Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (2) : 194-205    https://doi.org/10.1007/s11705-022-2206-7
RESEARCH ARTICLE
Continuous amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium−sulfur batteries
Bowen Du, Yuhong Luo, Feichao Wu(), Guihua Liu, Jingde Li(), Wei Xue()
Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
 Download: PDF(14695 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The shuttle effect of soluble polysulfides is a serious problem impeding the development of lithium−sulfur batteries. Herein, continuous amino-functionalized University of Oslo 66 membranes supported on carbon nanotube films are proposed as ion-permselective interlayers that overcome these issues and show outstanding suppression of the polysulfide shuttle effect. The proposed membrane material has appropriately sized pores, and can act as ionic sieves and serve as barriers to polysulfides transport while allowing the passage of lithium ions during electrochemical cycles, thereby validly preventing the shuttling of polysulfides. Moreover, a fast catalytic conversion of polysulfides is also achieved with the as-developed interlayer. Therefore, lithium−sulfur batteries with this interlayer show a desirable initial capacity of 999.21 mAh·g–1 at 1 C and a durable cyclic stability with a decay rate of only 0.04% per cycle over 300 cycles. Moreover, a high area capacity of 4.82 mAh·cm–2 is also obtained even under increased sulfur loading (5.12 mg·cm–2) and a lean-electrolyte condition (E/S = 4.8 μL·mg–1).

Keywords lithium−sulfur batteries      amino-functionalized University of Oslo 66 membrane      polysulfide      interlayer     
Corresponding Author(s): Feichao Wu,Jingde Li,Wei Xue   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Online First Date: 17 October 2022    Issue Date: 27 February 2023
 Cite this article:   
Bowen Du,Yuhong Luo,Feichao Wu, et al. Continuous amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium−sulfur batteries[J]. Front. Chem. Sci. Eng., 2023, 17(2): 194-205.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2206-7
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I2/194
Fig.1  Schematic for the synthetic procedures of the 66-NH2/CNT interlayer.
Fig.2  (a) Surface and (b) cross-sectional SEM images of the prepared UiO-66-NH2 membrane; (c) surface elemental mappings of Zr, N, O and C.
Fig.3  (a) XRD pattern and (b) FTIR spectrum of UiO-66-NH2/CNT. (c) N2 adsorption−desorption isotherms and the pore size distribution (insert) of UiO-66-NH2 powder. (d) Zr 3d, (e) O 1s and (f) N 1s XPS spectra of the UiO-66-NH2/CNT. Electrolyte contact angles on (g) UiO-66-NH2/CNT, (h) CNT film and (i) PP separator.
Fig.4  (a) CV profiles of the battery with NH2-UiO-66/CNT at 0.1 mV·s–1; (b) cycle performance at 0.2 C and (c) rate performance of different interlayers; (d) cycle stability of UiO-66-NH2/CNT interlayer under high sulfur loading; (e) long-term cycling durability for different interlayers at 1 C.
Fig.5  (a) Impedance Nyquist plots; (b) potentiostatic current-time curves of the symmetric cells; (c) D L i+ for the UiO-66-NH2/CNT, CNT film and PP separator.
Fig.6  Optical images for the Li2S6 diffusion tests.
Fig.7  Scheme of action mechanism for the UiO-66-NH2/CNT interlayer.
Fig.8  (a) Digital photographs and (b) UV–Vis spectra of Li2S6 solutions containing UiO-66-NH2 and CNT powder; (c–f) theoretical simulation results.
Fig.9  (a) CV profiles of symmetric cells with UiO-66-NH2 and CNT. (b) EIS results for different interlayers before cycles (insert: equivalent circuit plot). (c) CV curves for different interlayers at 0.2 mV·s–1. The Tafel slopes for the cathodic and anodic processes acquired according to (c): (d) peak A, (e) peak B and (f) peak C.
1 D Luo, Z Zhang, G R Li, S B Cheng, S Li, J D Li, R Gao, M Li, S Sy, Y P Deng, Y Jiang, Y Zhu, H Dou, Y Hu, A Yu, Z Chen. Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5−x nanocluster toward superior Li–S performance. ACS Nano, 2020, 14(4): 4849–4860
https://doi.org/10.1021/acsnano.0c00799
2 K Kalaiappan, S Rengapillai, S Marimuthu, R Murugan, P Thiru. Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode in lithium–sulfur batteries. Frontiers of Chemical Science and Engineering, 2020, 14(6): 976–987
https://doi.org/10.1007/s11705-019-1897-x
3 Z Z Du, X J Chen, W Hu, C H Chuang, S Xie, A Hu, W S Yan, X H Kong, X J Wu, H X Ji, L J Wan. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. Journal of the American Chemical Society, 2019, 141(9): 3977–3985
https://doi.org/10.1021/jacs.8b12973
4 H Yuan, H J Peng, B Q Li, J Xie, L Kong, M Zhao, X Chen, J Q Huang, Q Zhang. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Advanced Energy Materials, 2019, 9(1): 1–8
https://doi.org/10.1002/aenm.201802768
5 J Park, J Moon, V Ri, S Lee, C Kim, E J Cairns. Nitrogen-doped graphene quantum dots: sulfiphilic additives for the high-performance Li–S cells. ACS Applied Energy Materials, 2021, 4(4): 3518–3525
https://doi.org/10.1021/acsaem.0c03247
6 X F Yang, J Luo, X L Sun. Towards high-performance solid-state Li–S batteries: from fundamental understanding to engineering design. Chemical Society Reviews, 2020, 49(7): 2140–2195
https://doi.org/10.1039/C9CS00635D
7 J J Song, X Guo, J Q Zhang, Y Chen, C Y Zhang, L Q Luo, F Y Wang, G X Wang. Rational design of free-standing 3D porous MXene/RGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7(14): 6507–6513
https://doi.org/10.1039/C9TA00212J
8 Z L Wu, S X Chen, L Wang, Q Deng, Z L Zeng, J Wang, S G Deng. Implanting nickel and cobalt phosphide into well-defined carbon nanocages: a synergistic adsorption-electrocatalysis separator mediator for durable high-power Li–S batteries. Energy Storage Materials, 2021, 38: 381–388
https://doi.org/10.1016/j.ensm.2021.03.026
9 M H Bai, B Hong, K Zhang, K Yuan, K Y Xie, W F Wei, Y Q Lai. Defect-rich carbon nitride as electrolyte additive for in-situ electrode interface modification in lithium metal battery. Chemical Engineering Journal, 2021, 407: 127123
https://doi.org/10.1016/j.cej.2020.127123
10 Z Q Zhang, B B Zhao, S Zhang, J J Zhang, P X Han, X G Wang, F R Ma, D Y Sun, Y C Jin, K Kanamura, G Cui. A mixed electron/ion conducting interlayer enabling ultra-stable cycle performance for solid state lithium–sulfur batteries. Journal of Power Sources, 2021, 487: 229428
https://doi.org/10.1016/j.jpowsour.2020.229428
11 L Chen, H Yu, W X Li, M Dirican, Y Liu, X W Zhang. Interlayer design based on carbon materials for lithium–sulfur batteries: a review. Journal of Materials Chemistry A, 2020, 8(21): 10709–10735
https://doi.org/10.1039/D0TA03028G
12 Z Q Ye, Y Jiang, T Feng, Z H Wang, L Li, F Wu, R J Chen. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium–sulfur batteries. Nano Energy, 2020, 70: 104532
https://doi.org/10.1016/j.nanoen.2020.104532
13 Y Wang, Z Deng, J Y Huang, H J Li, Z Y Li, X S Peng, Y Tian, J G Lu, H C Tang, L X Chen, Z Ye. 2D Zr–Fc metal–organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li–S battery. Energy Storage Materials, 2021, 36: 466–477
https://doi.org/10.1016/j.ensm.2021.01.025
14 Y Y Mao, G R Li, Y Guo, Z P Li, C D Liang, X S Peng, Z Lin. Foldable interpenetrated metal–organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nature Communications, 2017, 8(1): 14628
https://doi.org/10.1038/ncomms14628
15 Y Zheng, S S Zheng, H G Xue, H Pang. Metal–organic frameworks for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7(8): 3469–3491
https://doi.org/10.1039/C8TA11075A
16 X Xiao, L L Zou, H Pang, Q Xu. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chemical Society Reviews, 2020, 49(1): 301–331
https://doi.org/10.1039/C7CS00614D
17 D Guo, X Li, W Wahyudi, C Y Li, A H Emwas, M N Hedhili, Y X Li, Z P Lai. Electropolymerized conjugated microporous nanoskin regulating polysulfide and electrolyte for high-energy Li–S batteries. ACS Nano, 2020, 14(12): 17163–17173
https://doi.org/10.1021/acsnano.0c06944
18 M Tian, F Pei, M S Yao, Z H Fu, L L Lin, G D Wu, G Xu, H Kitagawa, X L Fang. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium–sulfur batteries. Energy Storage Materials, 2019, 21: 14–21
https://doi.org/10.1016/j.ensm.2018.12.016
19 Y Zang, F Pei, J H Huang, Z H Fu, G Xu, X L Fang. Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium–sulfur batteries. Advanced Energy Materials, 2018, 8(31): 1–9
https://doi.org/10.1002/aenm.201802052
20 Y J Chen, S Y Liu, X T Yuan, X C Hu, W Q Ye, A A Razzaq, Y Lian, M Z Chen, X H Zhao, Y Peng, J-H Choi, J-H Ahn, Z Deng. rGO-CNT aerogel embedding iron phosphide nanocubes for high-performance Li-polysulfide batteries. Carbon, 2020, 167: 446–454
https://doi.org/10.1016/j.carbon.2020.05.066
21 F C Wu, Y Cao, H O Liu, X F Zhang. High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. Journal of Membrane Science, 2018, 556: 54–65
https://doi.org/10.1016/j.memsci.2018.03.090
22 Y Tian, G R Li, Y G Zhang, D Luo, X Wang, Y Zhao, H Liu, P G Ji, X H Du, J D Li, Z Chen. Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries. Advanced Materials, 2020, 32(4): 1–11
https://doi.org/10.1002/adma.201904876
23 T T Wan, S M Liu, C C Wu, Z Y Tan, S L Lin, X J Zhang, Z S Zhang, G H Liu. Rational design of Co nano-dots embedded three-dimensional graphene gel as multifunctional sulfur cathode for fast sulfur conversion kinetics. Journal of Energy Chemistry, 2021, 56: 132–140
https://doi.org/10.1016/j.jechem.2020.07.057
24 N R Li, L H Yu, J Y Yang, B B Zheng, X P Qiu, J Y Xi. Identifying the active sites and multifunctional effects in nitrogen-doped carbon microtube interlayer for confining-trapping-catalyzing polysulfides. Nano Energy, 2021, 79: 105466
https://doi.org/10.1016/j.nanoen.2020.105466
25 Y J Li, S Y Lin, D D Wang, T T Gao, J W Song, P Zhou, Z K Xu, Z H Yang, N Xiao, S J Guo. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium–sulfur batteries. Advanced Materials, 2020, 32(8): 1–10
https://doi.org/10.1002/adma.201906722
26 M Y Wang, S H Han, Z S Chao, S Y Li, B Tan, J X Lai, Z Y Guo, X L Wei, H G Jin, W B Luo, W J Yi, J C Fan. Celgard-supported LiX Zeolite membrane as ion-permselective separator in lithium sulfur battery. Journal of Membrane Science, 2020, 611: 118386
https://doi.org/10.1016/j.memsci.2020.118386
27 S Z Deng, Y C Yan, L Q Wei, T Li, X Su, X J Yang, Z T Li, M B Wu. Amorphous Al2O3 with N-doped porous carbon as efficient polysulfide barrier in Li–S batteries. ACS Applied Energy Materials, 2019, 2(2): 1266–1273
https://doi.org/10.1021/acsaem.8b01815
28 Y P Fan, Z H Niu, F Zhang, R Zhang, Y Zhao, G Lu. Suppressing the shuttle effect in lithium–sulfur batteries by a UiO-66-modified polypropylene separator. ACS Omega, 2019, 4(6): 10328–10335
https://doi.org/10.1021/acsomega.9b00884
29 J H Lin, K F Zhang, Z Q Zhu, R Z Zhang, N Li, C H Zhao. CoP/C nanocubes-modified separator suppressing polysulfide dissolution for high-rate and stable lithium–sulfur batteries. ACS Applied Materials & Interfaces, 2020, 12(2): 2497–2504
https://doi.org/10.1021/acsami.9b18723
30 M L Li, Y Wan, J K Huang, A H Assen, C E Hsiung, H Jiang, Y Han, M Eddaoudi, Z P Lai, J Ming, L J Li. Metal–organic framework-based separators for enhancing Li–S battery stability: mechanism of mitigating polysulfide diffusion. ACS Energy Letters, 2017, 2(10): 2362–2367
https://doi.org/10.1021/acsenergylett.7b00692
31 Y H Cai, D C Shi, G L Liu, Y P Ying, Y D Cheng, Y X Wang, D Y Chen, J M Lu, D Zhao. Polycrystalline zirconium metal–organic framework membranes supported on flexible carbon cloth for organic solvent nanofiltration. Journal of Membrane Science, 2020, 615: 118551
https://doi.org/10.1016/j.memsci.2020.118551
32 I Strauss, K Chakarova, A Mundstock, M Mihaylov, K Hadjiivanov, N Guschanski, J Caro. UiO-66 and UiO-66-NH2 based sensors: dielectric and FTIR investigations on the effect of CO2 adsorption. Microporous and Mesoporous Materials, 2020, 302: 110227
https://doi.org/10.1016/j.micromeso.2020.110227
33 Y Xie, C L Chen, X M Ren, X L Tan, G Song, D Y Chen, A Alsaedi, T Hayat. Coupling g-C3N4 nanosheets with metal–organic frameworks as 2D/3D composite for the synergetic removal of uranyl ions from aqueous solution. Journal of Colloid and Interface Science, 2019, 550: 117–127
https://doi.org/10.1016/j.jcis.2019.04.090
34 T Y Lei, W Chen, W Q Lv, J W Huang, J Zhu, J W Chu, C Y Yan, C Y Wu, Y C Yan, W D He, J Xiong, Y Li, C Yan, J B Goodenough, X Duan. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium–sulfur batteries. Joule, 2018, 2(10): 2091–2104
https://doi.org/10.1016/j.joule.2018.07.022
35 J Chen, B Z Sun, C R Sun, P L Zhang, W F Xu, Y Liu, B Q Xiong, K W Tang. Immobilization of lipase AYS on UiO-66-NH2 metal–organic framework nanoparticles as a recyclable biocatalyst for ester hydrolysis and kinetic resolution. Separation and Purification Technology, 2020, 251: 117398
https://doi.org/10.1016/j.seppur.2020.117398
36 Y B He, Y Qiao, Z Chang, H S Zhou. The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. Energy & Environmental Science, 2019, 12(8): 2327–2344
https://doi.org/10.1039/C8EE03651A
37 G F Jin, J L Zhang, B Y Dang, F C Wu, J D Li. Engineering zirconium-based metal–organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium–sulfur batteries. Frontiers of Chemical Science and Engineering, 2022, 16(4): 511–522
https://doi.org/10.1007/s11705-021-2068-4
38 X X Wang, Y X Qi, Y Shen, Y Yuan, L D Zhang, C Y Zhang, Y H Sun. A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal–organic framework. Sensors and Actuators B: Chemical, 2020, 310: 127756
https://doi.org/10.1016/j.snb.2020.127756
39 Y Xie, G Y Pan, Q Jin, X Q Qi, T Wang, W Li, H Xu, Y H Zheng, S Li, L Qie, Y Huang, J Li. Semi-flooded sulfur cathode with ultralean absorbed electrolyte in Li–S battery. Advanced Science, 2020, 7(9): 1903168
https://doi.org/10.1002/advs.201903168
40 R Y Tian, S H Park, P J King, G Cunningham, J Coelho, V Nicolosi, J N Coleman. Quantifying the factors limiting rate performance in battery electrodes. Nature Communications, 2019, 10(1): 1933
https://doi.org/10.1038/s41467-019-09792-9
41 X Zhou, T T Liu, G F Zhao, X F Yang, H Guo. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li–S batteries. Energy Storage Materials, 2021, 40: 139–149
https://doi.org/10.1016/j.ensm.2021.05.009
42 X Wu, L S Fan, Y Qiu, M X Wang, J H Cheng, B Guan, Z K Guo, N Q Zhang, K N Sun. Ion-selective prussian-blue-modified Celgard separator for high-performance lithium–sulfur battery. ChemSusChem, 2018, 11(18): 3345–3351
https://doi.org/10.1002/cssc.201800871
43 J Qian, F J Wang, Y Li, S Wang, Y Y Zhao, W L Li, Y Xing, L Deng, Q Sun, L Li, F Wu, R Chen. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium–sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Advanced Functional Materials, 2020, 30(27): 1–9
https://doi.org/10.1002/adfm.202000742
44 M Zhang, W Chen, L X Xue, Y Jiao, T Y Lei, J W Chu, J W Huang, C H Gong, C Y Yan, Y C Yan, Y Hu, X Wang, J Xiong. Adsorption-catalysis design in the lithium–sulfur battery. Advanced Energy Materials, 2020, 10(2): 1903008
https://doi.org/10.1002/aenm.201903008
45 Y J Li, J B Wu, B Zhang, W Y Wang, G Q Zhang, Z W Seh, N Zhang, J Sun, L Huang, J J Jiang, J Zhou, Y Sun. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium–sulfur batteries using high-loading cobalt single atoms. Energy Storage Materials, 2020, 30: 250–259
https://doi.org/10.1016/j.ensm.2020.05.022
46 X J Hong, C L Song, Y Yang, H C Tan, G H Li, Y P Cai, H X Wang. Cerium based metal–organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries. ACS Nano, 2019, 13(2): 1923–1931
https://doi.org/10.1021/acsnano.8b08155
47 R Pathak, K Chen, A Gurung, K M Reza, B Bahrami, J Pokharel, A Baniya, W He, F Wu, Y Zhou, K Xu, Q Q Qiao. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications, 2020, 11(1): 1–10
https://doi.org/10.1038/s41467-019-13774-2
48 N P Deng, Y Liu, Q X Li, J Yan, W W Lei, G Wang, L Y Wang, Y Y Liang, W M Kang, B W Cheng. Functional mechanism analysis and customized structure design of interlayers for high performance Li–S battery. Energy Storage Materials, 2019, 23: 314–349
https://doi.org/10.1016/j.ensm.2019.04.042
49 S Y Zhou, S Yang, X W Ding, Y C Lai, H G Nie, Y G Zhang, D Chan, H Duan, S M Huang, Z Yang. Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium–sulfur batteries. ACS Nano, 2020, 14(6): 7538–7551
https://doi.org/10.1021/acsnano.0c03403
50 A Baumann, X Han, M M Butala, V S Thoi. Lithium thiophosphate functionalized zirconium MOFs for Li–S batteries with enhanced rate capabilities. Journal of the American Chemical Society, 2019, 141(44): 17891–17899
https://doi.org/10.1021/jacs.9b09538
[1] FCE-22034-OF-DB_suppl_1 Download
[1] Gaofeng Jin, Jiale Zhang, Baoying Dang, Feichao Wu, Jingde Li. Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium-sulfur batteries[J]. Front. Chem. Sci. Eng., 2022, 16(4): 511-522.
[2] Lei Zhou, Yu Chen, Baihao Shao, Juan Cheng, Xin Li. Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide[J]. Front. Chem. Sci. Eng., 2022, 16(1): 34-63.
[3] Dingqin Hu, Jiehao Fu, Shanshan Chen, Jun Li, Qianguang Yang, Jie Gao, Hua Tang, Zhipeng Kan, Tainan Duan, Shirong Lu, Kuan Sun, Zeyun Xiao. Block copolymers as efficient cathode interlayer materials for organic solar cells[J]. Front. Chem. Sci. Eng., 2021, 15(3): 571-578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed