Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (12) : 1913-1924    https://doi.org/10.1007/s11705-023-2350-8
RESEARCH ARTICLE
Design and mechanism insight on SiC quantum dots sensitized inverse opal TiO2 with superior photocatalytic activities under sunlight
Yingchao He1, Qiong Sun1(), Likun Sun1, Zhixing Gan2, Liyan Yu1(), Lifeng Dong1,3()
1. College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2. Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China
3. Department of Physics, Hamline University, St. Paul, MN 55104, USA
 Download: PDF(7933 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The combination of SiC quantum dots sensitized inverse opal TiO2 photocatalyst is designed in this work and then applied in wastewater purification under simulated sunlight. From various spectroscopic techniques, it is found that electrons transfer directionally from SiC quantum dots to inverse opal TiO2, and the energy difference between their conduction/valence bands can reduce the recombination rate of photogenerated carriers and provide a pathway with low interfacial resistance for charge transfer inside the composite. As a result, a typical type-II mechanism is proved to dominate the photoinduced charge transfer process. Meanwhile, the composite achieves excellent photocatalytic performances (the highest apparent kinetic constant of 0.037 min–1), which is 6.2 times (0.006 min–1) and 2.1 times (0.018 min–1) of the bare inverse opal TiO2 and commercial P25 photocatalysts. Therefore, the stability and non-toxicity of SiC quantum dots sensitized inverse opal TiO2 composite enables it with great potential in practical photocatalytic applications.

Keywords inverse opal TiO2      silicon carbide quantum dots      quantum dot sensitized photocatalyst      type-II charge transfer route     
Corresponding Author(s): Qiong Sun,Liyan Yu,Lifeng Dong   
Online First Date: 11 September 2023    Issue Date: 30 November 2023
 Cite this article:   
Yingchao He,Qiong Sun,Likun Sun, et al. Design and mechanism insight on SiC quantum dots sensitized inverse opal TiO2 with superior photocatalytic activities under sunlight[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1913-1924.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2350-8
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I12/1913
  Scheme1 The preparation process of SiC QDs-IO TiO2.
Fig.1  XRD patterns of IO TiO2 and SiC QDs-IO TiO2.
Fig.2  SEM images of (a) OCT, (b) IO TiO2, and (c) SiC QDs-IO TiO2; secondary electron image of (d) SiC QDs-IO TiO2 and corresponding EDS elemental mapping of (e) Ti, (f) O, (g) Si, and (h) C; TEM images of (i) SiC QDs and (j, k) SiC QDs-IO TiO2.
Fig.3  (a) The survey XPS spectra of SiC QDs, IO TiO2 and SiC QDs-IO TiO2; (b) XPS spectra of Ti 2p in IO TiO2 and SiC QDs-IO TiO2; (c) XPS spectra of Si 2p in SiC QDs and SiC QDs-IO TiO2.
Fig.4  (a) UV-Vis absorption spectra and (b) (αhν)2 versus plots of SiC, IO TiO2 and SiC QDs-IO TiO2; (c) photoluminescence (PL) spectra of IO TiO2 and SiC QDs-IO TiO2.
Fig.5  MS plots of (a) IO TiO2 and (b) SiC QDs-IO TiO2 tested at different frequencies.
Fig.6  (a) UV-Vis absorption spectra of RhB remaining in the filtrate at different reaction time; (b) the degradation curves (including dark process) of RhB with IO TiO2 and SiC QDs-IO TiO2 (The inset is the fitting plot of the quasi-first order kinetic model of –ln(C/C0) versus reaction time); (c) histogram of kapp of photocatalytic degradation of RhB with no catalyst, SiC QDs, IO TiO2, commercial P25 and SiC QDs-IO TiO2; (d) histogram of kapp of x-SiC QDs-IO TiO2 with different x values (x = 0, 2, 3, 4, 5, 6 and 7 mL).
Fig.7  The histogram of kapp values calculated from the photocatalytic degradation by TiO2 and SiC QDs-IO TiO2 with different parameters. (a) Different pH values (3, 5, 9 and 11), (b) different filters (550 nm, AM1.5 filters and no filter) and (c) different dyes (MO (methyl orange), MB (methylene blue), RhB and X3B (reactive brilliant red)).
Fig.8  Cyclic photocatalytic degradation curves of RhB by SiC QDs-IO TiO2.
Fig.9  (a) The transient current density plots of TiO2 and SiC QDs-IO TiO2 under light on/off; (b) the Nyquist plots of TiO2 and SiC QDs-IO TiO2 (The insets are the related equivalent circuit and zoomed-in horizontal intercepts).
Fig.10  (a) The histogram of kapp values calculated from the photocatalytic degradations by TiO2 and SiC QDs-IO TiO2 with different quenching agents (no quencher, IPA, EDTA-2Na and BZQ); (b) the photo induced charge transfer process in SiC QDs-IO TiO2.
1 S D Alexandratos, N Barak, D Bauer, F T Davidson, B R Gibney, S S Hubbard, H L Taft, P Westerhof. Sustaining water resources: environmental and economic impact. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 2879–2888
https://doi.org/10.1021/acssuschemeng.8b05859
2 A K Pandey, R Reji Kumar, B Kalidasan, I A Laghari, M Samykano, R Kothari, A M Abusorrah, K Sharma, V V Tyagi. Utilization of solar energy for wastewater treatment: challenges and progressive research trends. Journal of Environmental Management, 2021, 297: 113300
https://doi.org/10.1016/j.jenvman.2021.113300
3 V Katheresan, J Kansedo, S Y Lau. Efficiency of various recent wastewater dye removal methods: a review. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676–4697
https://doi.org/10.1016/j.jece.2018.06.060
4 F Nunzi, F De Angelis. Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics. Chemical Science (Cambridge), 2022, 13(33): 9485–9497
https://doi.org/10.1039/D2SC02872G
5 X Yan, Y Li, T Xia. Black titanium dioxide nanomaterials in photocatalysis. International Journal of Photoenergy, 2017, 2017: 1–16
https://doi.org/10.1155/2017/8529851
6 W Chakhari, J Ben Naceur, S Ben Taieb, I Ben Assaker, R Chtourou. Fe-doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials. Journal of Alloys and Compounds, 2017, 708: 862–870
https://doi.org/10.1016/j.jallcom.2016.12.181
7 W Sun, X Li, J Zou, H Guo. N-TiO2-coated SiC foam for the treatment of dyeing wastewater under blue light LED irradiation. Coatings, 2022, 12(5): 585
https://doi.org/10.3390/coatings12050585
8 P Zhu, A S Nair, S Peng, S Yang, S Ramakrishna. Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Applied Materials & Interfaces, 2012, 4(2): 581–585
https://doi.org/10.1021/am201448p
9 L P Bakos, D Karajz, A Katona, K Hernadi, B Parditka, Z Erdélyi, I Lukács, Z Hórvölgyi, G Szitási, I M Szilágyi. Carbon nanosphere templates for the preparation of inverse opal titania photonic crystals by atomic layer deposition. Applied Surface Science, 2020, 504: 144443
https://doi.org/10.1016/j.apsusc.2019.144443
10 H Na, G H Choi, T Eom, J Bang, P J Yoo. Click-functionalized inverse-opal structured membranes for organocatalytic reactions. Separation and Purification Technology, 2020, 240: 116621
https://doi.org/10.1016/j.seppur.2020.116621
11 J Xie, K Lei, H Wang, C Wang, B Liu, L Zhang, P Bai. Strontium titanate with inverse opal structure as the photocatalysts. Journal of Materials Science Materials in Electronics, 2020, 31(3): 2691–2698
https://doi.org/10.1007/s10854-019-02809-5
12 D McNulty, V Landgraf, S Trabesinger. Simplifying the synthesis of carbon inverse opals. RSC Advances, 2020, 10(40): 24108–24114
https://doi.org/10.1039/D0RA03693E
13 Y Song, N Li, D Chen, Q Xu, H Li, J He, J Lu. N-doped and CdSe-sensitized 3D-ordered TiO2 inverse opal films for synergistically enhanced photocatalytic performance. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4000–4007
https://doi.org/10.1021/acssuschemeng.7b04395
14 Y Wan, J Wang, X Wang, H Xu, S Yuan, Q Zhang, M Zhang. Preparation of inverse opal titanium dioxide for photocatalytic performance research. Optical Materials, 2019, 96: 109287
https://doi.org/10.1016/j.optmat.2019.109287
15 Y Chen, L Li, Q Xu, W Chen, Y Dong, J Fan, D Ma. Recent advances in opal/inverted opal photonic crystal photocatalysts. Solar RRL, 2021, 5(6): 2000541
https://doi.org/10.1002/solr.202000541
16 A Mathur, S B Dutta, D Pal, J Singhal, A Singh, S Chattopadhyay. High efficiency epitaxial-graphene/silicon-carbide photocatalyst with tunable photocatalytic activity and bandgap narrowing. Advanced Materials Interfaces, 2016, 3(19): 1600413
https://doi.org/10.1002/admi.201600413
17 T Song, X Zhang, Y Wei, P Yang. N-Cdots-decorated TiO2(B)/anatase microspheres with high photocatalytic performance in visible light. International Journal of Hydrogen Energy, 2019, 44(59): 31129–31140
https://doi.org/10.1016/j.ijhydene.2019.10.035
18 Q Hu, M Ji, J Di, B Wang, J Xia, Y Zhao, H Li. Ionic liquid-induced double regulation of carbon quantum dots modified bismuth oxychloride/bismuth oxybromide nanosheets with enhanced visible-light photocatalytic activity. Journal of Colloid and Interface Science, 2018, 519: 263–272
https://doi.org/10.1016/j.jcis.2018.02.057
19 Y Yuan, N Jin, P Saghy, L Dube, H Zhu, O Chen. Quantum dot photocatalysts for organic transformations. Journal of Physical Chemistry Letters, 2021, 12(30): 7180–7193
https://doi.org/10.1021/acs.jpclett.1c01717
20 F Chang, J Zheng, X Wang, Q Xu, B Deng, X Hu, X Liu. Heterojuncted non-metal binary composites silicon carbide/g-C3N4 with enhanced photocatalytic performance. Materials Science in Semiconductor Processing, 2018, 75: 183–192
https://doi.org/10.1016/j.mssp.2017.11.043
21 W Qi, M Li, L Zhao. One-step fabrication of photoluminescent SiC quantum dots through radiation technique. New Journal of Chemistry, 2020, 44(31): 13301–13307
https://doi.org/10.1039/D0NJ03019H
22 R Masson, V Keller, N Keller. β-SiC alveolar foams as a structured photocatalytic support for the gas phase photocatalytic degradation of methylethylketone. Applied Catalysis B: Environmental, 2015, 170: 301–311
https://doi.org/10.1016/j.apcatb.2015.01.030
23 B Wang, Y Wang, Y Lei, N Wu, Y Gou, C Han, S Xie, D Fang. Mesoporous silicon carbide nanofibers within situembedded carbon for co-catalyst free photocatalytic hydrogen production. Nano Research, 2016, 9(3): 886–898
https://doi.org/10.1007/s12274-015-0971-z
24 S Kulkarni, V K Velisoju, F Tavares, A Dikhtiarenko, J Gascon, P Castaño. Silicon carbide in catalysis: from inert bed filler to catalytic support and multifunctional material. Catalysis Reviews. Science and Engineering, 2022, 65(1): 174–237
https://doi.org/10.1080/01614940.2022.2025670
25 X Liu, Y Yang, H Li, Z Yang, Y Fang. Visible light degradation of tetracycline using oxygen-rich titanium dioxide nanosheets decorated by carbon quantum dots. Chemical Engineering Journal, 2021, 408: 127259
https://doi.org/10.1016/j.cej.2020.127259
26 J Yang, J Feng, W Li, X Chen, X Liu, J Ruan, R Qiu, Y Xiong, S Tian. A resource-utilization way of the waste printed circuit boards to prepare silicon carbide nanoparticles and their photocatalytic application. Journal of Hazardous Materials, 2019, 373: 640–648
https://doi.org/10.1016/j.jhazmat.2019.03.115
27 Q Sun, B Zhang, Y He, K Sun, P Hou, Z Gan, L Yu, L Dong. Design and synthesis of black phosphorus quantum dot sensitized inverse opal TiO2 photonic crystal with outstanding photocatalytic activities. Applied Surface Science, 2023, 609: 155442
https://doi.org/10.1016/j.apsusc.2022.155442
28 R Jia, Q Gui, L Sui, Y Huang, H Lu, H Dong, S Ma, Z Gan, L Dong, L Yu. Active sites provided by the surface autocatalytic effect and quantum confinement for stable and efficient photocatalytic hydrogen generation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(26): 14768–14774
https://doi.org/10.1039/D1TA03830C
29 Y Zhang, Y Hu, H Zeng, L Zhong, K Liu, H Cao, W Li, H Yan. Silicon carbide recovered from photovoltaic industry waste as photocatalysts for hydrogen production. Journal of Hazardous Materials, 2017, 329: 22–29
https://doi.org/10.1016/j.jhazmat.2017.01.023
30 E Moretti, E Cattaruzza, C Flora, A Talon, E Casini, A Vomiero. Photocatalytic performance of Cu-doped titania thin films under UV light irradiation. Applied Surface Science, 2021, 553: 149535
https://doi.org/10.1016/j.apsusc.2021.149535
31 Y Guo, S Li, F Yang, C Li, Y Guo, K Xuan, G Wang, Y Liu, J Li. Efficient charge separation in sulfur doped AgFeO2 photocatalyst for enhanced photocatalytic U(VI) reduction: the role of doping and mechanism insights. Journal of Hazardous Materials, 2022, 440: 129734
https://doi.org/10.1016/j.jhazmat.2022.129734
32 Y Wen, Z Huang, M Zhao, L Zhao. Enhanced visible-light-driven photocatalytic activity of bi-phase titanium dioxide@covalent organic framework Z-scheme system for photocatalytic removal of Cr(VI). Applied Surface Science, 2022, 596: 153485
https://doi.org/10.1016/j.apsusc.2022.153485
33 J Luan, M Li, K Ma, Y Li, Z Zou. Photocatalytic activity of novel Y2InSbO7 and Y2GdSbO7 nanocatalysts for degradation of environmental pollutant rhodamine B under visible light irradiation. Chemical Engineering Journal, 2011, 167(1): 162–171
https://doi.org/10.1016/j.cej.2010.12.015
34 J Li, X Zhang, Z Ai, F Jia, L Zhang, J Lin. Efficient visible light degradation of rhodamine B by a photo-electrochemical process based on a Bi2WO6 nanoplate film electrode. Journal of Physical Chemistry C, 2007, 111(18): 6832–6836
https://doi.org/10.1021/jp070694z
35 E Erusappan, S Thiripuranthagan, R Radhakrishnan, M Durai, S Kumaravel, T Vembuli, N J Kaleekkal. Fabrication of mesoporous TiO2/PVDF photocatalytic membranes for efficient photocatalytic degradation of synthetic dyes. Journal of Environmental Chemical Engineering, 2021, 9(4): 105776
https://doi.org/10.1016/j.jece.2021.105776
36 J Ouyang, K Zhu, X Li, Y Zhu, Y Song, Y Cui. Carbon quantum dots modified oxygen doped carbon nitride nanosheets with enhanced hydrogen evolution under visible light irradiation. Journal of Molecular Structure, 2021, 1229: 129585
https://doi.org/10.1016/j.molstruc.2020.129585
37 B Chai, J Yan, C Wang, Z Ren, Y Zhu. Enhanced visible light photocatalytic degradation of rhodamine B over phosphorus doped graphitic carbon nitride. Applied Surface Science, 2017, 391: 376–383
https://doi.org/10.1016/j.apsusc.2016.06.180
38 Y Hendrix, A Lazaro, Q L Yu, H J H Brouwers. Influence of synthesis conditions on the properties of photocatalytic titania-silica composites. Journal of Photochemistry and Photobiology A, Chemistry, 2019, 371: 25–32
https://doi.org/10.1016/j.jphotochem.2018.10.040
39 S Sakarkar, S Muthukumran, V Jegatheesan. Factors affecting the degradation of remazol turquoise blue (RTB) dye by titanium dioxide (TiO2) entrapped photocatalytic membrane. Journal of Environmental Management, 2020, 272: 111090
https://doi.org/10.1016/j.jenvman.2020.111090
40 Q Sun, P Hou, S Wu, L Yu, L Dong. The enhanced photocatalytic activity of Ag-Fe2O3-TiO2 performed in Z-scheme route associated with localized surface plasmon resonance effect. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2021, 628: 127304
https://doi.org/10.1016/j.colsurfa.2021.127304
41 T Long, Z Wang, Y He, J Fang, J Feng, Q Sun. Synergistic effects of pollutant purification and heavy metal reduction in photocatalytic fuel cells. Journal of Liaocheng University, 2023, 36(5): 1–8 (in Chinese)
42 C Liu, J Wang, S Yang, X Li, X Lin. Ag3PO4 nanocrystals and g-C3N4 quantum dots decorated Ag2WO4 nanorods: ternary nanoheterostructures for photocatalytic degradation of organic contaminants in water. RSC Advances, 2019, 9(14): 8065–8072
https://doi.org/10.1039/C8RA09815H
43 M Danish, M Muneer. Facile synthesis of highly efficient Co@ZnSQDs/g-C3N4/MWCNT nanocomposites and their photocatalytic potential for the degradation of RhB dye: efficiency, degradation kinetics, and mechanism pathway. Ceramics International, 2021, 47(9): 13043–13056
https://doi.org/10.1016/j.ceramint.2021.01.168
44 X Ma, Q Xiang, Y Liao, T Wen, H Zhang. Visible-light-driven CdSe quantum dots/graphene/TiO2 nanosheets composite with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation. Applied Surface Science, 2018, 457: 846–855
https://doi.org/10.1016/j.apsusc.2018.07.003
45 C Wang, S Li, M Cai, R Yan, K Dong, J Zhang, Y Liu. Rationally designed tetra (4-carboxyphenyl) porphyrin/graphene quantum dots/bismuth molybdate Z-scheme heterojunction for tetracycline degradation and Cr(VI) reduction: performance, mechanism, intermediate toxicity appraisement. Journal of Colloid and Interface Science, 2022, 619: 307–321
https://doi.org/10.1016/j.jcis.2022.03.075
46 S Xu, J Xu, J Wu, Z Zhou, B Wang, T Lan. Designing of a novel Mn0.2Cd0.8S@ZnO heterostructure with type-II charge transfer path for efficient photocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 48(21): 7670–7682
https://doi.org/10.1016/j.ijhydene.2022.11.263
47 J Wei, Z Liu, Y Zhang, Z Yang, Z Sun, Y Li, Z Cheng. Unraveling charge transfer pathways and mechanisms in CdS@CoWO4 Z-scheme heterojunction photocatalysts for high-efficiency environmental remediation. Separation and Purification Technology, 2023, 306: 122664
https://doi.org/10.1016/j.seppur.2022.122664
[1] FCE-23028-OF-HY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed