Jie Shu,Zhen-Bo Wang   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Online First Date: 14 October 2022    Issue Date: 27 February 2023
 Cite this article:   
Haoxiang Yu,Leiyu Fan,Chenchen Deng, et al. Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage[J]. Front. Chem. Sci. Eng., 2023, 17(2): 226-235.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2198-3
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I2/226
Fig.1  Schematic illustration of the synthesis process of Ni2Fe(CN)6/MWCNT.
Fig.2  (a) XRD patterns of Ni2Fe(CN)6/MWCNT, Ni2Fe(CN)6, and MWCNT; (b) Raman spectra of Ni2Fe(CN)6/MWCNT and Ni2Fe(CN)6; (c) crystal structure of Ni2Fe(CN)6; (d) photograph of Ni2Fe(CN)6/MWCNT and Ni2Fe(CN)6; (e) thermal gravity analysis curves of Ni2Fe(CN)6/MWCNT and Ni2Fe(CN)6 under air atmosphere.
Fig.3  SEM of (a, b) Ni2Fe(CN)6/MWCNT and (c) Ni2Fe(CN)6; (d, e) TEM of Ni2Fe(CN)6/MWCNT; (f) HRTEM of Ni2Fe(CN)6/MWCNT.
Fig.4  Discharge–charge profiles of (a) Ni2Fe(CN)6/MWCNT and (b) Ni2Fe(CN)6 at 1 and 15 C (1 C = 60 mAh·g–1). (c) Cycling performance of Ni2Fe(CN)6/MWCNT and Ni2Fe(CN)6 at 1 C for the first 5 cycles and at 15 C afterwards. Discharge–charge profiles of (d) Ni2Fe(CN)6/MWCNT and (e) Ni2Fe(CN)6 at different current rates. (f) Rate performance of Ni2Fe(CN)6/MWCNT and Ni2Fe(CN)6 at 1, 3, 5, 9, and 15 C.
Fig.5  CV curves of (a) Ni2Fe(CN)6/MWCNT and (b) Ni2Fe(CN)6 measured at different scan rates from 0.2 to 1.6 mV·s–1. (c) The linear relationship between the peak current (Ip) and the square root of scan rate (ν1/2). (d) The diffusion coefficients of ammonium ion for Ni2Fe(CN)6/MWCNT and Ni2Fe(CN)6 calculated from CV.
Fig.6  (a) Ex situ XRD patterns of Ni2Fe(CN)6/MWCNT upon charging/discharging. (b) Lattice parameter a and (c) volume calculated from ex situ XRD patterns. (d) FTIR spectra of Ni2Fe(CN)6/MWCNT upon charging/discharging.
Fig.7  XPS spectra of the Fe 2p and Ni 2p peaks for Ni2Fe(CN)6/MWCNT electrode at different charge state.
1 Y W Liu, J X Xu, J Li, Z W Yang, C C Huang, H X Yu, L Y Zhang, J Shu. Pre-intercalation chemistry of electrode materials in aqueous energy storage systems. Coordination Chemistry Reviews, 2022, 460: 214477
https://doi.org/10.1016/j.ccr.2022.214477
2 H H Yan, X K Zhang, Z W Yang, M T Xia, C W Xu, Y W Liu, H X Yu, L Y Zhang, J Shu. Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 452: 214297
https://doi.org/10.1016/j.ccr.2021.214297
3 H Zhao, Y Qi, K Liang, J Li, L Zhou, J Chen, X Huang, Y Ren. Interface-driven pseudocapacitance endowing sandwiched CoSe2/N-doped carbon/TiO2 microcubes with ultra-stable sodium storage and long-term cycling stability. ACS Applied Materials & Interfaces, 2021, 13(51): 61555–61564
https://doi.org/10.1021/acsami.1c20154
4 Z Yang, J He, W H Lai, J Peng, X H Liu, X X He, X F Guo, L Li, Y Qiao, J M Ma, M Wu, S L Chou. Fire-retardant, stable-cycling and high-safety sodium ion battery. Angewandte Chemie International Edition, 2021, 60(52): 27086–27094
https://doi.org/10.1002/anie.202112382
5 L Ma, H Cui, S Chen, X Li, B Dong, C Zhi. Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: the electrochemical redox reactions. Nano Energy, 2021, 81: 105632
https://doi.org/10.1016/j.nanoen.2020.105632
6 Q Xue, L Li, Y Huang, R Huang, F Wu, R Chen. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Applied Materials & Interfaces, 2019, 11(25): 22339–22345
https://doi.org/10.1021/acsami.9b04579
7 C W Xu, Z W Yang, H H Yan, J Li, H X Yu, L Y Zhang, J Shu. Synergistic dual conversion reactions assisting Pb−S electrochemistry for energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(12): e2118675119
https://doi.org/10.1073/pnas.2118675119
8 H H Yan, Z W Yang, C W Xu, J Li, Y W Liu, R T Zheng, H X Yu, L Y Zhang, J Shu. Controllable C–N site assisting observable potential difference for homogeneous copper deposition in aqueous Cu−S batteries. Energy Storage Materials, 2022, 48: 74–81
https://doi.org/10.1016/j.ensm.2022.03.009
9 Y Song, Q Pan, H Lv, D Yang, Z Qin, M Y Zhang, X Sun, X X Liu. Ammonium-ion storage using electrodeposited manganese oxides. Angewandte Chemie International Edition, 2021, 60(11): 5718–5722
https://doi.org/10.1002/anie.202013110
10 X Wu, Y Qi, J J Hong, Z Li, A S Hernandez, X Ji. Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angewandte Chemie International Edition, 2017, 56(42): 13026–13030
https://doi.org/10.1002/anie.201707473
11 S Dong, W Shin, H Jiang, X Wu, Z Li, J Holoubek, W F Stickle, B Key, C Liu, J Lu, P A Greaney, X Zhang, X Ji. Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5. Chem, 2019, 5(6): 1537–1551
https://doi.org/10.1016/j.chempr.2019.03.009
12 G Liang, Y Wang, Z Huang, F Mo, X Li, Q Yang, D Wang, H Li, S Chen, C Zhi. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Advanced Materials, 2020, 32(14): 1907802
https://doi.org/10.1002/adma.201907802
13 C Li, W Yan, S Liang, P Wang, J Wang, L Fu, Y Zhu, Y Chen, Y Wu, W Huang. Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horizons, 2019, 4(4): 991–998
https://doi.org/10.1039/C8NH00484F
14 J J Holoubek, H Jiang, D Leonard, Y Qi, G C Bustamante, X Ji. Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chemical Communications (Cambridge), 2018, 54(70): 9805–9808
https://doi.org/10.1039/C8CC04713H
15 H Li, J Yang, J Cheng, T He, B Wang. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy, 2020, 68: 104369
https://doi.org/10.1016/j.nanoen.2019.104369
16 Q Liu, Z Hu, M Chen, C Zou, H Jin, S Wang, S Chou, Y Liu, S Dou. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs. Advanced Functional Materials, 2020, 30(14): 1909530
https://doi.org/10.1002/adfm.201909530
17 Z Yang, X Liu, X He, W Lai, L Li, Y Qiao, S Chou, M Wu. Rechargeable sodium-based hybrid metal-ion batteries toward advanced energy storage. Advanced Functional Materials, 2021, 31(8): 2006457
https://doi.org/10.1002/adfm.202006457
18 W WangY GangJ PengZ HuZ YanW LaiY ZhuD AppadooM YeY CaoQ-F GuH-K LiuS-X DouS-L Chou. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries. Advanced Functional Materials, 2022, in press
19 C D Wessells, S V Peddada, M T McDowell, R A Huggins, Y Cui. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. Journal of the Electrochemical Society, 2012, 159(2): A98–A103
https://doi.org/10.1149/2.060202jes
20 J Xing, X Fu, S Guan, Y Zhang, M Lei, Z Peng. Novel K–V–Fe Prussian blue analogues nanocubes for high-performance aqueous ammonium ion batteries. Applied Surface Science, 2021, 543: 148843
https://doi.org/10.1016/j.apsusc.2020.148843
21 Q Zhang, L Fu, J Luan, X Huang, Y Tang, H Xie, H Wang. Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. Journal of Power Sources, 2018, 395: 305–313
https://doi.org/10.1016/j.jpowsour.2018.05.085
22 Y Wang, R Chen, E H Ang, Y Yan, Y Ding, L Ke, Y Luo, K Rui, H Lin, J Zhu. Carbonitridation pyrolysis synthesis of Prussian blue analog-derived carbon hybrids for lithium-ion batteries. Advanced Sustainable Systems, 2021, 5(12): 2100223
https://doi.org/10.1002/adsu.202100223
23 W Yao, J Xu, J Wang, J Luo, Q Shi, Q Zhang. Chemically integrated multiwalled carbon nanotubes/zinc manganate nanocrystals as ultralong-life anode materials for lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2170–2177
https://doi.org/10.1021/acssuschemeng.5b00434
24 Y Yuan, D Bin, X Dong, Y Wang, C Wang, Y Xia. Intercalation pseudocapacitive nanoscale nickel hexacyanoferrate@carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3655–3663
https://doi.org/10.1021/acssuschemeng.9b06588
25 F Wu, J Chen, L Li, T Zhao, R Chen. Improvement of rate and cycle performence by rapid polyaniline coating of a MWCNT/sulfur cathode. Journal of Physical Chemistry C, 2011, 115(49): 24411–24417
https://doi.org/10.1021/jp207893d
26 P Jiang, Z Lei, L Chen, X Shao, X Liang, J Zhang, Y Wang, J Zhang, Z Liu, J Feng. Polyethylene glycol-Na+ interface of vanadium hexacyanoferrate cathode for highly stable rechargeable aqueous sodium-ion battery. ACS Applied Materials & Interfaces, 2019, 11(32): 28762–28768
https://doi.org/10.1021/acsami.9b04849
27 Y You, X Wu, Y Yin, Y Guo. A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1(45): 14061–14065
https://doi.org/10.1039/c3ta13223d
28 Y You, X Yu, Y Yin, K Nam, Y Guo. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Research, 2015, 8(1): 117–128
https://doi.org/10.1007/s12274-014-0588-7
29 Z Ji, B Han, H Liang, C Zhou, Q Gao, K Xia, J Wu. On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(49): 33619–33625
https://doi.org/10.1021/acsami.6b11070
30 L G Bulusheva, A V Okotrub, A G Kurenya, H Zhang, H Zhang, X Chen, H Song. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon, 2011, 49(12): 4013–4023
https://doi.org/10.1016/j.carbon.2011.05.043
31 S Chen, W Yeoh, Q Liu, G Wang. Chemical-free synthesis of graphene-carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries. Carbon, 2012, 50(12): 4557–4565
https://doi.org/10.1016/j.carbon.2012.05.040
32 J Peng, J Wang, H Yi, W Hu, Y Yu, J Yin, Y Shen, Y Liu, J Luo, Y Xu, P Wei, Y Li, Y Jin, Y Ding, L Miao, J Jiang, J Han, Y Huang. A dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs. Advanced Energy Materials, 2018, 8(11): 1702856
https://doi.org/10.1002/aenm.201702856
33 H Yu, J Xu, C Deng, M Xia, X Zhang, J Shu, Z Wang. The nature of the ultrahigh initial Coulombic efficiency of Ni2Fe(CN)6 in aqueous ammonium-ion batteries. ACS Applied Energy Materials, 2021, 4(9): 9594–9599
https://doi.org/10.1021/acsaem.1c01725
34 K Tang, X Yu, J Sun, H Li, X Huang. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochimica Acta, 2011, 56(13): 4869–4875
https://doi.org/10.1016/j.electacta.2011.02.119
35 H Kim, J Cook, H Lin, J Ko, S Tolbert, V Ozolins, B Dunn. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nature Materials, 2017, 16(4): 454–460
https://doi.org/10.1038/nmat4810
36 R Zheng, S Qian, X Cheng, H Yu, N Peng, T Liu, J Zhang, M Xia, H Zhu, J Shu. FeNb11O29 nanotubes: superior electrochemical energy storage performance and operating mechanism. Nano Energy, 2019, 58: 399–409
https://doi.org/10.1016/j.nanoen.2019.01.065
37 N Liu, X Wu, L Fan, S Gong, Z Guo, A Chen, C Zhao, Y Mao, N Zhang, K Sun. Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Advanced Materials, 2020, 32(42): 1908420
https://doi.org/10.1002/adma.201908420
38 C C Huang, Y W Liu, R T Zheng, Z W Yang, Z H Miao, J W Zhang, X H Cai, H X Yu, L Y Zhang, J Shu. Interlayer gap widened TiS2 for highly efficient sodium-ion storage. Journal of Materials Science and Technology, 2022, 107: 64–69
https://doi.org/10.1016/j.jmst.2021.08.035
39 R T Zheng, H X Yu, X K Zhang, Y Ding, M T Xia, K Z Cao, J Shu, A Vlad, B L A Su. TiSe2-graphite dual ion battery: fast Na-ion insertion and excellent stability. Angewandte Chemie International Edition, 2021, 60(34): 18430–18437
https://doi.org/10.1002/anie.202105439
40 W Li, F Zhang, X Xiang, X Zhang. Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries. Journal of Physical Chemistry C, 2017, 121(50): 27805–27812
https://doi.org/10.1021/acs.jpcc.7b07920
[1] FCE-22026-OF-YH_suppl_1 Download
[1] Cai-Yue Wang, Meng-Qi Gao, Cheng-Cai Zhao, Li-Min Zhao, Hui Zhao. Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen electrodes for Zn−air batteries[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1367-1376.
[2] Glenn J. Sim, Kakui Ma, Zhixiang Huang, Shaozhuan Huang, Ye Wang, Huiying Yang. Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries[J]. Front. Chem. Sci. Eng., 2019, 13(3): 493-500.
[3] Shinobu Uemura,Kenki Sakata,Masashi Aono,Yusuke Nakamura,Masashi Kunitake. Two-dimensional self-assembly of melem and melemium cations at pH-controlled aqueous solution–Au(111) interfaces under electrochemical control[J]. Front. Chem. Sci. Eng., 2016, 10(2): 294-300.
[4] QIAN Qinghua, HU Yuyan, WEN Gaofei, FENG Xin, LU Xiao-hua. Preparation and gaseous photocatalytic activity of smooth potassium dititanate film[J]. Front. Chem. Sci. Eng., 2008, 2(3): 308-314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed