| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Localized high-concentration electrolytes for lithium metal batteries: progress and prospect  | 
  					 
  					  										
						Jia-Xin Guo1, Wen-Bo Tang1, Xiaosong Xiong1, He Liu2( ), Tao Wang1, Yuping Wu1( ), Xin-Bing Cheng1( ) | 
					 
															
						1. School of Energy and Environment, Southeast University, Nanjing 211189, China 2. School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  With the increasing development of digital devices and electric vehicles, high energy-density rechargeable batteries are strongly required. As one of the most promising anode materials with an ultrahigh specific capacity and extremely low electrode potential, lithium metal is greatly considered an ideal candidate for next-generation battery systems. Nevertheless, limited Coulombic efficiency and potential safety risks severely hinder the practical applications of lithium metal batteries due to the inevitable growth of lithium dendrites and poor interface stability. Tremendous efforts have been explored to address these challenges, mainly focusing on the design of novel electrolytes. Here, we provide an overview of the recent developments of localized high-concentration electrolytes in lithium metal batteries. Firstly, the solvation structures and physicochemical properties of localized high-concentration electrolytes are analyzed. Then, the developments of localized high-concentration electrolytes to suppress the formation of dendritic lithium, broaden the voltage window of electrolytes, enhance safety, and render low-temperature operation for robust lithium metal batteries are discussed. Lastly, the remaining challenges and further possible research directions for localized high-concentration electrolytes are outlined, which can promisingly render the practical applications of lithium metal batteries. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				high-concentration electrolyte  
																		  																																				localized high-concentration electrolyte  
																		  																																				lithium metal battery  
																		  																																				solid electrolyte interphase  
																		  																																				dendrite  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																He Liu,Yuping Wu,Xin-Bing Cheng   
																													     		
													     	 | 
														 
																																										
															| 
																																														Online First Date: 30 March 2023   
																																														Issue Date: 07 October 2023
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														      Y Yang, M T McDowell, A Jackson, J J Cha, S S Hong, Y Cui. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Letters, 2010, 10(4): 1486–1491 
														     														     	 
														     															     		https://doi.org/10.1021/nl100504q
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														      L Chen, X Fan, E Hu, X Ji, J Chen, S Hou, T Deng, J Li, D Su, X Yang, C Wang. Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery. Chem, 2019, 5(4): 896–912 
														     														     	 
														     															     		https://doi.org/10.1016/j.chempr.2019.02.003
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														      Y Tang, Y Zhang, W Li, B Ma, X Chen. Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews, 2015, 44(17): 5926–5940 
														     														     	 
														     															     		https://doi.org/10.1039/C4CS00442F
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														      J B Goodenough, K S Park. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176 
														     														     	 
														     															     		https://doi.org/10.1021/ja3091438
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														      X Shen, X Q Zhang, F Ding, J Q Huang, R Xu, X Chen, C Yan, F Y Su, C M Chen, X Liu, Q Zhang. Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Material Advances, 2021, 2021(1): 1205324 
														     														     	 
														     															     		https://doi.org/10.34133/2021/1205324
														     															     															     															 | 
																  
																														
															| 6 | 
															 
														      W Xu, J L Wang, F Ding, X L Chen, E Nasybutin, Y H Zhang, J G Zhang. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513–537 
														     														     	 
														     															     		https://doi.org/10.1039/C3EE40795K
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														      J Peng, D Wu, F Song, S Wang, Q Niu, J Xu, P Lu, H Li, L Chen, F Wu. High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode. Advanced Functional Materials, 2022, 32(2): 2105776 
														     														     	 
														     															     		https://doi.org/10.1002/adfm.202105776
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														      X Xu, X Jiao, O O Kapitanova, J Wang, V S Volkov, Y Liu, S Xiong. Diffusion limited current density: a watershed in electrodeposition of lithium metal anode. Advanced Energy Materials, 2022, 12(19): 2200244 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202200244
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														      J Liu, Z N Bao, Y Cui, E J Dufek, J B Goodenough, P Khalifah, Q Y Li, B Y Liaw, P Liu, A Manthiram, Y S Meng, V R Subramanian, M F Toney, V V Viswanathan, M S Whittingham, J Xiao, W Xu, J Yang, X Q Yang, J G Zhang. Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4(3): 180–186 
														     														     	 
														     															     		https://doi.org/10.1038/s41560-019-0338-x
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														      T Liu, L Yu, J Lu, T Zhou, X Huang, Z Cai, A Dai, J Gim, Y Ren, X Xiao, M V Holt, Y S Chu, I Arslan, J Wen, K Amine. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nature Communications, 2021, 12(1): 6024 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-021-26290-z
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														      X Q Xu, F N Jiang, S J Yang, Y Xiao, H Liu, F Y Liu, L Liu, X B Cheng. Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries. Journal of Energy Chemistry, 2022, 69(10): 205–210 
														     														     	 
														     															     		https://doi.org/10.1016/j.jechem.2022.01.019
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														      K N Wood, E Kazyak, A F Chadwick, K H Chen, J G Zhang, K Thornton, N P Dasgupta. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Science, 2016, 2(11): 790–801 
														     														     	 
														     															     		https://doi.org/10.1021/acscentsci.6b00260
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														      Y Qiao, Q Li, X B Cheng, F Liu, Y Yang, Z Lu, J Zhao, J Wu, H Liu, S Yang, Y Liu. Three-dimensional superlithiophilic interphase for dendrite-free lithium metal anodes. ACS Applied Materials & Interfaces, 2020, 12(5): 5767–5774 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.9b18315
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														      P Shi, X B Cheng, T Li, R Zhang, H Liu, C Yan, X Q Zhang, J Q Huang, Q Zhang. Electrochemical diagram of an ultrathin lithium metal anode in pouch cells. Advanced Materials, 2019, 31(37): 1902785 
														     														     	 
														     															     		https://doi.org/10.1002/adma.201902785
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														      X Xu, Y Liu, J Y Hwang, O O Kapitanova, Z Song, Y K Sun, A Matic, S Xiong. Role of Li-ion depletion on electrode surface: underlying mechanism for electrodeposition behavior of lithium metal anode. Advanced Energy Materials, 2020, 10(44): 2002390 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202002390
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														      F Zhang, Y Sun, Z Wang, D Fu, J Li, J Hu, J Xu, X Wu. Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries. ACS Applied Materials & Interfaces, 2020, 12(21): 23774–23780 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.9b22945
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														      Z Wang, H Zhang, R Han, J Xu, A Pan, F Zhang, D Huang, Y Wei, L Wang, H Song, Y Liu, Y Shen, J Hu, X Wu. Establish an advanced electrolyte/graphite interphase by an ionic liquid-based localized highly concentrated electrolyte for low-temperature and rapid-charging Li-ion batteries. ACS Sustainable Chemistry & Engineering, 2022, 10(36): 12023–12029 
														     														     	 
														     															     		https://doi.org/10.1021/acssuschemeng.2c03938
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														      A Heist, S H Lee. Improved stability and rate capability of ionic liquid electrolyte with high concentration of LiFSI. Journal of the Electrochemical Society, 2019, 166(10): A1860–A1866 
														     														     	 
														     															     		https://doi.org/10.1149/2.0381910jes
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														      S Xu, R Xu, T Yu, K Chen, C Sun, G Hu, S Bai, H M Cheng, Z Sun, F Li. Decoupling of ion pairing and ion conduction in ultrahigh-concentration electrolytes enables wide-temperature solid-state batteries. Energy & Environmental Science, 2022, 15(8): 3379–3387 
														     														     	 
														     															     		https://doi.org/10.1039/D2EE01053D
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														      K K Fu, Y Gong, B Liu, Y Zhu, S Xu, Y Yao, W Luo, C Wang, S D Lacey, J Dai, Y Chen, Y Mo, E Wachsman, L Hu. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017, 3(4): e1601659 
														     														     	 
														     															     		https://doi.org/10.1126/sciadv.1601659
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														      J Q Zhou, T Qian, J Liu, M F Wang, L Zhang, C L Yan. High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Letters, 2019, 19(5): 3066–3073 
														     														     	 
														     															     		https://doi.org/10.1021/acs.nanolett.9b00450
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														      Q Zhou, X Y Yang, X S Xiong, Q Y Zhang, B H Peng, Y H Chen, Z G Wang, L J Fu, Y P Wu. A solid electrolyte based on electrochemical active Li4Ti5O12 with PVDF for solid state lithium metal battery. Advanced Energy Materials, 2022, 12(39): 2201991 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202201991
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														      S Chai, Y Zhang, Y Wang, Q He, S Zhou, A Pan. Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery. eScience, 2022, 2(5): 494–508
														     															 | 
																  
																														
															| 24 | 
															 
														      Z Yan, H Y Pan, J Y Wang, R S Chen, Q Li, F Luo, X Q Yu, H Li. Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes. Rare Metals, 2021, 40(6): 1357–1365 
														     														     	 
														     															     		https://doi.org/10.1007/s12598-020-01494-2
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														      H Zhang, Y Chen, C Li, M Armand. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat, 2021, 1(1): 24–37 
														     														     	 
														     															     		https://doi.org/10.1002/sus2.6
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														      J Wang, Y Yamada, K Sodeyama, C H Chiang, Y Tateyama, A Yamada. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications, 2016, 7(1): 12032 
														     														     	 
														     															     		https://doi.org/10.1038/ncomms12032
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														      S H Jiao, X D Ren, R G Cao, M H Engelhard, Y Z Liu, D H Hu, D H Mei, J M Zheng, W G Zhao, Q Y Li, N Liu, B D Adams, C Ma, J Liu, J G Zhang, W Xu. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018, 3(9): 739–746 
														     														     	 
														     															     		https://doi.org/10.1038/s41560-018-0199-8
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														      X D Ren, L F Zou, S H Jiao, D H Mei, M H Engelhard, Q Y Li, H Y Lee, C J Niu, B D Adams, C M Wang, J Liu, J G Zhang, W Xu. High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Letters, 2019, 4(4): 896–903 
														     														     	 
														     															     		https://doi.org/10.1021/acsenergylett.9b00381
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														      X B Cheng, H Liu, H Yuan, H J Peng, C Tang, J Q Huang, Q Zhang. A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1(1): 38–50 
														     														     	 
														     															     		https://doi.org/10.1002/sus2.4
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														      Y Ren, W Shin, A Manthiram. Operating high-energy lithium-metal pouch cells with reduced stack pressure through a rational lithium-host design. Advanced Energy Materials, 2022, 12(19): 2200190 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202200190
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														      X S Xiong, W Q Yan, Y S Zhu, L L Liu, L J Fu, Y H Chen, N F Yu, Y P Wu, B Wang, R Xiao. Li4Ti5O12 coating on copper foil as ion redistributor layer for stable lithium metal anode. Advanced Energy Materials, 2022, 12(13): 2103112 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202103112
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														      X S Xiong, R Sun, W Q Yan, Q Qiao, Y S Zhu, L L Liu, L J Fu, N F Yu, Y P Wu, B Wang. A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(26): 13814–13820 
														     														     	 
														     															     		https://doi.org/10.1039/D2TA02138B
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														      X S Xiong, R Y Zhi, Q Zhou, W Q Yan, Y S Zhu, Y H Chen, L J Fu, N F Yu, Y P Wu. A binary PMMA/PVDF blend film modified substrate enables a superior lithium metal anode for lithium batteries. Materials Advances, 2021, 2(13): 4240–4245 
														     														     	 
														     															     		https://doi.org/10.1039/D1MA00121C
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														      X Meng, K C Lau, H Zhou, S K Ghosh, M Benamara, M Zou. Molecular layer deposition of crosslinked polymeric lithicone for superior lithium metal anodes. Energy Material Advances, 2021, 2021(1): 9786201 
														     														     	 
														     															     		https://doi.org/10.34133/2021/9786201
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														      W J Fan, Z W Sun, Y Yuan, X H Yuan, C You, Q H Huang, J Ye, L J Fu, V Kondratiev, Y P Wu. High cycle stability of Zn anodes boosted by an artificial electronic-ionic mixed conductor coating layer. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(14): 7645–7652 
														     														     	 
														     															     		https://doi.org/10.1039/D2TA00697A
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														      Q Zhao, X Chen, W Hou, B R Ye, Y Q Zhang, X H Xia, J S Wang. A facile, scalable, high stability lithium metal anode. SusMat, 2022, 2(1): 104–112 
														     														     	 
														     															     		https://doi.org/10.1002/sus2.43
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														      F Varenne, J P Alper, F Miserque, C S Bongu, A Boulineau, J F Martin, V Dauvois, A Demarque, M Bouhier, F Boismain, S Franger, N Herlin-Boime, Caër S Le. Ex situ solid electrolyte interphase synthesis via radiolysis of Li-ion battery anode-electrolyte system for improved coulombic efficiency. Sustainable Energy & Fuels, 2018, 2(9): 2100–2108 
														     														     	 
														     															     		https://doi.org/10.1039/C8SE00257F
														     															     															     															 | 
																  
																														
															| 38 | 
															 
														      F Lorandi, T Liu, M Fantin, J Manser, A Al-Obeidi, M Zimmerman, K Matyjaszewski, J F Whitacre. Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. iScience, 2021, 24(6): 102578 
														     														     	 
														     															     		https://doi.org/10.1016/j.isci.2021.102578
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														      X Cao, H Jia, W Xu, J G Zhang. Review—localized high-concentration electrolytes for lithium batteries. Journal of the Electrochemical Society, 2021, 168(1): 010522 
														     														     	 
														     															     		https://doi.org/10.1149/1945-7111/abd60e
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														      C Wu, Y Zhou, X L Zhu, M Z Zhan, H X Yang, J Qian. Research progress on high concentration electrolytes for Li metal batteries. Acta Physico-Chimica Sinica, 2021, 37(2): 2008044 (in Chinese)
														     															 | 
																  
																														
															| 41 | 
															 
														      L Su, X Zhao, M Yi, H Charalambous, H Celio, Y Liu, A Manthiram. Uncovering the solvation structure of LiPF6-based localized saturated electrolytes and their effect on LiNiO2-based lithium-metal batteries. Advanced Energy Materials, 2022, 12(36): 2201911 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202201911
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														      Z Geng, J Z Lu, Q Li, J L Qiu, Y Wang, J Y Peng, J Huang, W J Li, X Q Yu, H Li. Lithium metal batteries capable of stable operation at elevated temperature. Energy Storage Materials, 2019, 23(8): 646–652 
														     														     	 
														     															     		https://doi.org/10.1016/j.ensm.2019.03.005
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														      H T Lu, C P Yang, F F Wang, L Wang, J H Zhou, W Chen, Q H Yang. Interfacial high-concentration electrolyte for stable lithium metal anode: theory, design, and demonstration. Nano Research, 2022, 15(10): 1–8 
														     														     	 
														     															     		https://doi.org/10.1007/s12274-022-5018-7
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														      Y Yamada, M Yaegashi, T Abe, A Yamada. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chemical Communications, 2013, 49(95): 11194–11196 
														     														     	 
														     															     		https://doi.org/10.1039/c3cc46665e
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														      Y Yamada, A Yamada. Review—superconcentrated electrolytes for lithium batteries. Journal of the Electrochemical Society, 2015, 162(14): A2406–A2423 
														     														     	 
														     															     		https://doi.org/10.1149/2.0041514jes
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														      L L Jiang, C Yan, Y X Yao, W Cai, J Q Huang, Q Zhang. Inhibiting solvent Co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angewandte Chemie International Edition, 2021, 60(7): 3402–3406 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202009738
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														      J C Jiang, Q N Fan, H K Liu, S L Chou, K Konstantinov, J Z Wang. Understanding the effects of the low-concentration electrolyte on the performance of high-energy-density Li-S batteries. ACS Applied Materials & Interfaces, 2021, 13(24): 28405–28414 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.1c07883
														     															     															     															 | 
																  
																														
															| 48 | 
															 
														      Y Wang, H Zheng, L Hong, F Jiang, Y Liu, X Feng, R Zhou, Y Sun, H Xiang. Lithium difluoro(bisoxalato) phosphate-based multi-salt low concentration electrolytes for wide-temperature lithium metal batteries: experiments and theoretical calculations. Chemical Engineering Journal, 2022, 445(13): 136802 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2022.136802
														     															     															     															 | 
																  
																														
															| 49 | 
															 
														      L Hong, H Ren, Y Wang, Y Liu, H Xiang. Designing on solvent composition of dual-salt low concentration electrolyte for inhibiting lithium dendrite growth at –20 °C. Electrochimica Acta, 2022, 414(14): 140238 
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2022.140238
														     															     															     															 | 
																  
																														
															| 50 | 
															 
														      H Zheng, H F Xiang, F Y Jiang, Y C Liu, Y Sun, X Liang, Y Z Feng, Y Yu. Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries. Advanced Energy Materials, 2020, 10(30): 2001440 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202001440
														     															     															     															 | 
																  
																														
															| 51 | 
															 
														      J Zhang, Q Li, Y Zeng, Z Tang, D Sun, D Huang, Z Peng, Y Tang, H Wang. Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries. Energy Storage Materials, 2022, 51(8): 660–670 
														     														     	 
														     															     		https://doi.org/10.1016/j.ensm.2022.07.014
														     															     															     															 | 
																  
																														
															| 52 | 
															 
														      S Sayah, A Ghosh, M Baazizi, R Amine, M Dahbi, Y Amine, F Ghamouss, K Amine. How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits?. Nano Energy, 2022, 98(11): 107336 
														     														     	 
														     															     		https://doi.org/10.1016/j.nanoen.2022.107336
														     															     															     															 | 
																  
																														
															| 53 | 
															 
														      J Qian, W A Henderson, W Xu, P Bhattacharya, M Engelhard, O Borodin, J G Zhang. High rate and stable cycling of lithium metal anode. Nature Communications, 2015, 6(1): 6362–6371 
														     														     	 
														     															     		https://doi.org/10.1038/ncomms7362
														     															     															     															 | 
																  
																														
															| 54 | 
															 
														      J Takeyoshi, N Kobori, K Kanamura. Electrochemical evaluation of lithium-metal anode in highly concentrated ethylene carbonate based electrolytes. Electrochemistry, 2020, 88(6): 540–547 
														     														     	 
														     															     		https://doi.org/10.5796/electrochemistry.20-00087
														     															     															     															 | 
																  
																														
															| 55 | 
															 
														      D W McOwen, D M Seo, O Borodin, J Vatamanu, P D Boyle, W A Henderson. Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science, 2014, 7(1): 416–426 
														     														     	 
														     															     		https://doi.org/10.1039/C3EE42351D
														     															     															     															 | 
																  
																														
															| 56 | 
															 
														      Y Maeyoshi, D Ding, M Kubota, H Ueda, K Abe, K Kanamura, H Abe. Long-term stable lithium metal anode in highly concentrated sulfolane-based electrolytes with ultrafine porous polyimide separator. ACS Applied Materials & Interfaces, 2019, 11(29): 25833–25843 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.9b05257
														     															     															     															 | 
																  
																														
															| 57 | 
															 
														      A X Zhou, J K Zhang, M Chen, J M Yue, T S Lv, B H Liu, X Z Zhu, K Qin, G Feng, L M Suo. An electric-field-reinforced hydrophobic cationic sieve lowers the concentration threshold of water-in-salt electrolytes. Advanced Materials, 2022, 34(38): 2207040 
														     														     	 
														     															     		https://doi.org/10.1002/adma.202207040
														     															     															     															 | 
																  
																														
															| 58 | 
															 
														      S Chen, J Zheng, D Mei, K S Han, M H Engelhard, W Zhao, W Xu, J Liu, J G Zhang. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Advanced Materials, 2018, 30(21): 1706102 
														     														     	 
														     															     		https://doi.org/10.1002/adma.201706102
														     															     															     															 | 
																  
																														
															| 59 | 
															 
														      Y M Lu, Q T Sun, Y Liu, P P Yu, Y Y Zhang, J C Lu, H C Huang, H Yang, T Cheng. DFT-ReaxFF hybrid molecular dynamics investigation of the decomposition effects of localized high-concentration electrolyte in lithium metal batteries: LiFSI/DME/TFEO. Physical Chemistry Chemical Physics, 2022, 24(31): 18684–18690 
														     														     	 
														     															     		https://doi.org/10.1039/D2CP02130G
														     															     															     															 | 
																  
																														
															| 60 | 
															 
														      S Angarita-Gomez, P B Balbuena. Ion mobility and solvation complexes at liquid-solid interfaces in dilute, high concentration, and localized high concentration electrolytes. Materials Advances, 2022, 3(15): 6352–6363 
														     														     	 
														     															     		https://doi.org/10.1039/D2MA00541G
														     															     															     															 | 
																  
																														
															| 61 | 
															 
														      X Ren, P Gao, L Zou, S Jiao, X Cao, X Zhang, H Jia, M H Engelhard, B E Matthews, H Wu, H Lee, C Niu, C Wang, B W Arey, J Xiao, J Liu, J G Zhang, W Xu. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(46): 28603–28613 
														     														     	 
														     															     		https://doi.org/10.1073/pnas.2010852117
														     															     															     															 | 
																  
																														
															| 62 | 
															 
														      Y Z Wu, A P Wang, Q Hu, H M Liang, H Xu, L Wang, X M He. Significance of antisolvents on solvation structures enhancing interfacial chemistry in localized high-concentration electrolytes. ACS Central Science, 2022, 8(9): 1290–1298 
														     														     	 
														     															     		https://doi.org/10.1021/acscentsci.2c00791
														     															     															     															 | 
																  
																														
															| 63 | 
															 
														      S J Yang, X Q Xu, X B Cheng, X M Wang, J X Chen, Y Xiao, H Yuan, H Liu, A B Chen, W C Zhu, J Huang, Q Zhang. Columnar lithium metal deposits: the role of non-aqueous electrolyte additive. Acta Physico-Chimica Sinica, 2021, 37(1): 2007058 (in Chinese)
														     															 | 
																  
																														
															| 64 | 
															 
														      X Tang, W C Zhang, L Y Cao. Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Metals, 2022, 41(3): 726–729 
														     														     	 
														     															     		https://doi.org/10.1007/s12598-021-01843-9
														     															     															     															 | 
																  
																														
															| 65 | 
															 
														      J Langdon, A Manthiram. Crossover effects in lithium-metal batteries with a localized high concentration electrolyte and high-nickel cathodes. Advanced Materials, 2022, 34(41): 2205188 
														     														     	 
														     															     		https://doi.org/10.1002/adma.202205188
														     															     															     															 | 
																  
																														
															| 66 | 
															 
														      J Holoubek, Q Yan, H Liu, E J Hopkins, Z Wu, S Yu, J Luo, T A Pascal, Z Chen, P Liu. Oxidative stabilization of dilute ether electrolytes via anion modification. ACS Energy Letters, 2022, 7(2): 675–682 
														     														     	 
														     															     		https://doi.org/10.1021/acsenergylett.1c02723
														     															     															     															 | 
																  
																														
															| 67 | 
															 
														      W W Han, R E A Ardhi, G C Liu. Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Metals, 2022, 41(2): 353–355 
														     														     	 
														     															     		https://doi.org/10.1007/s12598-021-01878-y
														     															     															     															 | 
																  
																														
															| 68 | 
															 
														      X Chen, L Qin, J Sun, S Zhang, D Xiao, Y Wu. Phase transfer-mediated degradation of ether-based localized high-concentration electrolytes in alkali metal batteries. Angewandte Chemie International Edition, 2022, 61(33): 202207018 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202207018
														     															     															     															 | 
																  
																														
															| 69 | 
															 
														      H Liu, X Sun, X B Cheng, C Guo, F Yu, W Z Bao, T Wang, J F Li, Q Zhang. Working principles of lithium metal anode in pouch cells. Advanced Energy Materials, 2022, 12(39): 2202518 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202202518
														     															     															     															 | 
																  
																														
															| 70 | 
															 
														      X Shen, R Zhang, P Shi, X Chen, Q Zhang. How does external pressure shape Li dendrites in Li metal batteries?. Advanced Energy Materials, 2021, 11(10): 2003416 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202003416
														     															     															     															 | 
																  
																														
															| 71 | 
															 
														      J Moon, D O Kim, L Bekaert, M Song, J Chung, D Lee, A Hubin, J Lim. Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. Nature Communications, 2022, 13(1): 4538–4549 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-022-32192-5
														     															     															     															 | 
																  
																														
															| 72 | 
															 
														      S Wang, J Qu, F Wu, K Yan, C Zhang. Cycling performance and kinetic mechanism analysis of a Li metal anode in series-concentrated ether electrolytes. ACS Applied Materials & Interfaces, 2020, 12(7): 8366–8375 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.9b23251
														     															     															     															 | 
																  
																														
															| 73 | 
															 
														      J Fu, X Ji, J Chen, L Chen, X Fan, D Mu, C Wang. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angewandte Chemie International Edition, 2020, 59(49): 22194–22201 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202009575
														     															     															     															 | 
																  
																														
															| 74 | 
															 
														      L P Hou, N Yao, J Xie, P Shi, S Y Sun, C B Jin, C M Chen, Q B Liu, B Q Li, X Q Zhang, Q Zhang. Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angewandte Chemie International Edition, 2022, 61(20): e202201406 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202201406
														     															     															     															 | 
																  
																														
															| 75 | 
															 
														      X Cao, P Gao, X Ren, L Zou, M H Engelhard, B E Matthews, J Hu, C Niu, D Liu, B W Arey, C Wang, J Xiao, J Liu, W Xu, J G Zhang. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020357118 
														     														     	 
														     															     		https://doi.org/10.1073/pnas.2020357118
														     															     															     															 | 
																  
																														
															| 76 | 
															 
														      F Ren, Z Li, J Chen, P Huguet, Z Peng, S Deabate. Solvent-diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Applied Materials & Interfaces, 2022, 14(3): 4211–4219 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.1c21638
														     															     															     															 | 
																  
																														
															| 77 | 
															 
														      S J Yang, N Yao, X Q Xu, F N Jiang, X Chen, H Liu, H Yuan, J Q Huang, X B Cheng. Formation mechanism of the solid electrolyte interphase in different ester electrolytes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(35): 19664–19668 
														     														     	 
														     															     		https://doi.org/10.1039/D1TA02615A
														     															     															     															 | 
																  
																														
															| 78 | 
															 
														      F N Jiang, S J Yang, H Liu, X B Cheng, L Liu, R Xiang, Q Zhang, S Kaskel, J Q Huang. Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat, 2021, 1(4): 506–536 
														     														     	 
														     															     		https://doi.org/10.1002/sus2.37
														     															     															     															 | 
																  
																														
															| 79 | 
															 
														      Y Liu, X Xu, O O Kapitanova, P V Evdokimov, Z Song, A Matic, S Xiong. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Advanced Energy Materials, 2022, 12(9): 2103589 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202103589
														     															     															     															 | 
																  
																														
															| 80 | 
															 
														      Z X Wen, W Q Fang, X Y Wu, Z Y Qin, H Kang, L Chen, N Zhang, X H Liu, G Chen. High-concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate-based electrolyte. Advanced Functional Materials, 2022, 32(35): 2204768 
														     														     	 
														     															     		https://doi.org/10.1002/adfm.202204768
														     															     															     															 | 
																  
																														
															| 81 | 
															 
														      H Wang, L Wu, B Xue, F Wang, Z Luo, X Zhang, L Calvez, P Fan, B Fan. Improving cycling stability of the lithium anode by a spin-coated high-purity Li3PS4 artificial SEI layer. ACS Applied Materials & Interfaces, 2022, 14(13): 15214–15224 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.1c25224
														     															     															     															 | 
																  
																														
															| 82 | 
															 
														      X Q Xu, R Xu, X B Cheng, Y Xiao, H J Peng, H Yuan, F Y Liu. A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2020, 56(17): 391–394
														     															 | 
																  
																														
															| 83 | 
															 
														      L Yu, S R Chen, H Lee, L C Zhang, M H Engelhard, Q Y Li, S H Jiao, J Liu, W Xu, J G Zhang. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Letters, 2018, 3(9): 2059–2067 
														     														     	 
														     															     		https://doi.org/10.1021/acsenergylett.8b00935
														     															     															     															 | 
																  
																														
															| 84 | 
															 
														      Y Zheng, F A Soto, V Ponce, J M Seminario, X Cao, J G Zhang, P B Balbuena. Localized high concentration electrolyte behavior near a lithium-metal anode surface. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(43): 25047–25055 
														     														     	 
														     															     		https://doi.org/10.1039/C9TA08935G
														     															     															     															 | 
																  
																														
															| 85 | 
															 
														      Z Peng, X Cao, P Y Gao, H P Jia, X D Ren, S Roy, Z D Li, Y Zhu, W P Xie, D Y Liu, Q Li, D Wang, W Xu, J G Zhang. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Advanced Functional Materials, 2020, 30(24): 2001285 
														     														     	 
														     															     		https://doi.org/10.1002/adfm.202001285
														     															     															     															 | 
																  
																														
															| 86 | 
															 
														      D J Yoo, S Yang, K J Kim, J W Choi. Fluorinated aromatic diluent for high-performance lithium metal batteries. Angewandte Chemie International Edition, 2020, 59(35): 14869–14876 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202003663
														     															     															     															 | 
																  
																														
															| 87 | 
															 
														      T Li, Y Li, Y L Sun, Z F Qian, R H Wang. New insights on the good compatibility of ether-based localized high-concentration electrolyte with lithium metal. ACS Materials Letters, 2021, 3(6): 838–844 
														     														     	 
														     															     		https://doi.org/10.1021/acsmaterialslett.1c00276
														     															     															     															 | 
																  
																														
															| 88 | 
															 
														      X S Xiong, Q Zhou, Y S Zhu, Y H Chen, L J Fu, L L Liu, N F Yu, Y P Wu, T van Ree. In pursuit of a dendrite-free electrolyte/electrode interface on lithium metal anodes: a minireview. Energy & Fuels, 2020, 34(9): 10503–10512 
														     														     	 
														     															     		https://doi.org/10.1021/acs.energyfuels.0c02211
														     															     															     															 | 
																  
																														
															| 89 | 
															 
														      S Perez Beltran, X Cao, J G Zhang, P Z El-Khoury, P B Balbuena. Influence of diluent concentration in localized high concentration electrolytes: elucidation of hidden diluent-Li+ interactions and Li+ transport mechanism. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(32): 17459–17473 
														     														     	 
														     															     		https://doi.org/10.1039/D1TA04737J
														     															     															     															 | 
																  
																														
															| 90 | 
															 
														      Q Wu, X Tang, Y Qian, J D Duan, R Wang, J H Teng, J Li. Enhancing the cycling stability for lithium-metal batteries by localized high-concentration electrolytes with 2-fluoropyridine additive. ACS Applied Energy Materials, 2021, 4(9): 10234–10243 
														     														     	 
														     															     		https://doi.org/10.1021/acsaem.1c02115
														     															     															     															 | 
																  
																														
															| 91 | 
															 
														      S Zhu, J Chen. Dual strategy with Li-ion solvation and solid electrolyte interphase for high Coulombic efficiency of lithium metal anode. Energy Storage Materials, 2022, 44(8): 48–56 
														     														     	 
														     															     		https://doi.org/10.1016/j.ensm.2021.10.007
														     															     															     															 | 
																  
																														
															| 92 | 
															 
														      T D Pham, A Bin Faheem, K K Lee. Design of a LiF-rich solid electrolyte interphase layer through highly concentrated LiFSI-THF electrolyte for stable lithium metal batteries. Small, 2021, 17(46): 2103375 
														     														     	 
														     															     		https://doi.org/10.1002/smll.202103375
														     															     															     															 | 
																  
																														
															| 93 | 
															 
														      Y Maeyoshi, K Yoshii, M Shikano, H Sakaebe. Improving cycling stability of vanadium sulfide (VS4) as a Li battery cathode material using a localized high-concentration carbonate-based electrolyte. ACS Applied Energy Materials, 2021, 4(12): 13627–13635 
														     														     	 
														     															     		https://doi.org/10.1021/acsaem.1c02312
														     															     															     															 | 
																  
																														
															| 94 | 
															 
														      Y Maeyoshi, K Yoshii, H Sakaebe. Stable lithium metal plating/stripping in a localized high-concentration cyclic carbonate-based electrolyte. Electrochemistry, 2022, 90(4): 047001–047001 
														     														     	 
														     															     		https://doi.org/10.5796/electrochemistry.22-00014
														     															     															     															 | 
																  
																														
															| 95 | 
															 
														      P Shi, L P Hou, C B Jin, Y Xiao, Y X Yao, J Xie, B Q Li, X Q Zhang, Q Zhang. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. Journal of the American Chemical Society, 2022, 144(1): 212–218 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.1c08606
														     															     															     															 | 
																  
																														
															| 96 | 
															 
														      R Zhang, X Shen, Y T Zhang, X L Zhong, H T Ju, T X Huang, X Chen, J D Zhang, J Q Huang. Dead lithium formation in lithium metal batteries: a phase field model. Journal of Energy Chemistry, 2022, 71(8): 29–35 
														     														     	 
														     															     		https://doi.org/10.1016/j.jechem.2021.12.020
														     															     															     															 | 
																  
																														
															| 97 | 
															 
														      Y Liu, Q T Sun, P P Yu, B Y Ma, H Yang, J Y Zhang, M Xie, T Cheng. In situ formation of circular and branched oligomers in a localized high concentration electrolyte at the lithium-metal solid electrolyte interphase: a hybrid ab initio and reactive molecular dynamics study. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(2): 632–639 
														     														     	 
														     															     		https://doi.org/10.1039/D1TA08182A
														     															     															     															 | 
																  
																														
															| 98 | 
															 
														      M C Liu, X Li, B Y Zhai, Z Q Zeng, W Hu, S Lei, H Zhang, S J Cheng, J Xie. Diluted high-concentration electrolyte based on phosphate for high-performance lithium-metal batteries. Batteries & Supercaps, 2022, 5(5): e202100407 
														     														     	 
														     															     		https://doi.org/10.1002/batt.202100407
														     															     															     															 | 
																  
																														
															| 99 | 
															 
														      G Z Zhang, X L Deng, J W Li, J Wang, G L Shi, Y Yang, J Chang, K Yu, S S Chi, H Wang, P Wang, Z Liu, Y Gao, Z Zheng, Y Deng, C Wang. A bifunctional fluorinated ether co-solvent for dendrite-free and long-term lithium metal batteries. Nano Energy, 2022, 95(5): 107014–107025 
														     														     	 
														     															     		https://doi.org/10.1016/j.nanoen.2022.107014
														     															     															     															 | 
																  
																														
															| 100 | 
															 
														      C Y Chang, Y Yao, R R Li, Z F Cong, L W Li, Z H Guo, W G Hu, X Pu. Stable lithium metal batteries enabled by localized high-concentration electrolytes with sevoflurane as a diluent. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(16): 9001–9009 
														     														     	 
														     															     		https://doi.org/10.1039/D1TA10618J
														     															     															     															 | 
																  
																														
															| 101 | 
															 
														      C N Zhu, C C Sun, R H Li, S T Weng, L W Fan, X F Wang, L X Chen, M Noked, X L Fan. Anion-diluent pairing for stable high-energy Li metal batteries. ACS Energy Letters, 2022, 7(4): 1338–1347 
														     														     	 
														     															     		https://doi.org/10.1021/acsenergylett.2c00232
														     															     															     															 | 
																  
																														
															| 102 | 
															 
														      E C Huangzhang, X Y Zeng, T X Yang, H Y Liu, C H Sun, Y C Fan, H L Hu, X Y Zhao, X X Zuo, J M Nan. A localized high-concentration electrolyte with lithium bis(fluorosulfonyl) imide (LiFSI) salt and F-containing cosolvents to enhance the performance of Li||LiNi0.8Co0.1Mn0.1O2 lithium metal batteries. Chemical Engineering Journal, 2022, 439(24): 135534 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2022.135534
														     															     															     															 | 
																  
																														
															| 103 | 
															 
														      A L Chen, N Shang, Y Ouyang, L Mo, C Y Zhou, W W Tjiu, F Lai, Y E Miao, T Liu. Electroactive polymeric nanofibrous composite to drive in situ construction of lithiophilic SEI for stable lithium metal anodes. eScience, 2022, 2(2): 192–200
														     															 | 
																  
																														
															| 104 | 
															 
														      Y C Liu, L Hong, R Jiang, Y D Wang, S V Patel, X Y Feng, H F Xiang. Multifunctional electrolyte additive stabilizes electrode-electrolyte interface layers for high-voltage lithium metal batteries. ACS Applied Materials & Interfaces, 2021, 13(48): 57430–57441 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.1c18783
														     															     															     															 | 
																  
																														
															| 105 | 
															 
														      F W Bai, Y Li, Z Y Chen, Y C Zhou, C Z Li, T Li. Targeted stabilization of solid electrolyte interphase and cathode electrolyte interphase in high-voltage lithium-metal batteries by an asymmetric sustained-release strategy. Journal of Power Sources, 2022, 548(32): 232045 
														     														     	 
														     															     		https://doi.org/10.1016/j.jpowsour.2022.232045
														     															     															     															 | 
																  
																														
															| 106 | 
															 
														      M M Fang, J E Chen, B Y Chen, J H Wang. Salt-solvent synchro-constructed robust electrolyte-electrode interphase for high-voltage lithium metal batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(37): 19903–19913 
														     														     	 
														     															     		https://doi.org/10.1039/D2TA02267B
														     															     															     															 | 
																  
																														
															| 107 | 
															 
														      M Xia, M Lin, G Liu, Y Cheng, T Jiao, A Fu, Y Yang, M Wang, J Zheng. Stable cycling and fast charging of high-voltage lithium metal batteries enabled by functional solvation chemistry. Chemical Engineering Journal, 2022, 442(16): 136351 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2022.136351
														     															     															     															 | 
																  
																														
															| 108 | 
															 
														      J F Qian, B D Adams, J M Zheng, W Xu, W A Henderson, J Wang, M E Bowden, S C Xu, J Z Hu, J G Zhang. Anode-free rechargeable lithium metal batteries. Advanced Functional Materials, 2016, 26(39): 7094–7102 
														     														     	 
														     															     		https://doi.org/10.1002/adfm.201602353
														     															     															     															 | 
																  
																														
															| 109 | 
															 
														      Y Wang, L Xing, W Li, D Bedrov. Why do sulfone-based electrolytes show stability at high voltages? Insight from density functional theory. Journal of Physical Chemistry Letters, 2013, 4(22): 3992–3999 
														     														     	 
														     															     		https://doi.org/10.1021/jz401726p
														     															     															     															 | 
																  
																														
															| 110 | 
															 
														      X D Ren, S R Chen, H Lee, D H Mei, M H Engelhard, S D Burton, W G Zhao, J M Zheng, Q Y Li, M S Ding, M Schroeder, J Alvarado, K Xu, Y S Meng, J Liu, J G Zhang, W Xu. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem, 2018, 4(8): 1877–1892 
														     														     	 
														     															     		https://doi.org/10.1016/j.chempr.2018.05.002
														     															     															     															 | 
																  
																														
															| 111 | 
															 
														      H Liu, T Li, X Q Xu, P Shi, X Q Zhang, R Xu, X B Cheng, J Q Huang. Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries. Chinese Journal of Chemical Engineering, 2021, 37(9): 152–158 
														     														     	 
														     															     		https://doi.org/10.1016/j.cjche.2021.03.021
														     															     															     															 | 
																  
																														
															| 112 | 
															 
														      V A Afrifah, J M Kim, Y M Lee, I Phiri, Y G Lee, S Y Ryou. Synergistic effects between dual salts and Li nitrate additive in ether electrolytes for Li-metal anode protection in Li secondary batteries. Journal of Power Sources, 2022, 548(32): 232017 
														     														     	 
														     															     		https://doi.org/10.1016/j.jpowsour.2022.232017
														     															     															     															 | 
																  
																														
															| 113 | 
															 
														      T Zhou, Y Zhao, M El Kazzi, J W Choi, A Coskun. Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries. Angewandte Chemie International Edition, 2022, 61(19): e202115884 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202115884
														     															     															     															 | 
																  
																														
															| 114 | 
															 
														      X D Ren, L F Zou, X Cao, M H Engelhard, W Liu, S D Burton, H Lee, C J Niu, B E Matthews, Z H Zhu, C Wang, B W Arey, J Xiao, J Liu, J G Zhang, W Xu. Enabling high-voltage lithium-metal batteries under practical conditions. Joule, 2019, 3(7): 1662–1676 
														     														     	 
														     															     		https://doi.org/10.1016/j.joule.2019.05.006
														     															     															     															 | 
																  
																														
															| 115 | 
															 
														      S Lin, H Hua, Z Li, J Zhao. Functional localized high-concentration ether-based electrolyte for stabilizing high-voltage lithium-metal battery. ACS Applied Materials & Interfaces, 2020, 12(30): 33710–33718 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.0c07904
														     															     															     															 | 
																  
																														
															| 116 | 
															 
														      W Wang, J Zhang, Q Yang, S Wang, W Wang, B Li. Stable cycling of high-voltage lithium-metal batteries enabled by high-concentration FEC-based electrolyte. ACS Applied Materials & Interfaces, 2020, 12(20): 22901–22909 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.0c03952
														     															     															     															 | 
																  
																														
															| 117 | 
															 
														      H F Xiang, P C Shi, P Bhattacharya, X L Chen, D H Mei, M E Bowden, J M Zheng, J G Zhang, W Xu. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. Journal of Power Sources, 2016, 318(18): 170–177 
														     														     	 
														     															     		https://doi.org/10.1016/j.jpowsour.2016.04.017
														     															     															     															 | 
																  
																														
															| 118 | 
															 
														      X D Peng, Y K Lin, Y Wang, Y J Li, T S Zhao. A lightweight localized high-concentration ether electrolyte for high-voltage Li-ion and Li-metal batteries. Nano Energy, 2022, 96(11): 107102 
														     														     	 
														     															     		https://doi.org/10.1016/j.nanoen.2022.107102
														     															     															     															 | 
																  
																														
															| 119 | 
															 
														     H MoonS J ChoD E YuS Y Lee. Nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame. Energy & Environmental Materials, 2022
														     															 | 
																  
																														
															| 120 | 
															 
														      T D Pham, A Bin Faheem, J Kim, H M Oh, K K Lee. Practical high-voltage lithium metal batteries enabled by tuning the solvation structure in weakly solvating electrolyte. Small, 2022, 18(14): 2107492 
														     														     	 
														     															     		https://doi.org/10.1002/smll.202107492
														     															     															     															 | 
																  
																														
															| 121 | 
															 
														      T D Pham, K K Lee. Simultaneous stabilization of the solid/cathode electrolyte interface in lithium metal batteries by a new weakly solvating electrolyte. Small, 2021, 17(20): 2100133 
														     														     	 
														     															     		https://doi.org/10.1002/smll.202100133
														     															     															     															 | 
																  
																														
															| 122 | 
															 
														      H Xue, W He, J Li, D Zhang, X Wang, S Zhou, W Yang. Stable dendrite-free high-voltage lithium metal batteries enabled by localized high concentration fluoroethylene carbonate based electrolytes. ACS Applied Energy Materials, 2022, 5(10): 12553–12560 
														     														     	 
														     															     		https://doi.org/10.1021/acsaem.2c02194
														     															     															     															 | 
																  
																														
															| 123 | 
															 
														      X Q Xu, X B Cheng, F N Jiang, S J Yang, D S Ren, P Shi, H J Hsu, H Yuan, J Q Huang, M G Ouyang, Q Zhang. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat, 2022, 2(4): 435–444 
														     														     	 
														     															     		https://doi.org/10.1002/sus2.74
														     															     															     															 | 
																  
																														
															| 124 | 
															 
														      F N Jiang, S J Yang, X B Cheng, P Shi, J F Ding, X Chen, H Yuan, L Liu, J Q Huang, Q Zhang. Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries. Journal of Energy Chemistry, 2022, 72(10): 158–165 
														     														     	 
														     															     		https://doi.org/10.1016/j.jechem.2022.05.005
														     															     															     															 | 
																  
																														
															| 125 | 
															 
														      S J Yang, N Yao, F N Jiang, J Xie, S Y Sun, X Chen, H Yuan, X B Cheng, J Q Huang, Q Zhang. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angewandte Chemie International Edition, 2022, 61(51): e20221454
														     															 | 
																  
																														
															| 126 | 
															 
														      T Ma, Y Ni, Q Wang, J Xiao, Z Huang, Z Tao, J Chen. Lithium dendrites inhibition by regulating electrodeposition kinetics. Energy Storage Materials, 2022, 52(9): 69–75 
														     														     	 
														     															     		https://doi.org/10.1016/j.ensm.2022.07.038
														     															     															     															 | 
																  
																														
															| 127 | 
															 
														      Z Q Zeng, V Murugesan, K S Han, X Y Jiang, Y L Cao, L F Xiao, X P Ai, H X Yang, J G Zhang, M L Sushko, J Liu. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3(8): 674–681 
														     														     	 
														     															     		https://doi.org/10.1038/s41560-018-0196-y
														     															     															     															 | 
																  
																														
															| 128 | 
															 
														      X Fan, L Chen, O Borodin, X Ji, J Chen, S Hou, T Deng, J Zheng, C Yang, S C Liou, K Amine, K Xu, C Wang. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13(8): 715–722 
														     														     	 
														     															     		https://doi.org/10.1038/s41565-018-0183-2
														     															     															     															 | 
																  
																														
															| 129 | 
															 
														      X L Fan, X Ji, L Chen, J Chen, T Deng, F D Han, J Yue, N Piao, R X Wang, X Q Zhou, X Xiao, L Chen, C Wang. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy, 2019, 4(10): 882–890 
														     														     	 
														     															     		https://doi.org/10.1038/s41560-019-0474-3
														     															     															     															 | 
																  
																														
															| 130 | 
															 
														      H R Zhang, L Huang, H T Xu, X H Zhang, Z Chen, C H Gao, C L Lu, Z Liu, M F Jiang, G L Cui. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience, 2022, 2(2): 201–208
														     															 | 
																  
																														
															| 131 | 
															 
														      P Shi, H Zheng, X Liang, Y Sun, S Cheng, C Chen, H Xiang. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries. Chemical Communications, 2018, 54(35): 4453–4456 
														     														     	 
														     															     		https://doi.org/10.1039/C8CC00994E
														     															     															     															 | 
																  
																														
															| 132 | 
															 
														      S R Chen, J M Zheng, L Yu, X D Ren, M H Engelhard, C J Niu, H Lee, W Xu, J Xiao, J Liu, J G Zhang. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule, 2018, 2(8): 1548–1558 
														     														     	 
														     															     		https://doi.org/10.1016/j.joule.2018.05.002
														     															     															     															 | 
																  
																														
															| 133 | 
															 
														      J X Hou, L G Lu, L Wang, A Ohma, D S Ren, X N Feng, Y Li, Y L Li, I Ootani, X B Han, W Ren, X He, Y Nitta, M Ouyang. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications, 2020, 11(1): 5100 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-020-18868-w
														     															     															     															 | 
																  
																														
															| 134 | 
															 
														     M M JiaC ZhangY W GuoL S PengX Y ZhangW W QianL ZhangS J Zhang. Advanced nonflammable localized high-concentration electrolyte for high energy density lithium battery. Energy & Environmental Materials, 2022, in press
														     															 | 
																  
																														
															| 135 | 
															 
														      M C Liu, Z Q Zeng, W Zhong, Z C Ge, L Q Li, S Lei, Q Wu, H Zhang, S J Cheng, J Xie. Non-flammable fluorobenzene-diluted highly concentrated electrolytes enable high-performance Li-metal and Li-ion batteries. Journal of Colloid and Interface Science, 2022, 619(15): 399–406 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2022.03.133
														     															     															     															 | 
																  
																														
															| 136 | 
															 
														      Z Xu, K Deng, S Zhou, Z Liu, X Guan, D Mo. Nonflammable localized high-concentration electrolytes with long-term cycling stability for high-performance Li metal batteries. ACS Applied Materials & Interfaces, 2022, 14(43): 48694–48704 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.2c13922
														     															     															     															 | 
																  
																														
															| 137 | 
															 
														      Q Wu, Y Qan, X Tang, J H Teng, H Y Ding, H M Zhao, J Li. Stable cycling of lithium-metal batteries in hydrofluoroether-based localized high-concentration electrolytes with 2-fluoropyridine additive. ACS Applied Energy Materials, 2022, 5(5): 5742–5749 
														     														     	 
														     															     		https://doi.org/10.1021/acsaem.2c00037
														     															     															     															 | 
																  
																														
															| 138 | 
															 
														      S J Cho, D E Yu, T P Pollard, H Moon, M Jang, O Borodin, S Y Lee. Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes. iScience, 2020, 23(2): 100844 
														     														     	 
														     															     		https://doi.org/10.1016/j.isci.2020.100844
														     															     															     															 | 
																  
																														
															| 139 | 
															 
														      Z C Wang, F R Zhang, Y Y Sun, L Zheng, Y B Shen, D S Fu, W F Li, A R Pan, L Wang, J J Xu, J Hu, X Wu. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Advanced Energy Materials, 2021, 11(17): 2003752 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202003752
														     															     															     															 | 
																  
																														
															| 140 | 
															 
														      H Sun, G Zhu, Y Zhu, M C Lin, H Chen, Y Y Li, W H Hung, B Zhou, X Wang, Y Bai, M Gu, C L Huang, H C Tai, X Xu, M Angell, J J Shyue, H Dai. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Advanced Materials, 2020, 32(26): 2001741 
														     														     	 
														     															     		https://doi.org/10.1002/adma.202001741
														     															     															     															 | 
																  
																														
															| 141 | 
															 
														      Q K Zhang, X Q Zhang, L P Hou, S Y Sun, Y X Zhan, J L Liang, F S Zhang, X N Feng, B Q Li, J Q Huang. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Advanced Energy Materials, 2022, 12(24): 2200139 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202200139
														     															     															     															 | 
																  
																														
															| 142 | 
															 
														      C Zhang, S C Gu, D F Zhang, J B Ma, H Zheng, M Y Zheng, R T Lv, K Yu, J Q Wu, X M Wang, Q H Yang, F Kang, W Lv. Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery. Energy Storage Materials, 2022, 52(8): 355–364 
														     														     	 
														     															     		https://doi.org/10.1016/j.ensm.2022.08.018
														     															     															     															 | 
																  
																														
															| 143 | 
															 
														      Y Liu, W Li, L Cheng, Q Liu, J Wei, Y Huang. Anti-freezing strategies of electrolyte and their application in electrochemical energy devices. Chemical Record, 2022, 22(10): e202200068 
														     														     	 
														     															     		https://doi.org/10.1002/tcr.202200068
														     															     															     															 | 
																  
																														
															| 144 | 
															 
														      H Liu, X B Cheng, C Yan, Z H Li, C Z Zhao, R Xiang, H Yuan, J Q Huang, E Kuzmina, E Karaseva, V Kolosnitsyn, Q Zhang. A perspective on energy chemistry of low-temperature lithium metal batteries. iEnergy, 2022, 1(1): 72–81
														     															 | 
																  
																														
															| 145 | 
															 
														      Q Li, S Jiao, L Luo, M S Ding, J Zheng, S S Cartmell, C M Wang, K Xu, J G Zhang, W Xu. Wide-temperature electrolytes for lithium-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(22): 18826–18835 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.7b04099
														     															     															     															 | 
																  
																														
															| 146 | 
															 
														      X Dong, Y Lin, P Li, Y Ma, J Huang, D Bin, Y Wang, Y Qi, Y Xia. High-energy rechargeable metallic lithium battery at –70 °C enabled by a cosolvent electrolyte. Angewandte Chemie International Edition, 2019, 58(17): 5623–5627 
														     														     	 
														     															     		https://doi.org/10.1002/anie.201900266
														     															     															     															 | 
																  
																														
															| 147 | 
															 
														      S S Lin, H M Hua, P B Lai, J B Zhao. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Advanced Energy Materials, 2021, 11(36): 2101775 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202101775
														     															     															     															 | 
																  
																														
															| 148 | 
															 
														      K Park, Y Jo, B Koo, H Lee, H Lee. Wide temperature cycling of Li-metal batteries with hydrofluoroether dilution of high-concentration electrolyte. Chemical Engineering Journal, 2022, 427(27): 131889–131900 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2021.131889
														     															     															     															 | 
																  
																														
															| 149 | 
															 
														      S Kuang, H Hua, P Lai, J Li, X Deng, Y Yang, J Zhao. Anion-containing solvation structure reconfiguration enables wide-temperature electrolyte for high-energy-density lithium-metal batteries. ACS Applied Materials & Interfaces, 2022, 14(16): 19056–19066 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.2c02221
														     															     															     															 | 
																  
																														
															| 150 | 
															 
														      S J Xu, Z H Sun, C G Sun, F Li, K Chen, Z H Zhang, G J Hou, H M Cheng, F Li. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Advanced Functional Materials, 2020, 30(51): 2007172
														     															 | 
																  
																														
															| 151 | 
															 
														      J Zheng, C Sun, Z Wang, S Liu, B An, Z Sun, F Li. Double ionic-electronic transfer interface layers for all-solid-state lithium batteries. Angewandte Chemie International Edition, 2021, 60(34): 18448–18453
														     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |