Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (10) : 1533-1543    https://doi.org/10.1007/s11705-023-2330-z
RESEARCH ARTICLE
Precursor-driven structural tailoring of iron oxychloride for enhanced heterogeneous Fenton activity
Shengshuo Xu1, Zhenying Lu1, Jinling Wang1,2, Guangtuan Huang1, Hualin Wang1,2, Xuejing Yang1,2()
1. National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China
2. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(3347 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Iron oxychloride (FeOCl) is a unique layered material with tunable electronic properties. The conventional synthetic route of chemical vapor transition involves a thermodynamics-driven gas–solid interfacial reaction which often generates macroscopic crystals with stable facets. In this study, through analyzing the effects of the synthetic parameters on the FeOCl synthesis, we discovered the dominant contribution of the α-Fe2O3 precursors on the chemical property of the FeOCl product, and subsequently developed a highly-controllable synthetic route of tailoring the FeOCl structures into small sizes and exposed high-energy facets via a facile and scalable mechanical-chemical approach. The synthesized products could be systematically tuned by the ball-milling conditions of the α-Fe2O3 precursors. With increased milling time, the FeOCl crystallites demonstrated reduced sizes and more exposed (110) facets. Intriguingly, these small-sized FeOCl catalysts exhibited much faster Fenton-like kinetics than the pristine macroscopic FeOCl materials. Specifically, FeOCl catalysts with a 12-hour milling time showed nearly 39 times higher efficiency toward phenol degradation than the pristine FeOCl. The structure-reactivity relationship was further elucidated using the combinatory analysis via density functional theory calculation, electron paramagnetic resonance and radical quenching probe experiments. This work provides a rationale for tailoring the surface structures of FeOCl crystallites for potential applications in environmental catalysis.

Keywords FeOCl      mechanical activation      heterogeneous Fenton reaction      ball milling     
Corresponding Author(s): Xuejing Yang   
Just Accepted Date: 26 May 2023   Online First Date: 31 July 2023    Issue Date: 07 October 2023
 Cite this article:   
Shengshuo Xu,Zhenying Lu,Jinling Wang, et al. Precursor-driven structural tailoring of iron oxychloride for enhanced heterogeneous Fenton activity[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1533-1543.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2330-z
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I10/1533
Fig.1  The particle size information and morphology structure of different α-Fe2O3. (a) Characterization of α-Fe2O3 particle size at a different grinding time; (b) XRD pattern of α-Fe2O3 with different grinding times and Williamson–Hall curve of α-Fe2O3 at different milling times (βf represents the integral breadths; d is the interplanar spacing); (c) the FTIR shift of Fe–O vibration with different milling time; (d) the path diagram of the structural evolution of α-Fe2O3 particles by ball-milling, showing structural disordering with increasing defects and lattice strains; (e) gaseous form of ferric chloride dimer and the attachment of gaseous ferric chloride onto the surface of hematite to form FeOCl monomers.
Fig.2  Structure and morphology of FeOCl. Schematic diagram of the exposed crystal surface, morphology, configuration, selected area electron diffraction and the TEM image of (a) FeOCl-P and (b) FeOCl-12 h.
Fig.3  (a) Activity of different FeOCl for degradation of phenol and the number of pollutants degraded per unit specific surface area (q/SBET); (b) EPR signals obtained in water (pH = 4) containing 180 mmol·L–1 DMPO + 500 mg·L–1 FeOCl + 30 mmol·L–1 H2O2; (c) degradation experiment of pCBA as a hydroxyl radical probe; (d) effects of radical scavengers on phenol degradation and the stoichiometric efficiency of H2O2 as a function of reaction time over different FeOCl (Reaction conditions: phenol concentration of 50 mg·L?1; catalyst dosage of 500 mg·L?1; pCBA concentration of 0.06 mmol·L–1; H2O2 amount of 30 mmol·L–1; pH = 4.0 (4 mmol·L–1 HAc-NaAc); 25 °C).
Fig.4  The calculation model of H2O2 adsorbed on different crystalline facets of FeOCl: (a) (010), (b) (101) and (c) (110) facet; (d) comparison of adsorption energy and bond length changes after H2O2 adsorption over FeOCl in different H2O2 steric hindrance.
Fig.5  Proposed mechanism for the pollutants oxidative catalyzed by FeOCl-12 h.
1 M Lind. Refinement of the crystal structure of iron oxychloride. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1970, 26(8): 1058–1062
https://doi.org/10.1107/S0567740870003618
2 X J Yang, X M Xu, J Xu, Y F Han. Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. Journal of the American Chemical Society, 2013, 135(43): 16058–16061
https://doi.org/10.1021/ja409130c
3 M Sun, I Zucker, D M Davenport, X C Zhou, J H Qu, M Elimelech. Reactive, self-cleaning ultrafiltration membrane functionalized with iron oxychloride nanocatalysts. Environmental Science & Technology, 2018, 52(15): 8674–8683
https://doi.org/10.1021/acs.est.8b01916
4 M Sun, C H Chu, F L Geng, X L Lu, J H Qu, J Crittenden, M Elimelech, J H Kim. Reinventing Fenton chemistry: iron oxychloride nanosheet for pH-insensitive H2O2 activation. Environmental Science & Technology Letters, 2018, 5(3): 186–191
https://doi.org/10.1021/acs.estlett.8b00065
5 P Zhou, W Ren, G Nie, X J Li, X G Duan, Y L Zhang, S B Wang. Fast and long-lasting iron(III) reduction by boron toward green and accelerated Fenton chemistry. Angewandte Chemie International Edition, 2020, 59(38): 16517–16526
https://doi.org/10.1002/anie.202007046
6 Y Xiong, H C Li, C W Liu, L R Zheng, C Liu, J O Wang, S J Liu, Y H Han, L Gu, J S Qian, D Wang. Single-atom Fe catalysts for Fenton-like reactions: roles of different N species. Advanced Materials, 2022, 34(17): 2110653
https://doi.org/10.1002/adma.202110653
7 X P Huang, Y Chen, E Walter, M R Zong, Y Wang, X Zhang, O Qafoku, Z M Wang, K M Rosso. Facet-specific photocatalytic degradation of organics by heterogeneous Fenton chemistry on hematite nanoparticles. Environmental Science & Technology, 2019, 53(17): 10197–10207
https://doi.org/10.1021/acs.est.9b02946
8 M Y Liu, Y Xu, Y J Zhao, Z Wang, D Y Shi. Hydroxyl radical-involved cancer therapy via Fenton reactions. Frontiers of Chemical Science and Engineering, 2022, 16(3): 345–363
https://doi.org/10.1007/s11705-021-2077-3
9 Y P Zhu, R L Zhu, Y F Xi, J X Zhu, G Q Zhu, H P He. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review. Applied Catalysis B: Environmental, 2019, 255: 117739
https://doi.org/10.1016/j.apcatb.2019.05.041
10 X F Yang, A Q Wang, B T Qiao, J Li, J Y Liu, T Zhang. Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8): 1740–1748
https://doi.org/10.1021/ar300361m
11 M E Pieczko, J J Breen. Atomic force microscopy studies of iron oxychloride. Langmuir, 1995, 11(4): 1412–1414
https://doi.org/10.1021/la00004a058
12 S R Hwang, W H Li, K C Lee, J W Lynn, C G Wu. Spiral magnetic structure of Fe in van der Waals gapped FeOCl and polyaniline-intercalated FeOCl. Physical Review B: Condensed Matter, 2000, 62(21): 14157–14163
https://doi.org/10.1103/PhysRevB.62.14157
13 S S Li, Y C Lin, J H Hong, B Gao, H E Lim, X Yang, S Liu, Y Tateyama, K Tsukagoshi, Y Sakuma, K Suenaga, T Taniguchi. Mixed-salt enhanced chemical vapor deposition of two-dimensional transition metal dichalcogenides. Chemistry of Materials, 2021, 33(18): 7301–7308
https://doi.org/10.1021/acs.chemmater.1c01652
14 D W Wang, S E III Gilliland, X B Yi, K Logan, D R Heitger, H R Lucas, W N Wang. Iron mesh-based metal organic framework filter for efficient arsenic removal. Environmental Science & Technology, 2018, 52(7): 4275–4284
https://doi.org/10.1021/acs.est.7b06212
15 A L T Pham, C Lee, F M Doyle, D L Sedlak. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environmental Science & Technology, 2009, 43(23): 8930–8935
https://doi.org/10.1021/es902296k
16 J C Espinosa, C Catala, S Navalon, B Ferrer, M Alvaro, H Garcia. Iron oxide nanoparticles supported on diamond nanoparticles as efficient and stable catalyst for the visible light assisted Fenton reaction. Applied Catalysis B: Environmental, 2018, 226: 242–251
https://doi.org/10.1016/j.apcatb.2017.12.060
17 Z X Zhu, Y Chen, Y Gu, F Wu, W Y Lu, T F Xu, W X Chen. Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron(II) phthalocyanine nanofibers: intermediates and pathway. Water Research, 2016, 93: 296–305
https://doi.org/10.1016/j.watres.2016.02.035
18 J Zou, J Ma, L W Chen, X C Li, Y H Guan, P C Xie, C Pan. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine. Environmental Science & Technology, 2013, 47(20): 11685–11691
https://doi.org/10.1021/es4019145
19 Y J Yao, Y M Cai, G D Wu, F Y Wei, X Y Li, H Chen, S B Wang. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3−xO4) for Fenton-like reaction in water. Journal of Hazardous Materials, 2015, 296: 128–137
https://doi.org/10.1016/j.jhazmat.2015.04.014
20 F Yuan, C Hu, X X Hu, D B Wei, Y Chen, J H Qu. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials, 2011, 185(2): 1256–1263
https://doi.org/10.1016/j.jhazmat.2010.10.040
21 G Kresse, J Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186
https://doi.org/10.1103/PhysRevB.54.11169
22 J P Perdew, A Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B: Condensed Matter, 1981, 23(10): 5048–5079
https://doi.org/10.1103/PhysRevB.23.5048
23 J Klimeš, D R Bowler, A Michaelides. Chemical accuracy for the van der Waals density functional. Journal of Physics Condensed Matter, 2009, 22(2): 022201
https://doi.org/10.1088/0953-8984/22/2/022201
24 J Klimeš, D R Bowler, A Michaelides. Van der Waals density functionals applied to solids. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(19): 195131
https://doi.org/10.1103/PhysRevB.83.195131
25 H J Monkhorst, J D Pack. Special points for Brillouin-zone integrations. Physical Review B: Solid State, 1976, 13(12): 5188–5192
https://doi.org/10.1103/PhysRevB.13.5188
26 J Zhang, X L Jiao, Y G Xia, F F Liu, Y P Pang, X F Zhao, D R Chen. Enhanced catalytic activity in liquid-exfoliated FeOCl nanosheets as a Fenton-like catalyst. Chemistry, 2016, 22(27): 9321–9329
https://doi.org/10.1002/chem.201600172
27 P Pourghahramani, E Forssberg. Microstructure characterization of mechanically activated hematite using XRD line broadening. International Journal of Mineral Processing, 2006, 79(2): 106–119
https://doi.org/10.1016/j.minpro.2006.02.001
28 G K Williamson, W H Hall. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1953, 1(1): 22–31
https://doi.org/10.1016/0001-6160(53)90006-6
29 L Lu, L P Li, X J Wang, G S Li. Understanding of the finite size effects on lattice vibrations and electronic transitions of nano α-Fe2O3. Journal of Physical Chemistry B, 2005, 109(36): 17151–17156
https://doi.org/10.1021/jp052780+
30 R Arbain, M Othman, S Palaniandy. Preparation of iron oxide nanoparticles by mechanical milling. Minerals Engineering, 2011, 24(1): 1–9
https://doi.org/10.1016/j.mineng.2010.08.025
31 Y Zeng, P F Gu, Z J Zhao, B Zhang, Z C Lin, Y X Peng, W Li, W T Zhao, Y C Leng, P H Tan, T Yang, Z Zhang, Y Song, J Yang, Y Ye, K Tian, Y Hou. 2D FeOCl: a highly in-plane anisotropic antiferromagnetic semiconductor synthesized via temperature-oscillation chemical vapor transport. Advanced Materials, 2022, 34(14): 2108847
https://doi.org/10.1002/adma.202108847
32 L Fernandez-Izquierdo, E L Spera, B Durán, R E Marotti, E A Dalchiele, Rio R Del, S A Hevia. CVD growth of hematite thin films for photoelectrochemical water splitting: effect of precursor-substrate distance on their final properties. Molecules, 2023, 28(4): 1954
https://doi.org/10.3390/molecules28041954
33 M Tadic, D Trpkov, L Kopanja, S Vojnovic, M Panjan. Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. Journal of Alloys and Compounds, 2019, 792: 599–609
https://doi.org/10.1016/j.jallcom.2019.03.414
34 V Zoltán, K Mária, H Magdolna. Gas-phase structures of iron trihalides: a computational study of all iron trihalides and an electron diffraction study of iron trichloride. Inorganic Chemistry, 2010, 49(3): 1039–1045
https://doi.org/10.1021/ic901916q
35 Q C Wang, Y P Lei, Y C Wang, Y Liu, C Y Song, J Zeng, Y H Song, X D Duan, D S Wang, Y D Li. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy & Environmental Science, 2020, 13(6): 1593–1616
https://doi.org/10.1039/D0EE00450B
36 X X Ji, H F Wang, P J Hu. First principles study of Fenton reaction catalyzed by FeOCl: reaction mechanism and location of active site. Rare Metals, 2019, 38(8): 783–792
https://doi.org/10.1007/s12598-018-1140-9
37 A Pajączkowska, K Majcher. The chemical vapour transport of Mn3Fe2Ge3O12 garnet. Journal of Materials Science Letters, 1986, 5(4): 487–488
https://doi.org/10.1007/BF01672372
38 A M Ferrenti, M A Siegler, S Y Gao, N Ng, T M McQueen. ScSI: a new exfoliatable semiconductor. Chemistry of Materials, 2022, 34(12): 5443–5451
https://doi.org/10.1021/acs.chemmater.2c00318
39 Y D Dai, Z Yu, H B Huang, Y He, T Shao, Y F Hsia. Thermal decomposition of iron oxychloride as studied by thermal analysis, X-ray diffraction and Mössbauer spectroscopy. Materials Chemistry and Physics, 2003, 79(1): 94–97
https://doi.org/10.1016/S0254-0584(02)00449-2
40 C Dai, X K Tian, Y L Nie, W Fu, J T Wang. Effect of the interaction mode of H2O2 over CuMnO2 surface on •OH generation for efficient degradation of ofloxacin: activity and mechanism. Chemical Engineering Journal, 2023, 451: 138749
https://doi.org/10.1016/j.cej.2022.138749
41 Y Wang, Z Zhong, Y Chen, C T Ng, J Lin. Controllable synthesis of Co3O4 from nanosize to microsize with large-scale exposure of active crystal planes and their excellent rate capability in supercapacitors based on the crystal plane effect. Nano Research, 2011, 4(7): 695–704
https://doi.org/10.1007/s12274-011-0125-x
42 C Zhao, S E Guo, Q Li, J N Liu, M Zheng, X D Xiao, B J Jiang, H G Fu. Supramolecular precursor derived loofah sponge-like Fe2Ox/C for effective synergistic reaction of Fenton and photocatalysis. Nano Research, 2022, 15(3): 1949–1958
https://doi.org/10.1007/s12274-021-3838-5
43 X J Tan, W H Ding, Z Y Jiang, L X Sun, Y X Huang. Reinventing MoS2 co-catalytic Fenton reaction: oxygen-incorporation mediating surface superoxide radical generation. Nano Research, 2022, 15(3): 1973–1982
https://doi.org/10.1007/s12274-021-3848-3
44 T Yamashita, P Hayes. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008, 254(8): 2441–2449
https://doi.org/10.1016/j.apsusc.2007.09.063
45 J M Luo, M Sun, C L Ritt, X Liu, Y Pei, J C Crittenden, M Elimelech. Tuning Pb(II) adsorption from aqueous solutions on ultrathin iron oxychloride (FeOCl) nanosheets. Environmental Science & Technology, 2019, 53(4): 2075–2085
https://doi.org/10.1021/acs.est.8b07027
46 F Mijangos, F Varona, N Villota. Changes in solution color during phenol oxidation by Fenton reagent. Environmental Science & Technology, 2006, 40(17): 5538–5543
https://doi.org/10.1021/es060866q
47 Y Feng, K Han, T Jiang, Z F Bian, X Liang, X Cao, H Li, Z L Wang. Self-powered electrochemical system by combining Fenton reaction and active chlorine generation for organic contaminant treatment. Nano Research, 2019, 12(11): 2729–2735
https://doi.org/10.1007/s12274-019-2506-5
48 X Y Li, Y H Cui, Y J Feng, Z M Xie, J D Gu. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Research, 2005, 39(10): 1972–1981
https://doi.org/10.1016/j.watres.2005.02.021
[1] FCE-23010-OF-XS_suppl_1 Download
[1] Chunyan Yang, Xiaoliang Yuan, Xueting Wang, Kejing Wu, Yingying Liu, Changjun Liu, Houfang Lu, Bin Liang. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol[J]. Front. Chem. Sci. Eng., 2020, 14(4): 605-613.
[2] M. ABDELLAHI, M. ZAKERI, H. BAHMANPOUR. Events and reaction mechanisms during the synthesis of an Al2O3-TiB2 nanocomposite via high energy ball milling[J]. Front Chem Sci Eng, 2013, 7(2): 123-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed