Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (12) : 2144-2155    https://doi.org/10.1007/s11705-023-2362-4
RESEARCH ARTICLE
Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions of Cu2–xS cores with red emitting carbon dots
Alexey Stepanov1(), Svetlana Fedorenko1, Kirill Kholin2, Irek Nizameev3, Alexey Dovzhenko4, Rustem Zairov1,4, Tatiana Gerasimova1, Alexandra Voloshina1, Anna Lyubina1, Guzel Sibgatullina5, Dmitry Samigullin3,5, Asiya Mustafina1
1. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russia
2. Department of Physics, Kazan National Research Technological University, Kazan 420015, Russia
3. Department of Nanotechnology in Electronics, Kazan National Research Technical University named after A.N. Tupolev-KAI, Kazan 420111, Russia
4. Kazan (Volga region) Federal University, Kazan 420008, Russia
5. Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russia
 Download: PDF(3287 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study introduces multifunctional silica nanoparticles that exhibit both high photothermal and chemodynamic therapeutic activities, in addition to luminescence. The activity of the silica nanoparticles is derived from their plasmonic properties, which are a result of infusing the silica nanoparticles with multiple Cu2–xS cores. This infusion process is facilitated by a recoating of the silica nanoparticles with a cationic surfactant. The key factors that enable the internal incorporation of the Cu2–xS cores and the external deposition of red-emitting carbon dots are identified. The Cu2–xS cores within the silica nanoparticles exhibit both self-boosting generation of reactive oxygen species and high photothermal conversion efficacy, which are essential for photothermal and chemodynamic activities. The silica nanoparticles’ small size (no more than 70 nm) and high colloidal stability are prerequisites for their cell internalization. The internalization of the red-emitting silica nanoparticles within cells is visualized using fluorescence microscopy techniques. The chemodynamic activity of the silica nanoparticles is associated with their dark cytotoxicity, and the mechanisms of cell death are evaluated using an apoptotic assay. The photothermal activity of the silica nanoparticles is demonstrated by significant cell death under near-infrared (1064 nm) irradiation.

Keywords copper sulfide nanoparticles      chemodynamic therapy      photothermal therapy      carbon dots      silica nanoparticles     
Corresponding Author(s): Alexey Stepanov   
Just Accepted Date: 31 August 2023   Online First Date: 03 November 2023    Issue Date: 30 November 2023
 Cite this article:   
Alexey Stepanov,Svetlana Fedorenko,Kirill Kholin, et al. Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions of Cu2–xS cores with red emitting carbon dots[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2144-2155.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2362-4
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I12/2144
Fig.1  (a, b) TEM images of Cu2–xS nanoparticles and (c) their size distribution diagram.
Fig.2  Schematic demonstration of the synthetic procedures resulting in the nanoarchitectures with interior (Cu2–xS@SiO2-NH2) and exterior localization of the Cu2–xS cores (Cu2–xSRu@SiO2-NH2).
Fig.3  (a) TEM image of Cu2–xS@SiO2-NH2 NPs, (b) size distribution for Cu2–xS@SiO2-NH2, (c) size distribution for Cu2–xS cores incorporated into Cu2–xS@SiO2-NH2, (d) TEM image of Cu2–xSRu@SiO2 NPs, (e) size distribution for Cu2–xSRu@SiO2-NH2, and (f) size distribution for Cu2–xS cores incorporated into Cu2–xSRu@SiO2-NH2.
ColloidDTEM/nmDb)/nmb)Dc)/nmb)ξ/mVPDIpH
Cu2–xS@SiO2-NH261 ± 9.0277 ± 4231 ± 10+10.1 ± 0.60.286.52
9 ± 2.0d)
Cu2–xS@SiO2-NH2-CDs271 ± 3188 ± 2–33.1 ± 2.40.147.04
Cu2–xSRu@SiO2-NH238 ± 4.02941 ± 164+5.0 ± 2.40.307.05
2 ± 0.7d)
Tab.1  DLS data for Cu2–xS@SiO2-NH2, Cu2–xSRu@SiO2-NH2 and Cu2–xS@SiO2NH2-CDs aqueous colloidsa)
Fig.4  (a) Transmittance spectra of Cu2–xS@SiO2-NH2 and Cu2–xSRu@SiO2-NH2 in NIR region, (b) NPs (1 g?L–1) in D2O, (c) FTIR spectra of CDs (black) and Cu2–xS@SiO2-NH2-CDs NPs (red) in KBr pellets, and (d) excitation (black) and emission spectra (red) of Cu2–xS@SiO2-NH2-CDs NPs in aqueous colloids (λex = 545 nm, λem = 613 nm) (4 × 10?2 g·L–1).
Fig.5  The heating-cooling-heating curves of Cu2–xS@SiO2-NH2-CDs aqueous colloids under irradiation with 1064 nm laser light (1.5 W·cm–2) at different concentrations: (a) 0.243 g·L–1, 1.1 mmol·L–1 Cu; (b) 0.200 g·L–1, 0.91 mmol·L–1 Cu; (c) 0.12 g·L–1, 0.54 mmol·L–1 Cu; (d) 0.06 g·L–1, 0.27 mmol·L–1; (e) 0.03 g·L–1, 0.136 mmol·L–1 Cu (black curves refer to Cu2–xS@SiO2-NH2-CDs aqueous colloids, whereas red curves refer to deionized water for comparison); (f) the elevated temperature after the irradiation for 20 min plotted vs. concentration of the aqueous Cu2–xS@SiO2-NH2-CDs colloid.
Fig.6  (a) ESR spectra of DMPO-OH? and DMPO-R? adducts generated by Cu2–xS@SiO2NH2CDs (1, 2) and Cu2–xS@SiO2-NH2 (3) just after addition of DMPO (1, 3) and after 15 min (2), the simulated spectrum of DMPO-OH? (sim), (b) cellular uptake of Cu2–xS@SiO2-NH2-CDs (designated as Nano) by M-HeLa and Chang liver cells at a concentration of 0.03 g·L–1, * indicates p < 0.05, (c) apoptosis assay of M-HeLa incubated with Cu2–xS@SiO2-NH2-CDs, (d) apoptosis assay of Chang Liver incubated with Cu2–xS@SiO2-NH2-CDs, (e) apoptosis assay of M-HeLa incubated with Cu2–xS@SiO2-NH2, (f) apoptosis assay of Chang Liver incubated with Cu2–xS@SiO2-NH2. The scale bars illustrate the standard deviations.
SampleM-HeLaChang liver
Cu2–xS@SiO2-NH20.03 ± 0.002 g·L–10.13 ± 0.04 g·L–1
0.27 mmol·L–11.14 mmol·L–1
Cu2–xS@SiO2-NH2-CDs0.09 ± 0.01 g·L–10.1645 ± 0.05 g·L–1
0.81 mmol·L–11.44 mmol·L–1
Tab.2  IC50-values of Cu2–xS@SiO2-NH2 and Cu2–xS@SiO2-NH2-CDs measured for Chang liver and M-HeLa cell lines
Fig.7  Confocal microscopy images of the M-HeLa cells incubated with Cu2–xS@SiO2-NH2-CDs (designated as Nano, 0.03 g?L–1) and DiD.
Fig.8  The cell viability of M-HeLa cells: with no NPs and irradiation (1), incubated with 0.03 g?L–1 Cu2–xS@SiO2-NH2-CDs NPs with no irradiation (2), with no NPs but after irradiation (1064 nm) for 15 (3) and 20 min (5), incubated with 0.03 g?L–1 Cu2–xS@SiO2-NH2-CDs NPs after irradiation (1064 nm) for 15 (4) and 20 min (6).
1 M Kim, J H Lee. Plasmonic photothermal nanoparticles for niomedical applications. Advancement of Science, 2019, 6: 1900471
2 A N Nikam, A Pandey, G Fernandes, S Kulkarni, S P Mutalik, B S Padya, S D George, S Mutalik. Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: recent advances and toxicological perspectives. Coordination Chemistry Reviews, 2020, 419: 213356
https://doi.org/10.1016/j.ccr.2020.213356
3 H Sun, Y Zhang, S Chen, R Wang, Q Chen, J Li, Y Luo, X Wang, H Chen. Photothermal Fenton nanocatalysts for synergetic cancer therapy in the second near-infrared window. ACS Applied Materials & Interfaces, 2020, 12(27): 30145–30154
https://doi.org/10.1021/acsami.0c07013
4 S Goel, F Chen, W Cai. Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small, 2014, 10(4): 631–645
https://doi.org/10.1002/smll.201301174
5 Q Tian, F Jiang, R Zou, Q Liu, Z Chen, M Zhu, S Yang, J Wang, J Wang, J Hu. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano, 2011, 5(12): 9761–9771
https://doi.org/10.1021/nn203293t
6 R Marin, A Skripka, L V Besteiro, A Benayas, Z Wang, A O Govorov, P Canton, F Vetrone. Highly efficient copper sulfide-based near-infrared photothermal agents: exploring the limits of macroscopic heat conversion. Small, 2018, 14(49): 1803282
https://doi.org/10.1002/smll.201803282
7 Y Li, W Lu, Q Huang, C Li, W Chen. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine, 2010, 5(8): 1161–1171
https://doi.org/10.2217/nnm.10.85
8 C Yan, Q Tian, S Yang. Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells. RSC Advances, 2017, 7(60): 37887–37897
https://doi.org/10.1039/C7RA05468H
9 S L Li, X Chu, H L Dong, H Y Hou, Y Liu. Recent advances in augmenting Fenton chemistry of nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews, 2023, 479: 215004
https://doi.org/10.1016/j.ccr.2022.215004
10 S Behzadi, V Serpooshan, W Tao, M A Hamaly, M Y Alkawareek, E C Dreaden, D Brown, A M Alkilany, O C Farokhzad, M Mahmoudi. Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46(14): 4218–4244
https://doi.org/10.1039/C6CS00636A
11 M Xu, G Yang, H Bi, J Xu, S Dong, T Jia, Z Wang, R Zhao, Q Sun, S Gai. et al.. An intelligent nanoplatform for imaging-guided photodynamic/photothermal/chemo-therapy based on upconversion nanoparticles and CuS integrated black phosphorus. Chemical Engineering Journal, 2020, 382: 122822
https://doi.org/10.1016/j.cej.2019.122822
12 J Wang, Z H Shah, S Zhang, R Lu. Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications. Nanoscale, 2014, 6(9): 4418–4437
https://doi.org/10.1039/c3nr06025j
13 W Wei, M Wei, S Liu. Silica nanoparticles as a carrier for signal amplification. Reviews in Analytical Chemistry, 2012, 31(3–4): 163–176
https://doi.org/10.1515/revac-2012-0021
14 M Yu, Z Zhao. Plasmon-enhanced up-conversion luminescence and oxygen vacancy defect-induced yellow light in annealed Cu8S5@SiO2@Er2O3 nanocomposites. Journal of Luminescence, 2020, 225: 117361
https://doi.org/10.1016/j.jlumin.2020.117361
15 M Yu, P Tang, Q Zhang, Z Zhao, S Huang. Plasmon-enhanced up-conversion luminescence in multiple Cu2–xS@SiO2-embedded Er(OH)CO3 composites. Journal of Alloys and Compounds, 2021, 853: 156906
https://doi.org/10.1016/j.jallcom.2020.156906
16 K Liu, K Liu, J Liu, Q Ren, Z Zhao, X Wu, D Li, F Yuan, K Ye, B Li. Copper chalcogenide materials as photothermal agents for cancer treatment. Nanoscale, 2020, 12(5): 2902–2913
https://doi.org/10.1039/C9NR08737K
17 L Wang, X Ma, K Cai, X Li. Morphological effect of copper sulfide nanoparticles on their near infrared laser activated photothermal and photodynamic performance. Materials Research Express, 2019, 6(10): 105406
https://doi.org/10.1088/2053-1591/ab3a01
18 C Mutalik, G Okoro, D I Krisnawati, A Jazidie, E Q Rahmawati, D Rahayu, W T Hsu, T R Kuo. Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. Journal of Colloid and Interface Science, 2022, 607: 1825–1835
https://doi.org/10.1016/j.jcis.2021.10.019
19 O Dimitriev, Y Slominskii, M Giancaspro, F Rizzi, N Depalo, E Fanizza, T. Giancaspro Yoshida, F Rizzi, N Depalo, E Fanizza, T Yoshida. Assembling near-infrared dye on the surface of near-infrared silica-coated copper sulphide plasmonic nanoparticles. Nanomaterials, 2023, 13(3): 510
https://doi.org/10.3390/nano13030510
20 E Fanizza, R Mastrogiacomo, O Pugliese, A Guglielmelli, L D Sio, R Castaldo, M P Scavo, M Giancaspro, F Rizzi, G Gentile. et al.. NIR-absorbing mesoporous silica-coated copper sulphide nanostructures for light-to-thermal energy conversion. Nanomaterials, 2022, 12(15): 2545
https://doi.org/10.3390/nano12152545
21 B Luo, X Huang, Y Ye, J Cai, Y Feng, X Cai, X Wang. CuS NP-based nanocomposite with photothermal and augmented-photodynamic activity for magnetic resonance imaging-guided tumor synergistic therapy. Journal of Inorganic Chemistry, 2022, 235: 111940
22 Y Wang, L An, J Lin, Q Tian, S Yang. A hollow Cu9S8 theranostic nanoplatform based on a combination of increased active sites and photothermal performance in enhanced chemodynamic therapy. Chemical Engineering Journal, 2020, 385: 123925
https://doi.org/10.1016/j.cej.2019.123925
23 S Fedorenko, A Stepanov, O Bochkova, K Kholin, A Dovjenko, R Zairov, I Nizameev, T Gerasimova, I Strelnik, A Voloshina. et al.. Tailoring of silica nanoarchitecture to optimize Cu2–xS based image-guided chemodynamic therapy agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 126996
https://doi.org/10.1016/j.colsurfa.2021.126996
24 S Fedorenko, D Farvaeva, A Stepanov, O Bochkova, K Kholin, I Nizameev, S Drobyshev, T Gerasimova, A Voloshina, E Fanizza. et al.. Tricks for organic-capped Cu2–xS nanoparticles encapsulation into silica nanocomposites co-doped with red emitting luminophore for NIR activated-photothermal/chemodynamic therapy. Journal of Photochemistry and Photobiology A Chemistry, 2022, 433: 114187
https://doi.org/10.1016/j.jphotochem.2022.114187
25 G Ren, L Yu, B Zhu, M Tang, F Chai, C Wang, Z Su. Orange emissive carbon dots for colorimetric and fluorescent sensing of 2,4,6-trinitrophenol by fluorescence conversion. RSC Advances, 2018, 8(29): 16095–16102
https://doi.org/10.1039/C8RA01678J
26 N Davydov, A Mustafina, V Burilov, E Zvereva, S Katsyuba, L Vagapova, A Konovalov, I Antipin. Complex formation of d-metal ions at the interface of TbIII -doped silica nanoparticles as a basis of substrate-responsive TbIII-centered luminescence. ChemPhysChem, 2012, 13(14): 3357–3364
https://doi.org/10.1002/cphc.201200367
27 N D Donahue, H Acar, S Wilhelm. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Advanced Drug Delivery Reviews, 2019, 143: 68–96
https://doi.org/10.1016/j.addr.2019.04.008
28 D Manzanares, V Ceña. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 2020, 12(4): 371
https://doi.org/10.3390/pharmaceutics12040371
29 R Augustine, A Hasan, R Primavera, R J Wilson, A S Thakor, B D Kevadiya. Cellular uptake and retention of nanoparticles: insights on particle properties and interaction with cellular components. Materials Today. Communications, 2020, 25: 101692
https://doi.org/10.1016/j.mtcomm.2020.101692
30 S V Fedorenko, A R Mustafina, A R Mukhametshina, M E Jilkin, T A Mukhametzyanov, A O Solovieva, T N Pozmogova, L V Shestopalova, M A Shestopalov, K V Kholin. et al.. Cellular imaging by green luminescence of Tb(III)-doped aminomodified silica nanoparticles. Materials Science and Engineering A, 2017, 76: 551–558
31 J Elistratova, A Mukhametshina, K Kholin, I Nizameev, M Mikhailov, M Sokolov, R Khairullin, R Miftakhova, G Shammas, M Kadirov. et al.. Interfacial uploading of luminescent hexamolybdenum cluster units onto amino-decorated silica nanoparticles as new design of nanomaterial for cellular imaging and photodynamic therapy. Journal of Colloid and Interface Science, 2019, 538: 387–396
https://doi.org/10.1016/j.jcis.2018.12.013
32 C de la Torre, R Gavara, A Garcia-Fernandez, M Mikhaylov, M N Sokolov, J F Miravet, F Sancenon, R Martinez-Manez, F Galindo. Enhancement of photoactivity and cellular uptake of (Bu4N)2[Mo6I8(CH3COO)6] complex by loading on porous MCM-41 support. Photodynamic studies as an anticancer agent. Biomaterials Advances, 2022, 140: 213057
https://doi.org/10.1016/j.bioadv.2022.213057
33 Z Zhang, H Zhu, N Peng, J Song, R Sun, J Wang, F Zhu, Y Wang. Red emissive carbon dots-based probe for rapid identification and continuous tracking of Gram-positive bacteria in tumor cells. Materials Letters, 2023, 341: 134233
https://doi.org/10.1016/j.matlet.2023.134233
34 X Wang, Y Cao, X Hu, L Cai, H Wang, G Fang, S Wang. A novel fluorescent biomimetic sensor based on cerium, nitrogen co-doped carbon quantum dots embedded in cobalt-based metal organic framework@molecularly imprinted polymer for selective and sensitive detection of oxytetracycline. Microchemical Journal, 2023, 190: 108606
https://doi.org/10.1016/j.microc.2023.108606
35 F Luo, M Zhu, Y Liu, J Sun, F Gao. Ratiometric and visual determination of copper ions with fluorescent nanohybrids of semiconducting polymer nanoparticles and carbon dots. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2023, 295: 122574
https://doi.org/10.1016/j.saa.2023.122574
36 Y Wang, R Wu, Y Zhang, S Cheng, Y Zhang. High quantum yield nitrogen doped carbon dots for Ag+ sensing and bioimaging. Journal of Molecular Structure, 2023, 1283: 135212
https://doi.org/10.1016/j.molstruc.2023.135212
37 R K Sajwan, P R Solanki. Gold@carbon quantum dots nanocomposites based two-in-one sensor: a novel approach for sensitive detection of aminoglycosides antibiotics in food samples. Food Chemistry, 2023, 415: 135590
https://doi.org/10.1016/j.foodchem.2023.135590
38 O Bochkova, A Dovjenko, R Zairov, K Kholin, R Biktimirova, S Fedorenko, I Nizameev, A Laskin, A Voloshina, A Lyubina. et al.. Silica-supported assemblage of CuII ions with carbon dots for self-boosting and glutathione-induced ROS generation. Coatings, 2022, 12(1): 97
https://doi.org/10.3390/coatings12010097
39 Y Yu, M Song, C Chen, Y Du, C Li, Y Han, F Yan, Z Shi, S Feng. Bortezomib-encapsulated CuS/carbon dot nanocomposites for enhanced photothermal therapy via stabilization of polyubiquitinated substrates in the proteasomal degradation pathway. ACS Nano, 2020, 14(8): 10688–10703
https://doi.org/10.1021/acsnano.0c05332
40 D K Roper, W Ahn, M Hoepfner. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. Journal of Physical Chemistry C, 2007, 111(9): 3636–3641
https://doi.org/10.1021/jp064341w
41 N Ain, J Abdul Nasir, Z Khan, I S Butler, Z Rehman. Copper sulfide nanostructures: synthesis and biological applications. RSC Advances, 2022, 12(12): 7550–7567
https://doi.org/10.1039/D1RA08414C
42 L Zhang, H Pan, Y Li, F Li, X Huang. Constructing Cu7S4@SiO2/DOX multifunctional nanoplatforms for synergistic photothermal-chemotherapy on melanoma tumors. Frontiers in Bioengineering and Biotechnology Sec. Biomaterials, 2020, 8: 579439
43 N An, Y Wang, M Li, H Lin, F Qu. The synthesis of core-shell Cu9S5@mSiO2-ICG@PEG-LA for photothermal and photodynamic therapy. New Journal of Chemistry, 2018, 42(22): 18318–18327
https://doi.org/10.1039/C8NJ03712D
44 Z Tang, Y Liu, M He, W Bu. Chemodynamic therapy: tumour microenvironment mediated Fenton and Fenton-like reactions. Angewandte Chemie International Edition, 2019, 58(4): 946–956
https://doi.org/10.1002/anie.201805664
45 F Gao, J Liu, P Gong, Y Yang, Y Jiang. Carbon dots as potential antioxidants for the scavenging of multi-reactive oxygen and nitrogen species. Chemical Engineering Journal, 2023, 462: 142338
https://doi.org/10.1016/j.cej.2023.142338
46 K Zhang, X Meng, Z Yang, H Dong, X Zhang. Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem. Biomaterials, 2020, 258: 120278
https://doi.org/10.1016/j.biomaterials.2020.120278
47 U K Komarnicka, B Pucelik, D Wojtala, M K Lesiów, G Stochel, A Kyzioł. Evaluation of anticancer activity in vitro of a stable copper(I) complex with phosphine-peptide conjugate. Scientific Reports, 2021, 11(1): 23943
https://doi.org/10.1038/s41598-021-03352-2
48 T Tsvetkov, S Coy, B Petrova, M Dreishpoon, A Verma, M Abdusamad, J Rossen, L Joesch-Cohen, R Humeidi, D Spangler Ryan, J K Eaton, E Frenkel, M Kocak, S M Corsello, S Lutsenko, N Kanarek, S Santagata, T R Golub. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586): 1254–1261
https://doi.org/10.1126/science.abf0529
49 H M McBride, M Neuspiel, S Wasiak. Mitochondria: more than just a powerhouse. Current Biology, 2006, 16(14): R551–R560
https://doi.org/10.1016/j.cub.2006.06.054
[1] FCE-23040-OF-SA_suppl_1 Download
[1] Yixuan Chang, Fanwei Kong, Zihao Zhu, Ziai Wang, Chunxia Chen, Xiaobai Li, Hongwei Ma. Lignin-derived dual-function red light carbon dots for hypochlorite detection and anti-counterfeiting[J]. Front. Chem. Sci. Eng., 2023, 17(7): 966-975.
[2] Trisita Ghosh, Rajkumar Sahoo, Suman Kumar Ghosh, Pallab Banerji, Narayan Ch. Das. Simplistic hydrothermal synthesis approach for fabricating photoluminescent carbon dots and its potential application as an efficient sensor probe for toxic lead(II) ion detection[J]. Front. Chem. Sci. Eng., 2023, 17(5): 536-547.
[3] Li Yang, Mengqi Wang, Xiaoyu Gu, Wei Zhang, Ping Li, Wen Zhang, Hui Wang, Bo Tang. Carbon dots-based fluorescence sensor for two-photon imaging of pH in diabetic mice[J]. Front. Chem. Sci. Eng., 2023, 17(3): 298-306.
[4] Xiaokai SONG,Zhongyi JIANG,Lin LI,Hong WU. Immobilization of β-glucuronidase in lysozyme-induced biosilica particles to improve its stability[J]. Front. Chem. Sci. Eng., 2014, 8(3): 353-361.
[5] Xiaoqing REN,Hongwei CHEN,Victor YANG,Duxin SUN. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy[J]. Front. Chem. Sci. Eng., 2014, 8(3): 253-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed