Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (8) : 991-1009    https://doi.org/10.1007/s11705-022-2259-7
REVIEW ARTICLE
Research progress on low dielectric constant modification of cellulose insulating paper for power transformers
Wenchang Wei1, Haiqiang Chen1, Junwei Zha2,3, Yiyi Zhang1()
1. Guangxi Power Transmission and Distribution Network Lightning Protection Engineering Techndogy Research Center, Guangxi University, Nanning 530004, China
2. School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
3. Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
 Download: PDF(7164 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Because of the increase in the transmission voltage levels, the demand for insulation reliability of power transformers has increasingly become critical. Cellulose insulating paper is the main insulating component of power transformers. To improve the insulation level of ultrahigh voltage transformers and reduce their weight and size, reducing the dielectric constant of oil-immersed cellulose insulating paper is highly desired. Cellulose is used to produce power-transformer insulating papers owing to its excellent electrical properties, renewability, biodegradability and abundance. The dielectric constant of a cellulose insulating paper can be effectively reduced by chemical or physical modification. This study presents an overview of the foreign and domestic research status of the use of modification technology to reduce the dielectric constant of cellulose insulating papers. All the mentioned methods are analyzed in this study. Finally, some recommendations for future modified cellulose insulating paper research and applications are proposed. This paper can provide a reference for further research on low dielectric constant cellulose insulating paper in the future.

Keywords low dielectric constant      chemical and physical modification      cellulose insulating paper      transformer      nanomaterials.     
Corresponding Author(s): Yiyi Zhang   
Online First Date: 15 March 2023    Issue Date: 20 July 2023
 Cite this article:   
Wenchang Wei,Haiqiang Chen,Junwei Zha, et al. Research progress on low dielectric constant modification of cellulose insulating paper for power transformers[J]. Front. Chem. Sci. Eng., 2023, 17(8): 991-1009.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2259-7
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I8/991
Fig.1  Growth rate and citation data of cellulose insulating paper (applied in transformers) publications up to August 8, 2022 (according to the search results of the Web of Science database using “transformer & cellulose insulating paper & electric” as keywords).
Fig.2  Most important reasons of transformer collapse (2015 by CIGRE).
Fig.3  Classification of solid insulation by application.
Fig.4  Molecular chain structural formula of cellulose.
Modification mechanismModified materialεra)tanδb)Breakdown strength or voltageVolume resistivity/ (Ω?m–1)Partial dischargeThermal stabilityMechanical strengthRef.
AlkylationOcta(aminophenyl)silsesquioxane (OAPS)2.580.004579.5 kV·mm–110159.62 kN·m–1[45]
Esterification1,2,3,4-Butanetetracarboxylic acid (BTCA)3.580.004272.9 kV·mm–1101481.6 MPa[46]
Citric acid (CA)4.120.006275.74 kV·mm–110.79 kN·m–1[34]
FluorinationF22.615.9 kV1012[44]
Tab.1  Chemical methods have been reported to modify cellulose insulating paper
Fig.5  Chemically modified cellulose insulating paper.
Fig.6  (a) Chemical modification and (b) physical modification of cellulose process.
Fig.7  Preparation of cellulose insulating paper of low dielectric constant by OAPS grafting. Reprinted with permission from Ref. [45], copyright 2019, Springer Nature.
Fig.8  Dielectric constant spectrogram of the samples tested in (a) air and (b) oil; dielectric loss spectrogram of the samples tested in (c) air and (d) oil. Reprinted with permission from Ref. [46], copyright 2020, John Wiley and Sons.
Fig.9  Schematic illustration of the preparation of CA-treated kraft paper. Reprinted with permission from Ref. [34], copyright 2021, IEEE.
Fig.10  Dielectric constants of samples in (a) air and (b) oil; dielectric losses of samples in (c) air and (d) oil. Reprinted with permission from Ref. [34], copyright 2021, IEEE.
Nanomaterialsεra)tanδb)Breakdown strength or voltageVolume resistivity/ (Ω?m–1)Partial discharge/pCConductivity/(S?cm–1)Mechanical strengthRef.
Nanocellulose2.550.00513.6 kV·mm–110153833136 MPa[26]
Nanocellulose fibrils2.580.00386.6 kV·mm–11015114 MPa[74]
Nano polymethylpentene3.5310 kV[31]
Nano-SiC2.9[75]
Nano-Al2O32.30.01987 kV·mm–11016[76]
2.210.00966.78 kV·mm–18.24 kN·m–1[77]
Nano-TiO22.410.0161.78 kV·mm–18.2×10–158.6 kN·m–1[78]
2.410.0161.78 kV·mm–18.2×10–158.55 kN·m–1[79]
Nano-SiO2 hollow microspheres1.6830.5 kV[80]
MMT2.3056.9 kV8.5 kN·m–1[81]
Tab.2  Effect of nanomaterials modification to prepare low dielectric cellulose insulating paper
Fig.11  Nanomaterials for the preparation of low dielectric modified cellulose insulating paper.
Fig.12  The diagram of composite of conventional paper and composite paper with NCF and Kevlar. Reprinted from Ref. [74], open access, free to use.
Fig.13  Relative permittivity of insulating paper in (a) air and (b) oil, dielectric loss of insulating paper in (c) air and (d) oil. Reprinted from Ref. [74], open access, free to use.
Fig.14  Structure of gap: (a) Interaction between cellulose and nano-TiO2; (b) oil gap; (c) oil gap reinforced by nano-TiO2; (d) dielectric constants of insulating paper. Reprinted from Ref. [79], open access, free to use.
Fig.15  MD simulation of PPTA/cellulose insulating paper of low dielectric constant and high tensile strength. Reprinted with permission from Ref. [107], copyright 2022, John Wiley and Sons.
1 S PadmanabanM KhaliliM A NasabM ZandA G ShamimB Khan. Determination of power transformers health index using parameters affecting the transformer’s life. Journal of the Institution of Electronics and Telecommunication Engineers, 2022, in press
2 D W Feng, J Hao, L J Yang, R J Liao, X Chen, J Li. Comparison of AC breakdown characteristics on insulation paper (pressboard) immersed by three-element mixed insulation oil and mineral oil. High Voltage, 2020, 5(3): 298–305
https://doi.org/10.1049/hve.2019.0103
3 C H Geng, J F Liu, H Zhang, C Y Liu, Y W Luo, Y Zhang. Diffusion mechanism of furfural in transformer oil-paper insulation under moisture effect. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(2): 485–492
https://doi.org/10.1109/TDEI.2022.3157883
4 E Z Zhang, H B Zheng, C S Zhang, J Q Wang, K K Shi, J Guo, H Schwarz, C H Zhang. Aging state assessment of transformer cellulosic paper insulation using multivariate chemical indicators. Cellulose, 2021, 28(4): 2445–2460
https://doi.org/10.1007/s10570-021-03683-3
5 C Thirumurugan, G B Kumbhar, R Oruganti. Surface discharge characteristics of different solid–liquid insulation materials in power transformers. IEEE Transactions on Plasma Science, 2019, 47(11): 5013–5022
https://doi.org/10.1109/TPS.2019.2943550
6 W Hou, L J Yang, M Yang, F Yin, Y Y Huang, X L Zheng. Static dielectric constant and dielectric loss of cellulose insulation: molecular dynamics simulations. High Voltage, 2021, 6(6): 1051–1060
https://doi.org/10.1049/hve2.12087
7 C Tang, S Zhang, X B Wang, J Hao. Enhanced mechanical properties and thermal stability of cellulose insulation paper achieved by doping with melamine-grafted nano-SiO2. Cellulose, 2018, 25(6): 3619–3633
https://doi.org/10.1007/s10570-018-1813-4
8 M Rafiq, Y Z Lv, C R Li. A review on properties, opportunities, and challenges of transformer oil-based nanofluids. Journal of Nanomaterials, 2016, 2016: 8371560
https://doi.org/10.1155/2016/8371560
9 Y X Liu, B Song, L N Wang, J C Gao, R H Xu. Power transformer fault diagnosis based on dissolved gas analysis by correlation coefficient-DBSCAN. Applied Sciences, 2020, 10(13): 4440
https://doi.org/10.3390/app10134440
10 J Abenojar, B Enciso, M Pantoja, F Velasco, M A Martinez. Thermal characterization and diffusivity of two mono-component epoxies for transformer insulation. International Journal of Adhesion and Adhesives, 2020, 103: 102726
https://doi.org/10.1016/j.ijadhadh.2020.102726
11 M Rafiq, M Shafique, A Azam, M Ateeq. The impacts of nanotechnology on the improvement of liquid insulation of transformers: emerging trends and challenges. Journal of Molecular Liquids, 2020, 302: 112482
https://doi.org/10.1016/j.molliq.2020.112482
12 A J Christina, M A Salam, Q M Rahman, F S Wen, S P Ang, W Voon. Causes of transformer failures and diagnostic methods—a review. Renewable & Sustainable Energy Reviews, 2018, 82(1): 1442–1456
13 C Tang, R Chen, J Z Zhang, X Peng, B H Chen, L S Zhang. A review on the research progress and future development of nano-modified cellulose insulation paper. IET Nanodielectrics, 2021, 5(2): 63–84
https://doi.org/10.1049/nde2.12032
14 A M Abd-Elhady, A A Abdul-Aleem, M A Izzularab. Electrical properties evaluation of double-layer nano-filled oil-paper composites. IET Science, Measurement & Technology, 2020, 15(1): 77–84
https://doi.org/10.1049/smt2.12010
15 M Badawi, S A Ibrahim, D E A Mansour, A A El-Faraskoury, S A Ward, K Mahmoud, M Lehtonen, M M F Darwish. Reliable estimation for health index of transformer oil based on novel combined predictive maintenance techniques. IEEE Access: Practical Innovations, Open Solutions, 2022, 10: 25954–25972
https://doi.org/10.1109/ACCESS.2022.3156102
16 A M Alshehawy, D E A Mansour, M Ghali, M Lehtonen, M M F Darwish. Photoluminescence spectroscopy measurements for effective condition assessment of transformer insulating oil. Processes, 2021, 9(5): 732
https://doi.org/10.3390/pr9050732
17 S S M Ghoneim, S S Dessouky, A Boubakeur, A A Elfaraskoury, A B Abou Sharaf, K Mahmoud, M Lehtonen, M M F Darwish. Accurate insulating oil breakdown voltage model associated with different barrier effects. Processes, 2021, 9(4): 657
https://doi.org/10.3390/pr9040657
18 S A Ward, A El-Faraskoury, M Badawi, S A Ibrahim, K Mahmoud, M Lehtonen, M M F Darwish. Towards precise interpretation of oil transformers via novel combined techniques based on DGA and partial discharge sensors. Sensors, 2021, 21(6): 2223
https://doi.org/10.3390/s21062223
19 D E A Mansour, N M K Abdel-Gawad, A Z El Dein, H M Ahmed, M M F Darwish, M Lehtonen. Recent advances in polymer nanocomposites based on polyethylene and polyvinylchloride for power cables. Materials, 2021, 14(1): 66
https://doi.org/10.3390/ma14010066
20 H B Zheng, E C Yang, S Y Wu, W J Lv, H Yang, X F Li, X Q Luo, W Hu. Investigation on formation mechanisms of carbon oxides during thermal aging of cellulosic insulating paper. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(4): 1226–1233
https://doi.org/10.1109/TDEI.2022.3188034
21 J L Mao, S Wang, Q Y Shi, Y L Cheng, Y Chen. Excellent vacuum pulsed flashover characteristics achieved in dielectric insulators functionalized by electronegative halogen-phenyl and naphthyl groups. Langmuir, 2022, 38(13): 4129–4137
https://doi.org/10.1021/acs.langmuir.2c00228
22 X Zhang, F H Yang, X P Sun, W F Li, Z H Yao. Effects of modified hexagonal boron nitride on electrical insulation properties of LLDPE/EAA nanocomposites. Polymer International, 2022, 71(8): 950–958
https://doi.org/10.1002/pi.6376
23 M M Kabir, H Wang, K T Lau, F Cardona. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Composites Part B: Engineering, 2012, 43(7): 2883–2892
https://doi.org/10.1016/j.compositesb.2012.04.053
24 L Peng, Q Fu, L Li, M Lin. Indirect detection of DP for insulating paper based on methanol content in transformer oil by spectroscopic approach. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(1): 90–94
https://doi.org/10.1109/TDEI.2018.007609
25 A D Pablo, B Pahlavanpour. Furanic compounds analysis: a tool for predictive maintenance of oil filled electrical equipment. Electra, 1997, 175(32): 9–31
26 J W Huang, Y X Zhou, L Y Dong, Z L Zhou, R Liu. Enhancement of mechanical and electrical performances of insulating press paper by introduction of nanocellulose. Composites Science and Technology, 2017, 138: 40–48
https://doi.org/10.1016/j.compscitech.2016.11.020
27 W X Sima, J H He, P T Sun, M Yang, Z Yin, C Li. Novel nanostructure composite dielectric with high insulation performance: silica-based nanometer-sized porous composite insulating paper reinforced by ceramic fibers. Scripta Materialia, 2020, 181: 58–61
https://doi.org/10.1016/j.scriptamat.2020.02.016
28 J Q Chen, P T Sun, W X Sima, Q Q Shao, L Ye, C Li. A promising nano-insulating-oil for industrial application: electrical properties and modification mechanism. Nanomaterials, 2019, 9(5): 788
https://doi.org/10.3390/nano9050788
29 J W Zhang, C Tang, Q P Qiu, L Yang. Effect of water on the diffusion of small molecular weight acids in nano-SiO2 modified insulating oil. Journal of Molecular Liquids, 2020, 314: 113670
https://doi.org/10.1016/j.molliq.2020.113670
30 A G Sharin, A M Nor, A N Zulkarnain, Z Hidayat, A B Norazhar, A T Mohd. Methods for improving the workability of natural ester insulating oils in power transformer applications: a review. Electric Power Systems Research, 2018, 163: 655–667
https://doi.org/10.1016/j.epsr.2017.10.008
31 Y Kamata, E Ohe, K Endoh, S Furukawa, H Tsukioka, M Maejima, H Fujita, M Nozaki, F Ishizuka, K Hyohdoh. Development of low-permittivity pressboard and its evaluation for insulation of oil-immersed EHV power transformers. IEEE Transactions on Electrical Insulation, 1991, 26(4): 819–825
https://doi.org/10.1109/14.83708
32 Y Cao, P C Lrwin, K Younsi. The future of nano dielectrics in the electrical power industry. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 797–807
https://doi.org/10.1109/TDEI.2004.1349785
33 C Tang, X Li, F Yin, J Hao. The performance improvement of aramid insulation paper by nano-SiO2 modification. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2400–2409
https://doi.org/10.1109/TDEI.2017.006560
34 W Hou, L J Yang, F Yin, Y Mo, R J Liao, Y Yuan. Preparation of a novel cellulose insulation with network structure by citric acid crosslinking. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(4): 1171–1180
https://doi.org/10.1109/TDEI.2021.009522
35 Y Shen, Y H Lin, C W Nan. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Advanced Functional Materials, 2007, 17(14): 2405–2410
https://doi.org/10.1002/adfm.200700200
36 S X Nie, C C Cai, X J Lin, C Y Zhang, Y X Lu, J L Mo, S F Wang. Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18678–18685
https://doi.org/10.1021/acssuschemeng.0c07531
37 Y H Liu, J L Mo, Q Fu, Y X Lu, N Zhang, S F Wang, S X Nie. Enhancement of triboelectric charge density by chemical functionalization. Advanced Functional Materials, 2020, 30(50): 2004714
https://doi.org/10.1002/adfm.202004714
38 Y H Liu, Q Fu, J L Mo, Y X Lu, C C Cai, B Luo, S X Nie. Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy, 2021, 89: 106369
https://doi.org/10.1016/j.nanoen.2021.106369
39 S Zhang, M C Chi, J L Mo, T Liu, Y H Liu, Q Fu, J L Wang, B Luo, Y Qin, S F Wang, S X Nie. Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nature Communications, 2022, 13(1): 4168
https://doi.org/10.1038/s41467-022-31987-w
40 W J Ge, J B Shuai, Y Y Wang, Y X Zhou, X H Wang. Progress on chemical modification of cellulose in “green” solvents. Polymer Chemistry, 2022, 13(3): 359–372
https://doi.org/10.1039/D1PY00879J
41 B Jennie, K Saina, M C Danila, L Martin, W Jakob, H Gunnar, E L Mikael, W Lars, V Francisco. Acetylation and sugar composition influence the (in) solubility of plant β-mannans and their interaction with cellulose surfaces. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 10027–10040
https://doi.org/10.1021/acssuschemeng.0c01716
42 L Amaury, D Richard, T Balázs, M Daniel, Z Rachida. Alkylation of microfibrillated cellulose—a green and efficient method for use in fiber-reinforced composites. Polymer, 2017, 126: 48–55
https://doi.org/10.1016/j.polymer.2017.08.024
43 B A Melissa, N Fumiaki, Y Hiroyuki. Improving the thermal stability of wood-based cellulose by esterification. Carbohydrate Polymers, 2018, 192: 28–36
https://doi.org/10.1016/j.carbpol.2018.02.071
44 X L Li. Surface Charge Accumulation and breakdown mechanism of oil-impregnated paper in valve side bushing of UHV converter transformer. Dissertation for the Doctoral Degree. Tianjin: Tianjin University, 2017, 39–99
45 Y Mo, L J Yang, W Hou, T T Zou, Y Y Huang, X L Zheng, R J Liao. Preparation of cellulose insulating paper of low dielectric constant by OAPS grafting. Cellulose, 2019, 26(12): 7451–7468
https://doi.org/10.1007/s10570-019-02570-2
46 Y Mo, L J Yang, W Hou, T T Zou, Y Y Huang, R J Liao. Preparation of cellulose insulating paper with low dielectric constant by BTCA esterification crosslinking. Macromolecular Materials and Engineering, 2020, 305(6): 2000063
https://doi.org/10.1002/mame.202000063
47 T A Prevost. Thermally upgraded insulation in transformers. In: IEEE Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo. New York: IEEE, 2005: 120–125
48 M F Beavers, E L Raab, L Raab, J C Lesile. Permalex, a new insulation system. Power Apparatus and Systems Part III: Transactions of the American Institute of Electrical Engineers, 1960, 79(3): 64–70
49 T A Prevost, T V Oommen. Cellulose insulation in oil-filled power transformers: part I—history and development. IEEE Electrical Insulation Magazine, 2006, 22(1): 28–35
https://doi.org/10.1109/MEI.2006.1618969
50 E L Morrison. Evaluation of the thermal stability of electrical insulating paper. IEEE Transactions on Electrical Insulation, 1968, EI-3(3): 76–82
https://doi.org/10.1109/TEI.1968.299021
51 F J Kilzer, A Broido. Speculations on the nature of cellulose pyrolysis. Pyrodynamics, 1965, 2: 151–163
52 K N Raftopoulos, K Pielichowski. Segmental dynamics in hybrid polymer/POSS nanomaterials. Progress in Polymer Science, 2016, 52: 136–187
https://doi.org/10.1016/j.progpolymsci.2015.01.003
53 S Ramesh, J Kim, J H Kim. Characteristic of hybrid cellulose-amino functionalized POSS-silica nanocomposite and antimicrobial activity. Journal of Nanomaterials, 2015, 70: 1–9
https://doi.org/10.1155/2015/936590
54 Z Song, C Tang, J Y Xie, Q Zhou. Improvement of thermal stability of insulation paper cellulose by modified polysiloxane grafting. Applied Physics Letters, 2016, 109(17): 172902
https://doi.org/10.1063/1.4965864
55 A C H Barreto, M M Costa, A S B Sombra, D S Rosa, R F Nascimento, S E Mazzetto, P B A Fechine. Chemically modified banana fiber: structure, dielectrical properties and biodegradability. Journal of Polymers and the Environment, 2010, 18(4): 523–531
https://doi.org/10.1007/s10924-010-0216-x
56 J Einfeldt, D Meiner, A Kwasniewski. Polymerdynamics of cellulose and other polysaccharides in solid state-secondary dielectric relaxation processes. Progress in Polymer Science, 2001, 26(9): 1419–1472
https://doi.org/10.1016/S0079-6700(01)00020-X
57 J Hu, S F Zhang, B T Tang. 2D filler-reinforced polymer nanocomposite dielectrics for high-k dielectric and energy storage applications. Energy Storage Materials, 2021, 34: 260–281
https://doi.org/10.1016/j.ensm.2020.10.001
58 M Jang, S Y Park, S K Kim, D Jung, W Song, S Myung, S S Lee, D H Yoon, K S An. Strategic customization of polymeric nanocomposites modified by 2D titanium oxide nanosheet for high-k and flexible gate dielectrics. Small, 2021, 17(17): 2007213
https://doi.org/10.1002/smll.202007213
59 J M Cai, J L Pan, X P Li, J W Tan, J B Li. Electrical resistivity of fly ash and metakaolin based geopolymers. Construction & Building Materials, 2020, 234: 117868
https://doi.org/10.1016/j.conbuildmat.2019.117868
60 C C Cai, B Luo, Y H Liu, Q Fu, T Liu, S F Wang, S X Nie. Advanced triboelectric materials for liquid energy harvesting and emerging application. Materials Today, 2022, 52: 299–326
https://doi.org/10.1016/j.mattod.2021.10.034
61 S Cheng, Y Zhou, Y S Li, C Yuan, J Fu, J Hu, J L He, Q Li. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Materials, 2021, 42: 445–453
https://doi.org/10.1016/j.ensm.2021.07.018
62 Y Shen, X Zhang, M Li, Y H Lin, C W Nan. Polymer nanocomposite dielectrics for electrical energy storage. National Science Review, 2017, 4(1): 23–25
https://doi.org/10.1093/nsr/nww066
63 J M Zhao, W L Zhang, T Liu, Y H Liu, Y Qin, J L Mo, C C Cai, S Zhang, S X Nie. Hierarchical porous cellulosic triboelectric materials for extreme environmental conditions. Small Methods, 2022, 6(9): 2200664
https://doi.org/10.1002/smtd.202200664
64 C C Cai, J L Mo, Y X Lu, N Zhang, Z Y Wu, S F Wang, S X Nie. Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy, 2021, 83: 105833
https://doi.org/10.1016/j.nanoen.2021.105833
65 C Y Zhang, J L Mo, Q Fu, Y H Liu, S F Wang, S X Nie. Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy, 2021, 81: 105637
https://doi.org/10.1016/j.nanoen.2020.105637
66 S Y Ji, H B Jung, M K Kim, J Y Lim, J Ryu, D Y Jeong. Enhanced energy storage performance of polymer/ceramic/metal composites by increase of thermal conductivity and coulomb-blockade effect. ACS Applied Materials & Interfaces, 2021, 13(23): 27343–27352
https://doi.org/10.1021/acsami.1c01177
67 Q K Feng, Q Dong, D L Zhang, J Y Pei, Z M Dang. Enhancement of high-temperature dielectric energy storage performances of polyimide nanocomposites utilizing surface functionalized MAX nanosheets. Composites Science and Technology, 2022, 218: 109193
https://doi.org/10.1016/j.compscitech.2021.109193
68 Y X Lu, P Tao, N Zhang, S X Nie. Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicellulose contents. Carbohydrate Polymers, 2020, 245: 116463
https://doi.org/10.1016/j.carbpol.2020.116463
69 N K Kwon, H Kim, I K Han, T J Shin, H W Lee, J Park, S Y Kim. Enhanced mechanical properties of polymer nanocomposites using dopamine-modified polymers at nanoparticle surfaces in very low molecular weight polymers. ACS Macro Letters, 2018, 7(8): 962–967
https://doi.org/10.1021/acsmacrolett.8b00475
70 A Fereidoon, S Aleaghaee, I Taraghi. Mechanical properties of hybrid graphene/TiO2 (rutile) nanocomposite: a molecular dynamics simulation. Computational Materials Science, 2015, 102: 220–227
https://doi.org/10.1016/j.commatsci.2015.02.044
71 Y Qin, L Mo Ji, Y H Liu, S Zhang, J L Wang, Q Fu, S F Wang, S X Nie. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Advanced Functional Materials, 2022, 32(27): 2201846
https://doi.org/10.1002/adfm.202201846
72 Q G Chen, H D Yang, X Y Wang, H Q Liu, K Zhou, X Ning. Dielectric properties of epoxy resin impregnated nano-SiO2 modified insulating paper. Polymers, 2019, 11(3): 393
https://doi.org/10.3390/polym11030393
73 T Tanaka, G C Montanari, R Mulhaupt. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future application. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 763–784
https://doi.org/10.1109/TDEI.2004.1349782
74 Y Mo, L Y Yang, T T Zou, W Hou, R J Liao. Preparation of composite insulating paper with decreased permittivity, good mechanical and thermal properties by Kevlar/nano cellulose fibrils/softwood pulp hybrid. IEEE Access: Practical Innovations, Open Solutions, 2019, 7: 104258–104268
https://doi.org/10.1109/ACCESS.2019.2930981
75 Q G Chen, H Q Liu, X L Zhuge, X L Wei. Analysis of dielectric properties and electric field homogenization of modified insulation pressboard based on nano SiC. Electric Machines and Control, 2014, 18(12): 79–84+94
76 S Q Yan, R J Liao, Y D Lv, X T Zhao, Y Yuan, L H He. Influence of nano-Al2O3 on electrical properties of insulation paper under thermal aging. Transactions of China Electrotechnical Society, 2017, 32(11): 225–232
77 R J Liao, C Lv, W Q Wu, N C Liang, L J Yang. Insulating properties of insulation paper modified by nano-Al2O3 for power transformer. Journal of Electric Power Science and Technology, 2014, 29(01): 3–7
78 R J Liao, C Lv, W Q Wu, T Liu, H B Liu. Insulating property of insulation paper modified by nano-TiO2. High Voltage Engineering, 2014, 40(07): 1932–1939
79 R J Liao, C Lv, L J Yang, Y Y Zhang, W Q Wu, C Tang. The insulation properties of oil-impregnated insulation paper reinforced with nano-TiO2. Journal of Nanomaterials, 2013, 7: 373959
https://doi.org/10.1155/2013/373959
80 F Z Zhang, R J Liao, Y Yuan, Y S Li, Q J Peng, T Liu. Preparation for low-permittivity insulation paper and its breakdown performance. High Voltage Engineering, 2012, 38(03): 691–696
81 Y Yuan, R J Liao. A novel nanomodified cellulose insulation paper for power transformer. Journal of Nanomaterials, 2014, 2014: 510864
https://doi.org/10.1155/2014/510864
82 Y Habibi, L A Lucia, O J Rojas. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews, 2010, 110(6): 3479–3500
https://doi.org/10.1021/cr900339w
83 R J Moon, A Martini, J Nairn, J Simonsen, J Youngblood. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941–3994
https://doi.org/10.1039/c0cs00108b
84 H Sehaqui, M Allais, Q Zhou, L A Berglund. Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Composites Science and Technology, 2011, 71(3): 382–387
https://doi.org/10.1016/j.compscitech.2010.12.007
85 X Huang, Y X Zhou, Q Z Gesang, L Zhang, Y X Zhang, C Y Teng, M Huang. Construction of nanocellulose sandwich-structured insulating paper and its enhancement for mechanical and electrical properties. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(4): 1127–1135
https://doi.org/10.1109/TDEI.2021.009446
86 Y Yuan, B P Lin, Y M Sun. Novel low-dielec tric-constant copolyimide thin fims composed with SiO2 hollowspheres. Journal of Applied Polymer Science, 2010, 120(2): 1133–1137
https://doi.org/10.1002/app.30467
87 R Bongicivanni, D Mazza, S Ronchetti, E A Turcato. The influence of water on the intercalation of epoxy monomers in Na-montmorillonite. Journal of Colloid and Interface Science, 2006, 296(2): 515–519
https://doi.org/10.1016/j.jcis.2005.09.058
88 Y Dong, D Bhattacharyya. Dual role of maleated polypropylene in processing and material characterization of polypropylene/clay nanocomposites. Materials Science and Engineering A, 2010, 527(6): 1617–1622
https://doi.org/10.1016/j.msea.2009.10.043
89 Q Zhang, K Wang, Y Men, Q Fu. Dispersion and tensile behavior of polypropylene/montmorillonite nanocomposites produced via melt intercalation. Chinese Journal of Polymer Science, 2003, 21(3): 359–367
90 H J Yin, G Q Gao, Y Yang, K Liu, G N Wu. A ReaxFF molecular dynamics study of insulation paper modification by plasma ROS. Physics of Plasmas, 2022, 29(3): 033508
https://doi.org/10.1063/5.0068505
91 C Liu, J Hao, Y Q Li, R J Liao. Fabrication of ZnO-Al2O3-PTFE multilayer nano-structured functional film on cellulose insulation polymer surface and its effect on moisture inhibition and dielectric properties. Polymers, 2019, 11(8): 1367
https://doi.org/10.3390/polym11081367
92 S L Wu, C Zhang, C S Zhang, W X Yu, Q Yang, T Shao. Nano-sized composite improving the insulating performance of insulating paper using low-temperature plasmas. Nanotechnology, 2021, 32(18): 185704
https://doi.org/10.1088/1361-6528/abdf8b
93 Q J Chen, M C Kang, Q H Xie, J H Wang. Effect of melamine modified cellulose nanocrystals on the performance of oil-immersed transformer insulation paper. Cellulose, 2020, 27(13): 7621–7636
https://doi.org/10.1007/s10570-020-03305-4
94 Y P Tu, J He, Q Wang, M Liu, G L Xu, L J Ding. Measurement of thermally stimulated current in ZnO varistor. Proceedings of the CSEE, 2010, 30(33): 116–121 (in Chinese)
95 H D Yang, Q G Chen, X Y Wang, M H Chi, H Q Liu, X Ning. Dielectric and thermal conductivity of epoxy resin impregnated nano-h-BN modified insulating paper. Polymers, 2019, 11(8): 1359
https://doi.org/10.3390/polym11081359
96 M Rafiq, C R Li, Y Z Lv. Effect of Al2O3 nanorods on dielectric strength of aged transformer oil/paper insulation system. Journal of Molecular Liquids, 2019, 284: 700–708
https://doi.org/10.1016/j.molliq.2019.04.041
97 L Cheng, Y F Jiang, M L Dan, H Wen, Y Q Li, W Qin, J Hao. Effects of fiber and copper particles on conductivity and breakdown characteristics of natural ester and mineral oil under DC voltage. Energies, 2020, 13(7): 1818
https://doi.org/10.3390/en13071818
98 H Z Liu, G F Zhang, L L Lu, Y X Chen, M T Luo, J M Bian, Z F Wang, L J Wang. Influence of varied fluorine contents on long-term storage stability of polyacrylate nanoparticles and film properties. Journal of Nanomaterials, 2019, 2019: 2970819
https://doi.org/10.1155/2019/2970819
99 L Xu, H W Liang, Y Yang, S H Yu. Stability and reactivity: positive and negative aspects for nanoparticle processing. Chemical Reviews, 2018, 118(7): 3209–3250
https://doi.org/10.1021/acs.chemrev.7b00208
100 J Liu, X Fan, H Zheng, Y Zhang, C Zhang, B Lai, J Wang, G Ren, E Zhang. Aging condition assessment of transformer oil-immersed cellulosic insulation based upon the average activation energy method. Cellulose, 2019, 26(6): 3891–3908
https://doi.org/10.1007/s10570-019-02331-1
101 M Yang, L J Yang, F Yin, Y Y Gao, R J Liao. Polarity, thermal stability, and hydrophilicity of three-layer crosslinked PPTA/cellulose composite insulation system: molecular dynamics simulations. Materials Today Communications, 2022, 31: 103533
https://doi.org/10.1016/j.mtcomm.2022.103533
102 S K Wei, X L Wu, X Li. Solubility analysis of nano particles, cellulose crystalline region and cellulose molecule, and the impact study of crystalline region on properties of cellulose insulating paper. Molecular Simulation, 2021, 47(18): 1522–1529
https://doi.org/10.1080/08927022.2021.1990278
103 Y Kong, L B Li, S Y Fu. Insights from molecular dynamics simulations for interaction between cellulose microfibrils and hemicellulose. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(27): 14451–14459
https://doi.org/10.1039/D2TA03164G
104 D Y Du, C Tang, Y J Tang, L Yang, J Hao. Molecular simulation on the mechanical and thermal properties of carbon nanowire modified cellulose insulating paper. Composite Structures, 2021, 261: 113283
https://doi.org/10.1016/j.compstruct.2020.113283
105 Z X Zhang, H B Zhou, W T Li, C Tang. Molecular simulation of improved mechanical properties and thermal stability of insulation paper cellulose by modification with silane-coupling-agent-grafted nano-SiO2. Processes, 2021, 9(5): 766
https://doi.org/10.3390/pr9050766
106 Y Y Zhang, Y Li, H B Zheng, M Z Zhu, J F Liu, T Yang, C H Zhang, Y Li. Microscopic reaction mechanism of the production of methanol during the thermal aging of cellulosic insulating paper. Cellulose, 2020, 27(5): 2455–2467
https://doi.org/10.1007/s10570-019-02960-6
107 M Yang, L J Yang, F Yin, Y Y Gao, R J Liao. Development of PPTA/cellulose three-layer composite insulating paper with low dielectric constant and good mechanical strength based on molecular dynamics simulation. Polymer Composites, 2022, 43(3): 1698–1710
https://doi.org/10.1002/pc.26489
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed