|
|
Anti-biofouling strategies for implantable biosensors of continuous glucose monitoring systems |
Yan Zheng1, Dunyun Shi2, Zheng Wang1( ) |
1. School of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, China 2. Institute of Hematology, Shenzhen Second People’s Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China |
|
|
Abstract Continuous glucose monitoring (CGM) systems play an increasingly vital role in the glycemic control of patients with diabetes mellitus. However, the immune responses triggered by the implantation of poorly biocompatible sensors have a significant impact on the accuracy and lifetime of CGM systems. In this review, research efforts over the past few years to mitigate the immune responses by enhancing the anti-biofouling ability of sensors are summarized. This review divided these works into active immune engaging strategy and passive immune escape strategy based on their respective mechanisms. In each strategy, the various biocompatible layers on the biosensor surface, such as drug-releasing membranes, hydrogels, hydrophilic membranes, anti-biofouling membranes based on zwitterionic polymers, and bio-mimicking membranes, are described in detail. This review, therefore, provides researchers working on implantable biosensors for CGM systems with vital information, which is likely to aid in the research and development of novel CGM systems with profound anti-biofouling properties.
|
Keywords
implantable glucose biosensor
anti-biofouling
continuous glucose monitoring
immune responses
|
Corresponding Author(s):
Zheng Wang
|
Just Accepted Date: 21 June 2023
Online First Date: 11 September 2023
Issue Date: 30 November 2023
|
|
1 |
K Ogurtsova, J D da Rocha Fernandes, Y Huang, U Linnenkamp, L Guariguata, N H Cho, D Cavan, J E Shaw, L E Makaroff. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 2017, 128: 40–50
https://doi.org/10.1016/j.diabres.2017.03.024
|
2 |
P Zimmet, K Alberti, J Shaw. Global and societal implications of the diabetes epidemic. Nature, 2001, 414(6865): 782–787
https://doi.org/10.1038/414782a
|
3 |
L Johnston, G Wang, K Hu, C Qian, G Liu. Advances in biosensors for continuous glucose monitoring towards wearables. Frontiers in Bioengineering and Biotechnology, 2021, 9: 733810
https://doi.org/10.3389/fbioe.2021.733810
|
4 |
D Timofte, A Mandita, A E Balcangiu-Stroescu, D Balan, L Raducu, M D Tanasescu, A Diaconescu, D Dragos, C I Cosconel, S M Stoicescu, D Ionescu. Hyperuricemia and cardiovascular diseases clinical and paraclinical correlations. Revista de Chimie, 2019, 70(3): 1045–1046
https://doi.org/10.37358/RC.19.3.7060
|
5 |
C S Fox, S H Golden, C Anderson, G A Bray, L E Burke, I H de Boer, P Deedwania, R H Eckel, A G Ershow, J Fradkin. et al.. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the american heart association and the american diabetes association. Diabetes Care, 2015, 38(9): 1777–1803
https://doi.org/10.2337/dci15-0012
|
6 |
A E B Stroescu, M D Tanasescu, A Diaconescu, L Raducu, D G Balan, A Mihai, M Tanase, I I Stanescu, D Ionescu. Diabetic nephropathy: a concise assessment of the causes, risk factors and implications in diabetic patients. Revista de Chimie, 2018, 69(11): 4018–4021
|
7 |
C Wanner, S E Inzucchi, B Zinman. Empagliflozin and progression of kidney disease in type 2 diabetes reply. New England Journal of Medicine, 2016, 375(18): 1801–1802
|
8 |
Y Cui, L Zhang, M Zhang, X Yang, L Zhang, J Kuang, G Zhang, Q Liu, H Guo, Q Meng. Prevalence and causes of low vision and blindness in a Chinese population with type 2 diabetes: the Dongguan eye study. Scientific Reports, 2017, 7(1): 11195
https://doi.org/10.1038/s41598-017-11365-z
|
9 |
A Mandita, D Timofte, A E Balcangiu-Stroescu, D Balan, L Raducu, M D Tanasescu, A Diaconescu, D Dragos, C I Cosconel, S M Stoicescu, D Ionescu. Treatment of high blood pressure in patients with chronic renal disease. Revista de Chimie, 2019, 70(3): 993–995
https://doi.org/10.37358/RC.19.3.7047
|
10 |
D A Mihai, D S Stefan, D Stegaru, G E Bernea, I A Vacaroiu, T Papacocea, M O D Lupusoru, A E Nica, O Stiru, D Dragos, O Olaru. Continuous glucose monitoring devices: a brief presentation. Experimental and Therapeutic Medicine, 2021, 23(2): 174
https://doi.org/10.3892/etm.2021.11097
|
11 |
D M Nathan, D E R Grp. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care, 2014, 37(1): 9–16
https://doi.org/10.2337/dc13-2112
|
12 |
O Didyuk, N Econom, A Guardia, K Livingston, U Klueh. Continuous glucose monitoring devices: past, present, and future focus on the history and evolution of technological innovation. Journal of Diabetes Science and Technology, 2021, 15(3): 676–683
https://doi.org/10.1177/1932296819899394
|
13 |
R M Bergenstal, J E Layne, H Zisser, R A Gabbay, N A Barleen, A A Lee, A R Majithia, C G Parkin, R F Dixon. Remote application and use of real-time continuous glucose monitoring by adults with type 2 diabetes in a virtual diabetes clinic. Diabetes Technology & Therapeutics, 2021, 23(2): 128–132
https://doi.org/10.1089/dia.2020.0396
|
14 |
N Mauras, L Fox, K Englert, R W Beck. Continuous glucose monitoring in type 1 diabetes. Endocrine, 2013, 43(1): 41–50
https://doi.org/10.1007/s12020-012-9765-1
|
15 |
G Cappon, M Vettoretti, G Sparacino, A Facchinetti. Continuous glucose monitoring sensors for diabetes management: a review of technologies and applications. Diabetes & Metabolism Journal, 2019, 43(4): 383–397
https://doi.org/10.4093/dmj.2019.0121
|
16 |
G M Pepper. Hemoglobin A1c values and CGM response. Diabetes Technology & Therapeutics, 2012, 14(10): 972
|
17 |
N Poolsup, N Suksomboon, A M Kyaw. Systematic review and meta-analysis of the effectiveness of continuous glucose monitoring (CGM) on glucose control in diabetes. Diabetology & Metabolic Syndrome, 2013, 5(1): 39
https://doi.org/10.1186/1758-5996-5-39
|
18 |
S J Fonda, C Graham, J Munakata, J M Powers, D Price, R A Vigersky. The cost-effectiveness of real-time continuous glucose monitoring (RT-CGM) in type 2 diabetes. Journal of Diabetes Science and Technology, 2016, 10(4): 898–904
https://doi.org/10.1177/1932296816628547
|
19 |
R A Vigersky, S J Fonda, M Chellappa, M S Walker, N M Ehrhardt. Short- and long-term effects of real-time continuous glucose monitoring in patients with type 2 diabetes. Diabetes Care, 2012, 35(1): 32–38
https://doi.org/10.2337/dc11-1438
|
20 |
S E Clarke, J R Foster. A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. British Journal of Biomedical Science, 2012, 69(2): 83–93
https://doi.org/10.1080/09674845.2012.12002443
|
21 |
P J Taylor, C H Thompson, G D Brinkworth. Effectiveness and acceptability of continuous glucose monitoring for type 2 diabetes management: a narrative review. Journal of Diabetes Investigation, 2018, 9(4): 713–725
https://doi.org/10.1111/jdi.12807
|
22 |
S V Edelman. Regulation catches up to reality. Journal of Diabetes Science and Technology, 2017, 11(1): 160–164
https://doi.org/10.1177/1932296816667749
|
23 |
Y Zou, Z Chu, J Guo, S Liu, X Ma, J Guo. Minimally invasive electrochemical continuous glucose monitoring sensors: recent progress and perspective. Biosensors & Bioelectronics, 2023, 225: 115103
https://doi.org/10.1016/j.bios.2023.115103
|
24 |
O Moser, J Münzker, S Korsatko, C Pachler, K Smolle, W Toller, T Augustin, J Plank, T R Pieber, J K Mader. et al.. A prolonged run-in period of standard subcutaneous microdialysis ameliorates quality of interstitial glucose signal in patients after major cardiac surgery. Scientific Reports, 2018, 8(1): 1262
https://doi.org/10.1038/s41598-018-19768-2
|
25 |
T V Brennan, K E Lunsford, P C Kuo. Innate pathways of immune activation in transplantation. Journal of Transplantation, 2010, 2010: 826240
https://doi.org/10.1155/2010/826240
|
26 |
Z Sheikh, P J Brooks, O Barzilay, N Fine, M Glogauer. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel), 2015, 8(9): 5671–5701
https://doi.org/10.3390/ma8095269
|
27 |
S Toda, A Fattah, K Asawa, N Nakamura, K N Ekdahl, B Nilsson, Y Teramura. Optimization of islet microencapsulation with thin polymer membranes for long-term stability. Micromachines, 2019, 10(11): 755
https://doi.org/10.3390/mi10110755
|
28 |
Y J Heo, S Takeuchi. Towards smart tattoos: implantable biosensors for continuous glucose monitoring. Advanced Healthcare Materials, 2013, 2(1): 43–56
https://doi.org/10.1002/adhm.201200167
|
29 |
T Bobrowski, W Schuhmann. Long-term implantable glucose biosensors. Current Opinion in Electrochemistry, 2018, 10: 112–119
https://doi.org/10.1016/j.coelec.2018.05.004
|
30 |
M Elsherif, M U Hassan, A K Yetisen, H Butt. Glucose sensing with phenylboronic acid functionalized hydrogel-based optical diffusers. ACS Nano, 2018, 12(3): 2283–2291
https://doi.org/10.1021/acsnano.7b07082
|
31 |
J H Yuan, K Wang, X H Xia. Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Advanced Functional Materials, 2005, 15(5): 803–809
https://doi.org/10.1002/adfm.200400321
|
32 |
R Ahmad, N Tripathy, M S Ahn, K S Bhat, T Mahmoudi, Y Wang, J Y Yoo, D W Kwon, H Y Yang, Y B Hahn. Highly efficient non-enzymatic glucose sensor based on cuo modified vertically-grown ZnO nanorods on electrode. Scientific Reports, 2017, 7(1): 5715
https://doi.org/10.1038/s41598-017-06064-8
|
33 |
B N Kharbikar, G S Chendke, T A Desai. Modulating the foreign body response of implants for diabetes treatment. Advanced Drug Delivery Reviews, 2021, 174: 87–113
https://doi.org/10.1016/j.addr.2021.01.011
|
34 |
L A McKiel, K A Woodhouse, L E Fitzpatrick. The role of toll-like receptor signaling in the macrophage response to implanted materials. MRS Communications, 2020, 10(1): 55–68
https://doi.org/10.1557/mrc.2019.154
|
35 |
M T Novak, W M Reichert. Modeling the physiological factors affecting glucose sensor function in vivo. Journal of Diabetes Science and Technology, 2015, 9(5): 993–998
https://doi.org/10.1177/1932296815593094
|
36 |
P Vadgama. Monitoring with in vivo electrochemical sensors: navigating the complexities of blood and tissue reactivity. Sensors (Basel), 2020, 20(11): 3149
https://doi.org/10.3390/s20113149
|
37 |
U Klueh, J T Frailey, Y Qiao, O Antar, D L Kreutzer. Cell based metabolic barriers to glucose diffusion: macrophages and continuous glucose monitoring. Biomaterials, 2014, 35(10): 3145–3153
https://doi.org/10.1016/j.biomaterials.2014.01.001
|
38 |
C Li, C Guo, V Fitzpatrick, A Ibrahim, M J Zwierstra, P Hanna, A Lechtig, A Nazarian, S J Lin, D L Kaplan. Design of biodegradable, implantable devices towards clinical translation. Nature Reviews. Materials, 2019, 5(1): 61–81
https://doi.org/10.1038/s41578-019-0150-z
|
39 |
M Gray, J Meehan, C Ward, S P Langdon, I H Kunkler, A Murray, D Argyle. Implantable biosensors and their contribution to the future of precision medicine. Veterinary Journal (London, England), 2018, 239: 21–29
https://doi.org/10.1016/j.tvjl.2018.07.011
|
40 |
K A Jansen, P Atherton, C Ballestrem. Mechanotransduction at the cell-matrix interface. Seminars in Cell & Developmental Biology, 2017, 71: 75–83
https://doi.org/10.1016/j.semcdb.2017.07.027
|
41 |
I A Janson, A J Putnam. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms. Journal of Biomedical Materials Research. Part A, 2015, 103(3): 1246–1258
https://doi.org/10.1002/jbm.a.35254
|
42 |
B Gu, F Papadimitrakopoulos, D J Burgess. PLGA microsphere/PVA hydrogel coatings suppress the foreign body reaction for 6 months. Journal of Controlled Release, 2018, 289: 35–43
https://doi.org/10.1016/j.jconrel.2018.09.021
|
43 |
M J Malone-Povolny, T M Bradshaw, E P Merricks, C T Long, T C Nichols, M H Schoenfisch. Combination of nitric oxide release and surface texture for mitigating the foreign body response. ACS Biomaterials Science & Engineering, 2021, 7(6): 2444–2452
https://doi.org/10.1021/acsbiomaterials.1c00022
|
44 |
A Márquez, C Jimenez-Jorquera, C Dominguez, X Munoz-Berbel. Electrodepositable alginate membranes for enzymatic sensors: an amperometric glucose biosensor for whole blood analysis. Biosensors & Bioelectronics, 2017, 97: 136–142
https://doi.org/10.1016/j.bios.2017.05.051
|
45 |
N L Walker, J E Dick. Oxidase-loaded hydrogels for versatile potentiometric metabolite sensing. Biosensors & Bioelectronics, 2021, 178: 112997
https://doi.org/10.1016/j.bios.2021.112997
|
46 |
Z Liang, J Zhang, C Wu, X Hu, Y Lu, G Wang, F Yu, X Zhang, Y Wang. Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring. Biosensors & Bioelectronics, 2020, 155: 112105
https://doi.org/10.1016/j.bios.2020.112105
|
47 |
T J J Williams, A S S Jeevarathinam, F Jivan, V Baldock, P Kim, M J J McShane, D L L Alge. Glucose biosensors based on Michael addition crosslinked poly(ethylene glycol) hydrogels with chemo-optical sensing microdomains. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2023, 11(8): 1749–1759
https://doi.org/10.1039/D2TB02339C
|
48 |
J Zhou, Z Ma, X Hong, H M Wu, S Y Ma, Y Li, D J Chen, H Y Yu, X J Huang. Top-down strategy of implantable biosensor using adaptable, porous hollow fibrous membrane. ACS Sensors, 2019, 4(4): 931–937
https://doi.org/10.1021/acssensors.9b00035
|
49 |
X Jin, G Li, T Xu, L Su, D Yan, X Zhang. Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosensors & Bioelectronics, 2022, 196: 113760
https://doi.org/10.1016/j.bios.2021.113760
|
50 |
C Sun, J Miao, J Yan, K Yang, C Mao, J Ju, J Shen. Applications of antibiofouling PEG-coating in electrochemical biosensors for determination of glucose in whole blood. Electrochimica Acta, 2013, 89: 549–554
https://doi.org/10.1016/j.electacta.2012.11.005
|
51 |
R Feng, Y Chu, X Wang, Q Wu, F Tang. A long-term stable and flexible glucose sensor coated with poly(ethylene glycol)-modified polyurethane. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 2021, 895: 115518
https://doi.org/10.1016/j.jelechem.2021.115518
|
52 |
Y Hu, B Liang, L Fang, G Ma, G Yang, Q Zhu, S Chen, X Ye. Antifouling zwitterionic coating via electrochemically mediated atom transfer radical polymerization on enzyme-based glucose sensors for long-time stability in 37 degrees serum. Langmuir, 2016, 32(45): 11763–11770
https://doi.org/10.1021/acs.langmuir.6b03016
|
53 |
X Xie, J C Doloff, V Yesilyurt, A Sadraei, J J McGarrigle, M Omami, O Veiseh, S Farah, D Isa, S Ghani, I Joshi, A Vegas, J Li, W Wang, A Bader, H H Tam, J Tao, H Chen, B Yang, K A Williamson, J Oberholzer, R Langer, D G Anderson. Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nature Biomedical Engineering, 2018, 2(12): 894–906
https://doi.org/10.1038/s41551-018-0273-3
|
54 |
K Burugapalli, S Wijesuriya, N Wang, W Song. Biomimetic electrospun coatings increase the in vivo sensitivity of implantable glucose biosensors. Journal of Biomedical Materials Research. Part A, 2018, 106(4): 1072–1081
https://doi.org/10.1002/jbm.a.36308
|
55 |
R Ravichandran, J G Martinez, E W H Jager, J Phopase, A P F Turner. Type I collagen-derived injectable conductive hydrogel scaffolds as glucose sensors. ACS Applied Materials & Interfaces, 2018, 10(19): 16244–16249
https://doi.org/10.1021/acsami.8b04091
|
56 |
B P Partlow, C W Hanna, J Rnjak-Kovacina, J E Moreau, M B Applegate, K A Burke, B Marelli, A N Mitropoulos, F G Omenetto, D L Kaplan. Highly tunable elastomeric silk biomaterials. Advanced Functional Materials, 2014, 24(29): 4615–4624
https://doi.org/10.1002/adfm.201400526
|
57 |
K N Ekdahl, J D Lambris, H Elwing, D Ricklin, P H Nilsson, Y Teramura, I A Nicholls, B Nilsson. Innate immunity activation on biomaterial surfaces: a mechanistic model and coping strategies. Advanced Drug Delivery Reviews, 2011, 63(12): 1042–1050
https://doi.org/10.1016/j.addr.2011.06.012
|
58 |
T Papacocea, E Popa, T Dana, R Papacocea. The usefulness of dexamethasone in the treatment of chronic subdural hematomas. Farmacia, 2019, 67(1): 140–145
https://doi.org/10.31925/farmacia.2019.1.19
|
59 |
N G Welch, D A Winkler, H Thissen. Antifibrotic strategies for medical devices. Advanced Drug Delivery Reviews, 2020, 167: 109–120
https://doi.org/10.1016/j.addr.2020.06.008
|
60 |
A W Bridges, A J Garcia. Anti-inflammatory polymeric coatings for implantable biomaterials and devices. Journal of Diabetes Science and Technology, 2008, 2(6): 984–994
https://doi.org/10.1177/193229680800200628
|
61 |
D P Go, J A Palmer, S L Gras, A J O’Connor. Coating and release of an anti-inflammatory hormone from PLGA microspheres for tissue engineering. Journal of Biomedical Materials Research. Part A, 2012, 100A(2): 507–517
https://doi.org/10.1002/jbm.a.33299
|
62 |
R D Jayant, M J McShane, R Srivastava. In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: towards localized implant inflammation suppression. International Journal of Pharmaceutics, 2011, 403(1–2): 268–275
https://doi.org/10.1016/j.ijpharm.2010.10.035
|
63 |
D Li, G Guo, R Fan, J Liang, X Deng, F Luo, Z Qian. PLA/F68/dexamethasone implants prepared by hot-melt extrusion for controlled release of anti-inflammatory drug to implantable medical devices: preparation, characterization and hydrolytic degradation study. International Journal of Pharmaceutics, 2013, 441(1–2): 365–372
https://doi.org/10.1016/j.ijpharm.2012.11.019
|
64 |
R Srivastava, R D Jayant, A Chaudhary, M J McShane. “Smart tattoo” glucose biosensors and effect of coencapsulated anti-inflammatory agents. Journal of Diabetes Science and Technology, 2011, 5(1): 76–85
https://doi.org/10.1177/193229681100500111
|
65 |
Y Wang, F Papadimitrakopoulos, D Burgess. J. Polymeric “smart” coatings to prevent foreign body response to implantable biosensors. Journal of Controlled Release, 2013, 169(3): 341–347
https://doi.org/10.1016/j.jconrel.2012.12.028
|
66 |
N Tipnis, M Kastellorizios, A Legassey, F Papadimitrakopoulos, F Jain, D J Burgess. Sterilization of drug-loaded composite coatings for implantable glucose biosensors. Journal of Diabetes Science and Technology, 2021, 15(3): 646–654
https://doi.org/10.1177/1932296819890620
|
67 |
J Xu, H Lee. Anti-biofouling strategies for long-term continuous use of implantable biosensors. Chemosensors (Basel, Switzerland), 2020, 8(3): 66
https://doi.org/10.3390/chemosensors8030066
|
68 |
M Kastellorizios, F Papadimitrakopoulos, D J Burgess. Multiple tissue response modifiers to promote angiogenesis and prevent the foreign body reaction around subcutaneous implants. Journal of Controlled Release, 2015, 214: 103–111
https://doi.org/10.1016/j.jconrel.2015.07.021
|
69 |
C F Price, D J Burgess, M Kastellorizios. L-DOPA as a small molecule surrogate to promote angiogenesis and prevent dexamethasone-induced ischemia. Journal of Controlled Release, 2016, 235: 176–181
https://doi.org/10.1016/j.jconrel.2016.05.065
|
70 |
S G Vallejo-Heligon, B Klitzman, W M Reichert. Characterization of porous, dexamethasone-releasing polyurethane coatings for glucose sensors. Acta Biomaterialia, 2014, 10(11): 4629–4638
https://doi.org/10.1016/j.actbio.2014.07.019
|
71 |
K Jiang, J D Weaver, Y Li, X Chen, J Liang, C L Stabler. Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials, 2017, 114: 71–81
https://doi.org/10.1016/j.biomaterials.2016.11.004
|
72 |
D Paul, S Achouri, Y Z Yoon, J Herre, C E Bryant, P Cicuta. Phagocytosis dynamics depends on target shape. Biophysical Journal, 2013, 105(5): 1143–1150
https://doi.org/10.1016/j.bpj.2013.07.036
|
73 |
R J Soto, B J Privett, M H Schoenfisch. In vivo analytical performance of nitric oxide-releasing glucose biosensors. Analytical Chemistry, 2014, 86(14): 7141–7149
https://doi.org/10.1021/ac5017425
|
74 |
K H Cha, X Wang, M E Meyerhoff. Nitric oxide release for improving performance of implantable chemical sensors—a review. Applied Materials Today, 2017, 9: 589–597
https://doi.org/10.1016/j.apmt.2017.10.002
|
75 |
R Chang, G Faleo, H A Russ, A V Parent, S K Elledge, D A Bernards, J L Allen, K Villanueva, M Hebrok, Q Tang, T A Desai. Nanoporous immunoprotective device for stem-cell-derived beta-cell replacement therapy. ACS Nano, 2017, 11(8): 7747–7757
https://doi.org/10.1021/acsnano.7b01239
|
76 |
M C Frost, M M Reynolds, M E Meyerhoff. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contactincy medical devices. Biomaterials, 2005, 26(14): 1685–1693
https://doi.org/10.1016/j.biomaterials.2004.06.006
|
77 |
D P Arora, S Hossain, Y Xu, E M Boon. Nitric oxide regulation of bacterial biofilms. Biochemistry, 2015, 54(24): 3717–3728
https://doi.org/10.1021/bi501476n
|
78 |
Y N Chou, Y Chang, T C Wen. Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces. ACS Applied Materials & Interfaces, 2015, 7(19): 10096–10107
https://doi.org/10.1021/acsami.5b01756
|
79 |
E Mariani, G Lisignoli, R M Borzi, L Pulsatelli. Biomaterials: foreign bodies or tuners for the immune response?. International Journal of Molecular Sciences, 2019, 20(3): 636
https://doi.org/10.3390/ijms20030636
|
80 |
N J Walters, E Gentleman. Evolving insights in cell-matrix interactions: elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomaterialia, 2015, 11: 3–16
https://doi.org/10.1016/j.actbio.2014.09.038
|
81 |
K L Helton, B D Ratner, N A Wisniewski. Biomechanics of the sensor-tissue interface-effects of motion, pressure, and design on sensor performance and the foreign body response-part I: theoretical framework. Journal of Diabetes Science and Technology, 2011, 5(3): 632–646
https://doi.org/10.1177/193229681100500317
|
82 |
A U Ernst, L H Wang, M Ma. Islet encapsulation. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(42): 6705–6722
https://doi.org/10.1039/C8TB02020E
|
83 |
Y A Mørch, I Donati, B L Strand, G Skjak-Braek. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules, 2006, 7(5): 1471–1480
https://doi.org/10.1021/bm060010d
|
84 |
D M Higgins, R J Basaraba, A C Hohnbaum, E J Lee, D W Grainger, M Gonzalez-Juarrero. Localized immunosuppressive environment in the foreign body response to implanted biomaterials. American Journal of Pathology, 2009, 175(1): 161–170
https://doi.org/10.2353/ajpath.2009.080962
|
85 |
M O Dellacherie, B R Seo, D J Mooney. Macroscale biomaterials strategies for local immunomodulation. Nature Reviews. Materials, 2019, 4(6): 379–397
https://doi.org/10.1038/s41578-019-0106-3
|
86 |
S N Christo, K R Diener, A Bachhuka, K Vasilev, J D Hayball. Innate immunity and biomaterials at the nexus: friends or foes. BioMed Research International, 2015, 2015: 342304
https://doi.org/10.1155/2015/342304
|
87 |
P de Candia, F Prattichizzo, S Garavelli, V De Rosa, M Galgani, F Di Rella, M I Spagnuolo, A Colamatteo, C Fusco, T Micillo, S Bruzzaniti, A Ceriello, A A Puca, G Matarese. Type 2 diabetes: how much of an autoimmune disease?. Frontiers in Endocrinology (Lausanne), 2019, 10: 451
https://doi.org/10.3389/fendo.2019.00451
|
88 |
W Chen, B C Yung, Z Qian, X Chen. Improving long-term subcutaneous drug delivery by regulating material-bioenvironment interaction. Advanced Drug Delivery Reviews, 2018, 127: 20–34
https://doi.org/10.1016/j.addr.2018.01.016
|
89 |
R A S Nascimento, M Mulato. Microelectronic sensor for continuous glucose monitoring. Applied Physics. A, Materials Science & Processing, 2019, 125(3): 175
https://doi.org/10.1007/s00339-019-2455-6
|
90 |
H Lee, Y J Hong, S Baik, T Hyeon, D H Kim. Enzyme-based glucose sensor: from invasive to wearable device. Advanced Healthcare Materials, 2018, 7(8): 1701150
https://doi.org/10.1002/adhm.201701150
|
91 |
G Marchioli, L van Gurp, P P van Krieken, D Stamatialis, M Engelse, C A van Blitterswijk, M B J Karperien, E de Koning, J Alblas, L Moroni, A A van Apeldoorn. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication, 2015, 7(2): 025009
https://doi.org/10.1088/1758-5090/7/2/025009
|
92 |
Y Lee, N Matsushima, S Yada, S Nita, T Kodama, G Amberg, J Shiomi. Revealing how topography of surface microstructures alters capillary spreading. Scientific Reports, 2019, 9(1): 7787
https://doi.org/10.1038/s41598-019-44243-x
|
93 |
T L Hanson, C A Diaz-Botia, V Kharazia, M M Maharbiz, P N Sabes. The “sewing machine” for minimally invasive neural recording. BioRxiv, 2019, 578542
https://doi.org/10.1101/578542
|
94 |
C L Stabler, Y Li, J M Stewart, B C Keselowsky. Engineering immunomodulatory biomaterials for type 1 diabetes. Nature Reviews. Materials, 2019, 4(6): 429–450
https://doi.org/10.1038/s41578-019-0112-5
|
95 |
P T J Hwang, D K Shah, J A Garcia, C Y Bae, D J Lim, R C Huiszoon, G C Alexander, H W Jun. Progress and challenges of the bioartificial pancreas. Nano Convergence, 2016, 3(1): 28
https://doi.org/10.1186/s40580-016-0088-4
|
96 |
A J Guseman, S L Speer, G M Perez Goncalves, G J Pielak. Surface charge modulates protein-protein interactions in physiologically relevant environments. Biochemistry, 2018, 57(11): 1681–1684
https://doi.org/10.1021/acs.biochem.8b00061
|
97 |
E J Shin, S M Choi. Advances in waterborne polyurethane-based biomaterials for biomedical applications. Advances in Experimental Medicine and Biology, 2018, 1077: 251–283
https://doi.org/10.1007/978-981-13-0947-2_14
|
98 |
Y Cai, B Liang, S Chen, Q Zhu, T Tu, K Wu, Q Cao, L Fang, X Liang, X Ye. One-step modification of nano-polyaniline/glucose oxidase on double-side printed flexible electrode for continuous glucose monitoring: characterization, cytotoxicity evaluation and in vivo experiment. Biosensors & Bioelectronics, 2020, 165: 112408
https://doi.org/10.1016/j.bios.2020.112408
|
99 |
S Campuzano, M Pedrero, P Yanez-Sedeno, J M Pingarron. Antifouling (bio)materials for electrochemical (bio)sensing. International Journal of Molecular Sciences, 2019, 20(2): 423
https://doi.org/10.3390/ijms20020423
|
100 |
I Francolini, C Vuotto, A Piozzi, G Donelli. Antifouling and antimicrobial biomaterials: an overview. Acta Pathologica et Microbiologica Scandinavica. Supplement, 2017, 125(4): 392–417
https://doi.org/10.1111/apm.12675
|
101 |
M Liu, Y Xu, Y Zhao, Z Wang, D Shi. Hydroxyl radical-involved cancer therapy via Fenton reactions. Frontiers of Chemical Science and Engineering, 2022, 16(3): 345–363
https://doi.org/10.1007/s11705-021-2077-3
|
102 |
X Mu, Y Xu, Z Wang, D Shi. Probes and nano-delivery systems targeting NAD(P)H: quinone oxidoreductase 1: a mini-review. Frontiers of Chemical Science and Engineering, 2023, 17(2): 123–138
https://doi.org/10.1007/s11705-022-2194-7
|
103 |
J Wu, W Lin, Z Wang, S Chen, Y Chang. Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir, 2012, 28(19): 7436–7441
https://doi.org/10.1021/la300394c
|
104 |
S Jiang, Z Cao. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, 2010, 22(9): 920–932
https://doi.org/10.1002/adma.200901407
|
105 |
G Cheng, G Li, H Xue, S Chen, J D Bryers, S Jiang. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials, 2009, 30(28): 5234–5240
https://doi.org/10.1016/j.biomaterials.2009.05.058
|
106 |
Z Zhang, S Chen, Y Chang, S Jiang. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B, 2006, 110(22): 10799–10804
https://doi.org/10.1021/jp057266i
|
107 |
W Feng, J L Brash, S P Zhu. Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion. Biomaterials, 2006, 27(6): 847–855
https://doi.org/10.1016/j.biomaterials.2005.07.006
|
108 |
A B Lowe, C L McCormick. Synthesis and solution properties of zwitterionic polymers. Chemical Reviews, 2002, 102(11): 4177–4190
https://doi.org/10.1021/cr020371t
|
109 |
S Chen, L Li, C Zhao, J Zheng. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010, 51(23): 5283–5293
https://doi.org/10.1016/j.polymer.2010.08.022
|
110 |
F Xuan, J Liu. Preparation, characterization and application of zwitterionic polymers and membranes: current developments and perspective. Polymer International, 2009, 58(12): 1350–1361
https://doi.org/10.1002/pi.2679
|
111 |
S F Chen, J Zheng, L Y Li, S Y Jiang. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 2005, 127(41): 14473–14478
https://doi.org/10.1021/ja054169u
|
112 |
M He, K Gao, L Zhou, Z Jiao, M Wu, J Cao, X You, Z Cai, Y Su, Z Jiang. Zwitterionic materials for antifouling membrane surface construction. Acta Biomaterialia, 2016, 40: 142–152
https://doi.org/10.1016/j.actbio.2016.03.038
|
113 |
R Jayakumar, M Prabaharan, P T Sudheesh Kumar, S V Nair, H Tamura. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 2011, 29(3): 322–337
https://doi.org/10.1016/j.biotechadv.2011.01.005
|
114 |
R Jayakumar, M Prabaharan, S V Nair, H Tamura. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology Advances, 2010, 28(1): 142–150
https://doi.org/10.1016/j.biotechadv.2009.11.001
|
115 |
F Robotti, S Bottan, F Fraschetti, A Mallone, G Pellegrini, N Lindenblatt, C Starck, V Falk, D Poulikakos, A Ferrari. A micron-scale surface topography design reducing cell adhesion to implanted materials. Scientific Reports, 2018, 8(1): 10887
https://doi.org/10.1038/s41598-018-29167-2
|
116 |
S Franz, S Rammelt, D Scharnweber, J C Simon. Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials, 2011, 32(28): 6692–6709
https://doi.org/10.1016/j.biomaterials.2011.05.078
|
117 |
J S Lewis, K Roy, B G Keselowsky. Materials that harness and modulate the immune system. MRS Bulletin, 2014, 39(1): 25–34
https://doi.org/10.1557/mrs.2013.310
|
118 |
V B Damodaran, N S Murthy. Bio-inspired strategies for designing antifouling biomaterials. Biomaterials Research, 2016, 20(1): 18
https://doi.org/10.1186/s40824-016-0064-4
|
119 |
A Espinoza-Jiménez, A N Peon, L I Terrazas. Alternatively activated macrophages in types 1 and 2 diabetes. Mediators of Inflammation, 2012, 2012: 815593
https://doi.org/10.1155/2012/815953
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|