Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (2) : 15    https://doi.org/10.1007/s11705-023-2381-1
Plasma-exfoliated g-C3N4 with oxygen doping: tailoring photocatalytic properties
Yuxin Li, Junxin Guo, Rui Han, Zhao Wang()
National Engineering Research Centre of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(7489 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heteroatom doping and defect engineering have been proposed as effective ways to modulate the energy band structure and improve the photocatalytic activity of g-C3N4. In this work, ultrathin defective g-C3N4 was successfully prepared using cold plasma. Plasma exfoliation reduces the thickness of g-C3N4 from 10 nm to 3 nm, while simultaneously introducing a large number of nitrogen defects and oxygen atoms into g-C3N4. The amount of doped O was regulated by varying the time and power of the plasma treatment. Due to N vacancies, O atoms formed strong bonds with C atoms, resulting in O doping in g-C3N4. The mechanism of plasma treatment involves oxygen etching and gas expansion. Photocatalytic experiments demonstrated that appropriate amount of O doping improved the photocatalytic degradation of rhodamine B compared with pure g-C3N4. The introduction of O optimized the energy band structure and photoelectric properties of g-C3N4. Active species trapping experiments revealed ·O2 as the main active species during the degradation.

Keywords graphitic carbon nitride      cold plasma      oxygen doping      nitrogen defect      visible-light photocatalysis     
Corresponding Author(s): Zhao Wang   
Just Accepted Date: 06 November 2023   Issue Date: 03 January 2024
 Cite this article:   
Yuxin Li,Junxin Guo,Rui Han, et al. Plasma-exfoliated g-C3N4 with oxygen doping: tailoring photocatalytic properties[J]. Front. Chem. Sci. Eng., 2024, 18(2): 15.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2381-1
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I2/15
Fig.1  XRD and FTIR characterization of samples: (a) XRD patterns; (b) FTIR spectra.
Fig.2  SEM and TEM images of (a, c) CN, (b, d) OCN-100-6; AFM images and corresponding height curves of (e, g) CN, (f, h) OCN-100-6.
Fig.3  The specific surface area and pore structure of catalysts: (a) N2 adsorption-desorption isotherms, (b) pore analysis.
SamplePeak area/%
C 1sN 1sO 1s
N–C–ON–C=NC–N=CN–C–OAbsorbed H2O
CN6.0269.3483.8575.3324.67
OCN-100-37.5067.8581.7879.3920.61
OCN-100-612.7461.0075.0582.7917.03
OCN-100-1215.2048.4970.5287.5412.46
OCN-60-68.7764.9080.2782.3417.66
OCN-150-614.0659.2274.2387.6412.36
Tab.1  Percentage values of peak area in high-resolution XPS spectrum
Fig.4  High-resolution XPS spectra for C 1s, N 1s and O 1s: (a, c, e) with different plasma treatment time; (b, d, f) with different plasma power.
SampleCNOCN-100-3OCN-100-6OCN-100-12OCN-60-6OCN-150-6
O/%2.212.894.495.432.905.44
Tab.2  Percentage of oxygen for CN and OCN samples
Fig.5  EPR and mass spectrometry of the samples: (a) EPR spectra of CN, OCN-100-6 and DCN-100-6; (b) online mass spectrogram of OCN-100-6 during plasma treatment.
Fig.6  Diagram of formation mechanism of nitrogen defects and oxygen doping in carbon nitride during the plasma treatment.
Fig.7  The photocatalytic activity of the catalysts: (a), (b) photocatalytic degradation of RhB over the catalysts; (c) kinetics of RhB degradation by plotting ln(C0/Ct) vs. irradiation times; (d) the photodegradation stability of RhB over OCN-100-6.
Fig.8  The photoelectric properties of the catalysts: (a) UV-Vis DRS, (b) the band gap energies, (c) M–S plots, (d) PL spectra, (e) EIS and (f) transient photocurrent responses of CN and OCN-100-6.
Fig.9  The active species testing: (a) radicals capture experiments for photocatalytic degradation of RhB over OCN-100-6; BQ, benzoquinone; IPA, isopropanol; (b) DMPO-·O2? and (c) DMPO-·OH of ESR spectra over OCN-100-6 in dark and light conditions.
Fig.10  Proposed mechanism for photocatalytic degradation of RhB over OCN-100-6.
1 C P Xu , P R Anusuyadevi , C Aymonier , R Luque , S Marre . Nanostructured materials for photocatalysis. Chemical Society Reviews, 2019, 48(14): 3868–3902
https://doi.org/10.1039/C9CS00102F
2 Z Wang , C Li , K Domen . Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews, 2019, 48(7): 2109–2125
https://doi.org/10.1039/C8CS00542G
3 J H Kou , C H Lu , J Wang , Y K Chen , Z Z Xu , R S Varma . Selectivity enhancement in heterogeneous photocatalytic transformations. Chemical Reviews, 2017, 117(3): 1445–1514
https://doi.org/10.1021/acs.chemrev.6b00396
4 Z Ajmal , A Hayat , M Qasim , A Kumar , A El Jery , W Abbas , M B Hussain , A Qadeer , S Iqbal , S Bashir . et al.. Assembly of a novel Fe2TiO5-impregnated donor-n-acceptor conjugated carbon nitride for highly efficient solar water splitting. Sustainable Materials and Technologies, 2023, 36: e00594
https://doi.org/10.1016/j.susmat.2023.e00594
5 P F Xia , S W Cao , B C Zhu , M J Liu , M S Shi , J G Yu , Y F Zhang . Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angewandte Chemie International Edition, 2020, 59(13): 5218–5225
https://doi.org/10.1002/anie.201916012
6 M S Nasir , G R Yang , I Ayub , S Wang , L Wang , X J Wang , W Yan , S J Peng , S Ramakarishna . Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Applied Catalysis B: Environmental, 2019, 257: 117855
https://doi.org/10.1016/j.apcatb.2019.117855
7 G P Dong , Y H Zhang , Q W Pan , J R Qiu . A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2014, 20: 33–50
https://doi.org/10.1016/j.jphotochemrev.2014.04.002
8 B Y Liu , J Y Du , G L Ke , B Jia , Y J Huang , H C He , Y Zhou , Z G Zou . Boosting O2 reduction and H2O dehydrogenation kinetics: surface N-hydroxymethylation of g-C3N4 photocatalysts for the efficient production of H2O2. Advanced Functional Materials, 2022, 32(15): 2111125
https://doi.org/10.1002/adfm.202111125
9 X C Wang , K Maeda , A Thomas , K Takanabe , G Xin , J M Carlsson , K Domen , M Antonietti . A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009, 8(1): 76–80
https://doi.org/10.1038/nmat2317
10 G F Liao , Y Gong , L Zhang , H Y Gao , G J Yang , B Z Fang . Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy & Environmental Science, 2019, 12(7): 2080–2147
https://doi.org/10.1039/C9EE00717B
11 Q Cao , B Kumru , M Antonietti , B Schmidt . Graphitic carbon nitride and polymers: a mutual combination for advanced properties. Materials Horizons, 2020, 7(3): 762–786
https://doi.org/10.1039/C9MH01497G
12 Y Wang , X C Wang , M Antonietti . Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie International Edition, 2012, 51(1): 68–89
https://doi.org/10.1002/anie.201101182
13 J J Zhu , P Xiao , H L Li , S A C Carabineiro . Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Applied Materials & Interfaces, 2014, 6(19): 16449–16465
https://doi.org/10.1021/am502925j
14 J L Wang , S Z Wang . A critical review on graphitic carbon nitride (g-C3N4)-based materials: preparation, modification and environmental application. Coordination Chemistry Reviews, 2022, 453: 214338
https://doi.org/10.1016/j.ccr.2021.214338
15 V Hasija , P Raizada , A Sudhaik , K Sharma , A Kumar , P Singh , S B Jonnalagadda , V K Thakur . Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Applied Materials Today, 2019, 15: 494–524
https://doi.org/10.1016/j.apmt.2019.04.003
16 L B Jiang , X Z Yuan , Y Pan , J Liang , G M Zeng , Z B Wu , H Wang . Doping of graphitic carbon nitride for photocatalysis: a reveiw. Applied Catalysis B: Environmental, 2017, 217: 388–406
https://doi.org/10.1016/j.apcatb.2017.06.003
17 T Liu , W Zhu , N Wang , K Y Zhang , X Wen , Y Xing , Y F Li . Preparation of structure vacancy defect modified diatomic-layered g-C3N4 nanosheet with enhanced photocatalytic performance. Advanced Science, 2023, 10(24): 2302503
https://doi.org/10.1002/advs.202302503
18 X Q Liu , W Kang , W Zeng , Y X Zhang , L Qi , F L Ling , L Fang , Q Chen , M Zhou . Structural, electronic and photocatalytic properties of g-C3N4 with intrinsic defects: a first-principles hybrid functional investigation. Applied Surface Science, 2020, 499: 143994
https://doi.org/10.1016/j.apsusc.2019.143994
19 C B Bie , B Cheng , J J Fan , W K Ho , J G Yu . Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts. EnergyChem, 2021, 3(2): 100051
https://doi.org/10.1016/j.enchem.2021.100051
20 U Ghosh , A Majumdar , A Pal . Photocatalytic CO2 reduction over g-C3N4 based heterostructures: recent progress and prospects. Journal of Environmental Chemical Engineering, 2021, 9(1): 104631
https://doi.org/10.1016/j.jece.2020.104631
21 C Cheng , L H Mao , X Kang , C L Dong , Y C Huang , S H Shen , J W Shi , L J Guo . A high-cyano groups-content amorphous-crystalline carbon nitride isotype heterojunction photocatalyst for high-quantum-yield H2 production and enhanced CO2 reduction. Applied Catalysis B: Environmental, 2023, 331: 122733
https://doi.org/10.1016/j.apcatb.2023.122733
22 J Barrio , M Shalom . Ultralong nanostructured carbon nitride wires and self-standing C-rich filters from supramolecular microspheres. ACS Applied Materials & Interfaces, 2018, 10(46): 39688–39694
https://doi.org/10.1021/acsami.8b13873
23 Y Chen , F Ding , A Khaing , D Yang , Z Y Jiang . Acetic acid-assisted supramolecular assembly synthesis of porous g-C3N4 hexagonal prism with excellent photocatalytic activity. Applied Surface Science, 2019, 479: 757–764
https://doi.org/10.1016/j.apsusc.2019.02.176
24 C Z Wu , S Y Xue , Z J Qin , M Nazari , G Yang , S Yue , T Tong , H Ghasemi , F C R Hernandez , S C Xue . et al.. Making g-C3N4 ultra-thin nanosheets active for photocatalytic overall water splitting. Applied Catalysis B: Environmental, 2021, 282: 119557
https://doi.org/10.1016/j.apcatb.2020.119557
25 R C Shen , L Zhang , N Li , Z Z Lou , T Y Ma , P Zhang , Y J Li , X Li . W–N bonds precisely boost Z-scheme interfacial charge transfer in g-C3N4/WO3 heterojunctions for enhanced photocatalytic H2 evolution. ACS Catalysis, 2022, 12(16): 9994–10003
https://doi.org/10.1021/acscatal.2c02416
26 X Y Zhang , G Yang , J Q Meng , L Qin , M Ren , Y Pan , Y X Yang , Y H Guo . Acetamide- or aormamide-assisted in situ approach to carbon-rich or nitrogen-deficient graphitic carbon nitride for notably enhanced visible-light photocatalytic redox performance. Small, 2023, 19(24): 2208012
https://doi.org/10.1002/smll.202208012
27 D D Zhu , Q X Zhou . Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light. Applied Catalysis B: Environmental, 2021, 281: 119474
https://doi.org/10.1016/j.apcatb.2020.119474
28 S D Sun , J Li , J Cui , X F Gou , Q Yang , S H Liang , Z M Yang , J M Zhang . Constructing oxygen-doped g-C3N4 nanosheets with an enlarged conductive band edge for enhanced visible-light-driven hydrogen evolution. Inorganic Chemistry Frontiers, 2018, 5(7): 1721–1727
https://doi.org/10.1039/C8QI00242H
29 X Xia , C Xie , B G Xu , X S Ji , G G Gao , P Yang . Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. Journal of Industrial and Engineering Chemistry, 2022, 105: 303–312
https://doi.org/10.1016/j.jiec.2021.09.033
30 L Y Duan , G Q Li , S T Zhang , H Y Wang , Y L Zhao , Y F Zhang . Preparation of S-doped g-C3N4 with C vacancies using the desulfurized waste liquid extracting salt and its application for NOx removal. Chemical Engineering Journal, 2021, 411: 128551
https://doi.org/10.1016/j.cej.2021.128551
31 F Wu , Y L Ma , Y H Hu . Near infrared light-driven photoelectrocatalytic water splitting over P-doped g-C3N4. ACS Applied Energy Materials, 2020, 3(11): 11223–11230
https://doi.org/10.1021/acsaem.0c02148
32 Y Ding , S Maitra , C H Wang , R T Zheng , M Y Zhang , T Barakat , S Roy , J Liu , Y Li , T Hasan . et al.. Hydrophilic bi-functional B-doped g-C3N4 hierarchical architecture for excellent photocatalytic H2O2 production and photoelectrochemical water splitting. Journal of Energy Chemistry, 2022, 70: 236–247
https://doi.org/10.1016/j.jechem.2022.02.031
33 Z Wang , Y Zhang , E C Neyts , X X Cao , X S Zhang , B W L Jang , C J Liu . Catalyst preparation with plasmas: How does it work?. ACS Catalysis, 2018, 8(3): 2093–2110
https://doi.org/10.1021/acscatal.7b03723
34 B J Huang , F Tian , Y D Shen , M R Zheng , Y S Zhao , J Wu , Y Liu , S J Pennycook , J T L Thong . Selective engineering of chalcogen defects in MoS2 by low-energy helium plasma. ACS Applied Materials & Interfaces, 2019, 11(27): 24404–24411
https://doi.org/10.1021/acsami.9b05507
35 B Bharti , S Kumar , H N Lee , R Kumar . Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Scientific Reports, 2016, 6(1): 32355
https://doi.org/10.1038/srep32355
36 A Azcatl , X Y Qin , A Prakash , C X Zhang , L X Cheng , Q X Wang , N Lu , M J Kim , J Kim , K Cho . et al.. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Letters, 2016, 16(9): 5437–5443
https://doi.org/10.1021/acs.nanolett.6b01853
37 K Akada , S Obata , K Saiki . Radio-frequency plasma assisted reduction and nitrogen doping of graphene oxide. Carbon, 2022, 189: 571–578
https://doi.org/10.1016/j.carbon.2021.12.074
38 J N Zhang , L Y Ji , J B Gong , Z Wang . Facile synthesis of multiphase cobalt-iron spinel with enriched oxygen vacancies as a bifunctional oxygen electrocatalyst. Physical Chemistry Chemical Physics, 2022, 24(22): 13839–13847
https://doi.org/10.1039/D2CP00761D
39 X L Lu , K Xu , P Z Chen , K C Jia , S Liu , C Z Wu . Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(44): 18924–18928
https://doi.org/10.1039/C4TA04487H
40 D Zhang , Y L Guo , Z K Zhao . Porous defect-modified graphitic carbon nitride via a facile one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Catalysis B: Environmental, 2018, 226: 1–9
https://doi.org/10.1016/j.apcatb.2017.12.044
41 Z Luo , S S Tian , Z Wang . Enhanced activity of Cu/ZnO/C catalysts prepared by cold plasma for CO2 hydrogenation to methanol. Industrial & Engineering Chemistry Research, 2020, 59(13): 5657–5663
https://doi.org/10.1021/acs.iecr.9b06996
42 B Zhang , X F Peng , Z Wang . Noble metal-free TiO2-coated carbon nitride layers for enhanced visible light-driven photocatalysis. Nanomaterials, 2020, 10(4): 805
https://doi.org/10.3390/nano10040805
43 J Zhang , J W Chen , Y F Wan , H W Liu , W Chen , G Wang , R L Wang . Defect engineering in atomic-layered graphitic carbon nitride for greatly extended visible-light photocatalytic hydrogen evolution. ACS Applied Materials & Interfaces, 2020, 12(12): 13805–13812
https://doi.org/10.1021/acsami.9b21115
44 J A Chen , X Y Fu , H Chen , Z Wang . Simultaneous Gd2O3 clusters decoration and O-doping of g-C3N4 by solvothermal-polycondensation method for reinforced photocatalytic activity towards sulfamerazine. Journal of Hazardous Materials, 2021, 402: 123780
https://doi.org/10.1016/j.jhazmat.2020.123780
45 X Y Wang , L B Sang , L Zhang , G Yang , Y H Guo , Y X Yang . Controllable synthesis for carbon self-doping and structural defect co-modified g-C3N4: enhanced photocatalytic oxidation performance and the mechanism insight. Journal of Alloys and Compounds, 2023, 941: 168921
https://doi.org/10.1016/j.jallcom.2023.168921
46 S B Yang , Y J Gong , J S Zhang , L Zhan , L L Ma , Z Y Fang , R Vajtai , X C Wang , P M Ajayan . Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Advanced Materials, 2013, 25(17): 2452–2456
https://doi.org/10.1002/adma.201204453
47 X X Yang , J D Sun , L N Sheng , Z Y Wang , Y L Ye , J Y Zheng , M H Fan , Y Z Zhang , X L Sun . Carbon dots cooperatively modulating photocatalytic performance and surface charge of O-doped g-C3N4 for efficient water disinfection. Journal of Colloid and Interface Science, 2023, 631: 25–34
https://doi.org/10.1016/j.jcis.2022.11.002
48 H S H Mohamed , L Wu , C F Li , Z Y Hu , J Liu , Z Deng , L H Chen , Y Li , B L Su . In-situ growing mesoporous CuO/O-doped g-C3N4 nanospheres for highly enhanced lithium storage. ACS Applied Materials & Interfaces, 2019, 11(36): 32957–32968
https://doi.org/10.1021/acsami.9b10171
49 B C Zhu , L Y Zhang , B Cheng , J G Yu . First-principle calculation study of tri-s-triazine-based g-C3N4: a review. Applied Catalysis B: Environmental, 2018, 224: 983–999
https://doi.org/10.1016/j.apcatb.2017.11.025
50 F A Qaraah , S A Mahyoub , A Hezam , Q A Drmosh , J Munyaneza , Q Yu , G L Xiu . One step-polymerization for constructing 1D/2D oxygen doped g-C3N4 isotype heterojunctions with highly improved visible-light-driven photocatalytic activity. Journal of Environmental Chemical Engineering, 2021, 9(6): 106587
https://doi.org/10.1016/j.jece.2021.106587
51 Y M Zheng , Y Y Liu , X L Guo , Z T Chen , W J Zhang , Y X Wang , X Tang , Y Zhang , Y H Zhao . Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. Journal of Materials Science and Technology, 2020, 41: 117–126
https://doi.org/10.1016/j.jmst.2019.09.018
[1] FCE-23060-OF-LY_suppl_1 Download
[1] Huilin Xu, Xiangfeng Peng, Jingxuan Zheng, Zhao Wang. Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic activity[J]. Front. Chem. Sci. Eng., 2023, 17(1): 93-101.
[2] Fan Ge, Qingan Qiao, Xin Chen, You Wu. Probing the catalytic activity of M-N4xOx embedded graphene for the oxygen reduction reaction by density functional theory[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1206-1216.
[3] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed