Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (4) : 425-436    https://doi.org/10.1007/s11705-022-2229-0
RESEARCH ARTICLE
Efficient acetoin production from pyruvate by engineered Halomonas bluephagenesis whole-cell biocatalysis
Meiyu Zheng1,2, Zhenzhen Cui1,2, Jing Zhang1,2, Jing Fu3, Zhiwen Wang1,2, Tao Chen1,2()
1. Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2. Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
3. Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
 Download: PDF(2947 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Acetoin is an important platform chemical, which has a wide range of applications in many industries. Halomonas bluephagenesis, a chassis for next generation of industrial biotechnology, has advantages of fast growth and high tolerance to organic acid salts and alkaline environment. Here, α-acetolactate synthase and α-acetolactate decarboxylase from Bacillus subtilis 168 were co-expressed in H. bluephagenesis to produce acetoin from pyruvate. After reaction condition optimization and further increase of α-acetolactate decarboxylase expression, acetoin production and yield were significantly enhanced to 223.4 mmol·L–1 and 0.491 mol·mol–1 from 125.4 mmol·L–1 and 0.333 mol·mol–1, respectively. Finally, the highest titer of 974.3 mmol·L–1 (85.84 g·L–1) of acetoin was accumulated from 2143.4 mmol·L–1 (188.6 g·L–1) of pyruvic acid within 8 h in fed-batch bioconversion under optimal reaction conditions. Moreover, the reusability of the cell catalysis was also tested, and the result illustrated that the whole-cell catalysis obtained 433.3, 440.2, 379.0, 442.8 and 339.4 mmol·L–1 (38.2, 38.8, 33.4, 39.0 and 29.9 g·L–1) acetoin in five repeated cycles under the same conditions. This work therefore provided an efficient H. bluephagenesis whole-cell catalysis with a broad development prospect in biosynthesis of acetoin.

Keywords acetoin      pyruvate      α-acetolactate synthetase      α-acetolactate decarboxylase      Halomonas bluephagenesis      whole-cell biocatalysis     
Corresponding Author(s): Tao Chen   
Online First Date: 17 January 2023    Issue Date: 24 March 2023
 Cite this article:   
Meiyu Zheng,Zhenzhen Cui,Jing Zhang, et al. Efficient acetoin production from pyruvate by engineered Halomonas bluephagenesis whole-cell biocatalysis[J]. Front. Chem. Sci. Eng., 2023, 17(4): 425-436.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2229-0
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I4/425
Strains or plasmidsDescriptionRef./source
Strains
  E. coli DH5αHost for plasmid constructionLab stock
  E. coli S17-1 pirA vector dononr for conjugation experiment harboring tra genes from plasmid RP4 in the chromosome[38]
  H. bluephagenesis TD01Wild-type H. bluephagenesis strain isolated from Aydingkol Lake in Xinjiang Province, China[39]
 TD1.0H. bluephagenesis TD01 with chromosomal integration of T7-like induced system for inducible expression of target genes[37]
 TD1.0?phaCH. bluephagenesis TD1.0 with the deletion of phaC gene encoding PHA synthesis[40]
 TDZ-1H. bluephagenesis TD1.0 harboring plasmid pN59-Mmp1-ALDC-ALSThis study
 TDZ-2H. bluephagenesis TD1.0?phaC harboring plasmid pN59-Mmp1-ALDC-ALSThis study
 TDZ-3H. bluephagenesis TD1.0 harboring plasmid pN59-Mmp1-ALDC-S2-ALSThis study
 TDZ-4H. bluephagenesis TD1.0?phaC harboring plasmid pN59-Mmp1-ALDC-S2-ALSThis study
 TDZ-5H. bluephagenesis TD1.0?phaC harboring plasmid pN59-Mmp1-ALDC-S2-ALS and pN85-Mmp1-ALDCThis study
Plasmids
 pN85A medium copy number expression vector in H. bluephagenesis TD strain, KmR&SpR, RK2 replication origin, oriT[41]
 pN59A high copy number expression vector in H. bluephagenesis TD strain, CmR. ColE1 replication origin, oriT[41]
 pN59-pctA high copy number expression vector in H. bluephagenesis TD strain, CmR. ColE1 replication origin, oriT[41]
 pN59-Mmp1-MCSpN59 derivates, containing a T7-like inducible promoter, CmRThis study
 pN59-Mmp1-ALDC-ALSpN59 derivates, containing alsD-alsS fusion gene driven by PMmp1, CmRThis study
 pN59-Mmp1-ALDC-S2-ALSpN59 derivates, containing alsD-linker(10aa)-alsS fusion gene driven by PMmp1, CmRThis study
 pN85-Mmp1-ALDCpN85 derivates, containing alsD gene driven by PMmp1, KmR&SpRThis study
Tab.1  Stains and plasmids used in this study
Fig.1  Scheme of acetoin production from pyruvate catalyzed by H. bluephagenesis (PDH, pyruvate dehydrogenase complex; PTA, phosphate acetyltransferase; ACK, acetate kinase).
Fig.2  Acetoin yield, acetoin productivity and maximum acetoin concentration of engineered strains TDZ-1 to TDZ-4 (Error bars represent the standard deviation of triplicate experiments).
Fig.3  The process optimization for efficient acetoin biosynthesis using TDZ-4. (a) The effect of temparature on pyruvate consumption; (b) the effect of temparature on acetoin production; (c) the effect of Mg2+ concentration on pyruvate consumption; (d) the effect of Mg2+ concentration on acetoin production; (e) the effect of pH on acetoin production; (f) the effect of cell dry weight on acetoin yield, acetoin productivity and maximum acetoin concentration (Error bars represent the standard deviation of triplicate experiments).
Fig.4  The profile of pyruvate consumption and acetoin production in whole-cell biocatalysis using TDZ-4 and TDZ-5. (a) Pyruvate consumption and acetoin production of TDZ-4 and TDZ-5; (b) acetoin yield and productivity of TDZ-4 and TDZ-5 (Error bars represent the standard deviation of triplicate experiments).
Fig.5  The profile of pyruvate consumption, acetoin production and by-products synthesis under different pyruvate concentration. (a) The effect of pyruvate concentration on pyruvate consumption; (b) the effect of pyruvate concentration on acetoin production; (c) the concentrations of by-products in reaction system under different pyruvate concentrations (Error bars represent the standard deviation of triplicate experiments).
Fig.6  The time profile of pH and acetoin production in fed-batch using TDZ-5. (a) pH value of the reaction system; (b) pyruvate consumption and acetoin production in fed-batch bioconversion of TDZ-5 (Error bars represent the standard deviation of triplicate experiments).
CyclePyruvate concentration/(mmol·L–1)Acetoin concentration/(mmol·L–1)Cell density/OD600Acetoin yield/(mol·mol–1)Acetoin yield of the theoretical yield/%
1867.2 ± 0.05433.3 ± 2.411.37 ± 0.370.499 ± 0.0199.8 ± 1.0
2882.6 ± 0.0440.2 ± 0.58.07 ± 0.040.499 ± 0.0299.8 ± 2.0
3765.7 ± 0.0379.0 ± 5.25.13 ± 0.140.495 ± 0.02399.0 ± 2.3
4907.9 ± 0.0442.8 ± 5.44.96 ± 0.090.488 ± 0.01797.6 ± 1.7
5853.6 ± 1.0399.4 ± 0.14.57 ± 0.280.468 ± 0.02293.6 ± 2.2
Tab.2  Recycling and reutilization of biocatalysis
Fig.7  Acetoin production, acetoin yield and cell dry weight of TDZ-5 in repeated batch bioconversion. The pyruvate addition concentrations were 867.2, 882.6, 765.7, 907.9 and 853.6 mmol·L–1, respectively. Error bars represent the standard deviation of triplicate experiments.
1 Z Xiao, P Xu. Acetoin metabolism in bacteria. Critical Reviews in Microbiology, 2007, 33(2): 127–140
https://doi.org/10.1080/10408410701364604
2 M Wang, J Fu, X Zhang, T Chen. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Biotechnology Letters, 2012, 34(10): 1877–1885
https://doi.org/10.1007/s10529-012-0981-9
3 H Xu, Y Cui, Y Tian, S Wang, K Zhu, S Zhou, Y Huang, Q He, Y Han, L Liu, W Li, L Zhu, G Jiang, J Liu. A summary of producing acetoin by biological method. World Journal of Food Science and Technology, 2020, 4(4): 90–103
https://doi.org/10.11648/j.wjfst.20200404.12
4 J A Sun, L Y Zhang, B Rao, Y L Shen, D Z Wei. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresource Technology, 2012, 119: 94–98
https://doi.org/10.1016/j.biortech.2012.05.108
5 Y Z He, F X Chen, M J Sun, H F Gao, Z W Guo, H Lin, J B Chen, W S Jin, Y L Yang, L Y Zhang, J Yuan. Efficient (3S)-acetoin and (2S,3S)-2,3-butanediol production from meso-2,3-butanediol using whole-cell biocatalysis. Molecules, 2018, 23(3): 691
https://doi.org/10.3390/molecules23030691
6 Z Z CuiZ W WangM Y ZhengT Chen. Advances in biological production of acetoin: a comprehensive overview. Critical Reviews in Biotechnology, 2021, in press
7 S Maina, A A Prabhu, N Vivek, A Vlysidis, A Koutinas, V Kumar. Prospects on bio-based 2,3-butanediol and acetoin production: recent progress and advances. Biotechnology Advances, 2021, 54: 107783
https://doi.org/10.1016/j.biotechadv.2021.107783
8 H Xu, S R Jia, J J Liu. Development of a mutant strain of Bacillus subtilis showing enhanced production of acetoin. African Journal of Biotechnology, 2011, 10(5): 779–788
9 S J Bae, S Kim, J S Hahn. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Scientific Reports, 2016, 6(1): 1–8
https://doi.org/10.1038/srep27667
10 L X Lu, Y F Mao, M Y Kou, Z Z Cui, B Jin, Z S Chang, Z W Wang, H W Ma, T Chen. Engineering central pathways for industrial-level (3R)-acetoin biosynthesis in Corynebacterium glutamicum. Microbial Cell Factories, 2020, 19(1): 102
https://doi.org/10.1186/s12934-020-01363-8
11 S J Bae, S Kim, H J Park, J Kim, H Jin, B G Kim, J S Hahn. High-yield production of (R)-acetoin in Saccharomyces cerevisiae by deleting genes for NAD(P)H-dependent ketone reductases producing meso-2,3-butanediol and 2,3-dimethylglycerate. Metabolic Engineering, 2021, 66: 68–78
https://doi.org/10.1016/j.ymben.2021.04.001
12 I Almuharef, M S Rahman, W Qin. Enzymatic conversion of glycerol to 2,3-butanediol and acetoin by Serratia proteamaculans SRWQ1. Waste and Biomass Valorization, 2018, 10(7): 1833–1844
https://doi.org/10.1007/s12649-018-0221-1
13 J Wachtmeister, D Rother. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Chemical biotechnology, 2016, 42: 169–177
14 H Fukuda, S Hama, S Tamalampudi, H Noda. Whole-cell biocatalysts for biodiesel fuel production. Trends in Biotechnology, 2008, 26(12): 668–673
https://doi.org/10.1016/j.tibtech.2008.08.001
15 K Yamada-Onodera, H Yamamoto, N Kawahara, Y Tani. Expression of the gene of glycerol dehydrogenase from Hansenula polymorpha Dl-1 in Escherichia coli for the production of chiral compounds. Acta Biotechnologica, 2002, 22(3–4): 355–362
https://doi.org/10.1002/1521-3846(200207)22:3/4<355::AID-ABIO355>3.0.CO;2-6
16 T Bao, X Zhang, Z Rao, X J Zhao, R Z Zhang, T W Yang, Z H Xu, S T Yang. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through Homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. PLoS One, 2014, 9(7): e102951
https://doi.org/10.1371/journal.pone.0102951
17 X L Zhou, X Zhou, H Y Zhang, R Cao, Y Xu. Improving the performance of cell biocatalysis and the productivity of acetoin from 2,3-butanediol using a compressed oxygen supply. Process Biochemistry, 2018, 64: 46–50
https://doi.org/10.1016/j.procbio.2017.09.027
18 K Peng, D Guo, Q Lou, X Lu, J Cheng, J Qiao, L Lu, T Cai, Y Liu, H Jiang. Synthesis of ligustrazine from acetaldehyde by a combined biological-chemical approach. ACS Synthetic Biology, 2020, 9(11): 2902–2908
https://doi.org/10.1021/acssynbio.0c00113
19 Z Z Cui, Y F Mao, Y J Zhao, M Y Zheng, Z W Wang, H W Ma, T Chen. One-pot efficient biosynthesis of (3R)-acetoin from pyruvate by a two-enzyme cascade. Catalysis Science & Technology, 2020, 10(22): 7734–7744
https://doi.org/10.1039/D0CY01332C
20 X Jia, Y Liu, Y Han. A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate. Scientific Reports, 2017, 7(1): 1–10
https://doi.org/10.1038/s41598-017-04684-8
21 C S Pundir, M Malik, R Chaudhary. Quantification of pyruvate with special emphasis on biosensors: a review. Microchemical Journal, 2019, 146: 1102–1112
https://doi.org/10.1016/j.microc.2019.02.046
22 G Q Chen, X R Jiang. Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 2018, 50: 94–100
https://doi.org/10.1016/j.copbio.2017.11.016
23 D Tan, Q Wu, J C Chen, G Q Chen. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metabolic Engineering, 2014, 26: 34–47
https://doi.org/10.1016/j.ymben.2014.09.001
24 X Chen, L Yu, G Qiao, G Q Chen. Reprogramming Halomonas for industrial production of chemicals. Journal of Industrial Microbiology & Biotechnology, 2018, 45(7): 545–554
https://doi.org/10.1007/s10295-018-2055-z
25 X Zhang, Y Lin, G Q Chen. Halophiles as chassis for bioproduction. Advanced Biosystems, 2018, 2(11): 1800088
https://doi.org/10.1002/adbi.201800088
26 J Yin, J C Chen, Q Wu, G Q Chen. Halophiles, coming stars for industrial biotechnology. Biotechnology Advances, 2015, 33(7): 1433–1442
https://doi.org/10.1016/j.biotechadv.2014.10.008
27 J Ye, D Hu, X Che, X Jiang, T Li, J Chen, H M Zhang, G Q Chen. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metabolic Engineering, 2018, 47: 143–152
https://doi.org/10.1016/j.ymben.2018.03.013
28 C Ling, G Q Qiao, B W Shuai, K Olavarria, J Yin, R J Xiang, K N Song, Y H Shen, Y Guo, G Q Chen. Engineering NADH/NAD(+) ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA). Metabolic Engineering, 2018, 49: 275–286
https://doi.org/10.1016/j.ymben.2018.09.007
29 Y Chen, X Y Chen, H T Du, X Zhang, Y M Ma, J C Chen, J W Ye, X R Jiang, G Q Chen. Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV). Metabolic Engineering, 2019, 54: 69–82
https://doi.org/10.1016/j.ymben.2019.03.006
30 H Zhao, Z Yao, X Chen, X Wang, G Q Chen. Modelling of microbial polyhydroxyalkanoate surface binding protein PhaP for rational mutagenesis. Microbial Biotechnology, 2017, 10(6): 1400–1411
https://doi.org/10.1111/1751-7915.12820
31 H Ma, Y Zhao, W Huang, L Zhang, F Wu, J Ye, G Q Chen. Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine. Nature Communications, 2020, 11(1): 1–12
https://doi.org/10.1038/s41467-020-17223-3
32 T Li, Y Y Guo, G Q Qiao, G Q Chen. Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate. ACS Synthetic Biology, 2016, 5(11): 1264–1274
https://doi.org/10.1021/acssynbio.6b00105
33 X R Jiang, X Yan, L P Yu, X Y Liu, G Q Chen. Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis. Nature Communications, 2021, 12(1): 1–13
34 H Du, Y Zhao, F Wu, P Ouyang, J Chen, X Jiang, J Ye, G Q Chen. Engineering Halomonas bluephagenesis for L-threonine production. Metabolic Engineering, 2020, 60: 119–127
https://doi.org/10.1016/j.ymben.2020.04.004
35 J Zhang, B Jin, K Hong, Y Lv, Z Wang, T Chen. Cell catalysis of citrate to itaconate by engineered Halomonas bluephagenesis. ACS Synthetic Biology, 2021, 10(11): 3017–3027
https://doi.org/10.1021/acssynbio.1c00320
36 J Zhang, X Zhang, Y Mao, B Jin, Y Guo, Z Wang, T Chen. Substrate profiling and tolerance testing of Halomonas TD01 suggest its potential application in sustainable manufacturing of chemicals. Journal of Biotechnology, 2020, 316: 1–5
https://doi.org/10.1016/j.jbiotec.2020.04.007
37 H Zhao, H M Zhang, X Chen, T Li, Q Wu, Q Ouyang, G Q Chen. Novel T7-like expression systems used for Halomonas. Metabolic Engineering, 2017, 39: 128–140
https://doi.org/10.1016/j.ymben.2016.11.007
38 R Simon, U Priefer, A Pühler. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology, 1983, 1(9): 784–791
https://doi.org/10.1038/nbt1183-784
39 D Tan, Y S Xue, G Aibaidula, G Q Chen. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresource Technology, 2011, 102(17): 8130–8136
https://doi.org/10.1016/j.biortech.2011.05.068
40 Q Qin, C Ling, Y Zhao, T Yang, J Yin, Y Guo, G Q Chen. CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metabolic Engineering, 2018, 47: 219–229
https://doi.org/10.1016/j.ymben.2018.03.018
41 R Silva-Rocha, E Martinez-Garcia, B Calles, M Chavarria, A Arce-Rodriguez, A de Las Heras, A D Paez-Espino, G Durante-Rodriguez, J Kim, P I Nikel, R Platero, V de Lorenzo. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Research, 2013, 41(D1): D666–D675
https://doi.org/10.1093/nar/gks1119
42 X Wang, P P Cai, K Q Chen, P K Ouyang. Efficient production of 5-aminovalerate from L-lysine by engineered Escherichia coli whole-cell biocatalysts. Journal of Molecular Catalysis B: Enzymatic, 2016, 134: 115–121
https://doi.org/10.1016/j.molcatb.2016.10.008
43 J X Li, Y Y Huang, X R Chen, Q S Du, J Z Meng, N Z Xie, R B Huang. Enhanced production of optical (S)-acetoin by a recombinant Escherichia coli whole-cell biocatalyst with NADH regeneration. RSC Advances, 2018, 8(53): 30512–30519
https://doi.org/10.1039/C8RA06260A
44 Z Guo, X Zhao, Y He, T Yang, H Gao, G Li, F Chen, M Sun, J K Lee, L Zhang. Efficient (3R)-acetoin production from meso-2,3-Butanediol using a new whole-cell biocatalyst with co-expression of meso-2,3-butanediol dehydrogenase, NADH oxidase, and Vitreoscilla Hemoglobin. Journal of Microbiology and Biotechnology, 2017, 27(1): 92–100
https://doi.org/10.4014/jmb.1608.08063
45 Z Z Cui, Y J Zhao, Y F Mao, T Shi, L X Lu, H W Ma, Z W Wang, T Chen. In vitro biosynthesis of optically pure D-(−)-acetoin from meso-2,3-butanediol using 2,3-butanediol dehydrogenase and NADH oxidase. Journal of Chemical Technology and Biotechnology, 2019, 94(8): 2547–2554
https://doi.org/10.1002/jctb.6050
46 P Zajkoska, M Rebros, M Rosenberg. Biocatalysis with immobilized Escherichia coli. Applied Microbiology and Biotechnology, 2013, 97(4): 1441–1455
https://doi.org/10.1007/s00253-012-4651-6
47 J Sun, B Rao, L Zhang, Y Shen, D Wei. Extraction of acetoin from fermentation broth using an acetone/phosphate aqueous two-phase system. Chemical Engineering Communications, 2012, 199(11): 1492–1503
https://doi.org/10.1080/00986445.2012.683901
48 J Dai, W Guan, L Ma, Z Xiu. Salting-out extraction of acetoin from fermentation broth using ethyl acetate and K2HPO4. Separation and Purification Technology, 2017, 184: 275–279
https://doi.org/10.1016/j.seppur.2017.05.012
49 J Becker, A Lange, J Fabarius, C Wittmann. Top value platform chemicals: bio-based production of organic acids. Current Opinion in Biotechnology, 2015, 36: 168–175
https://doi.org/10.1016/j.copbio.2015.08.022
[1] FCE-22057-of-ZM_suppl_1 Download
[1] CHEN Meijuan, JIA Honghua, CHEN Yongsheng, JIANG Min, WEI Ping. Recombinant aspartate aminotransferase-catalyzed synthesis of L-4-fluorophenylalanine[J]. Front. Chem. Sci. Eng., 2008, 2(2): 220-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed