Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (2) : 16    https://doi.org/10.1007/s11705-023-2382-0
Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures
Yulun Liu1, Yaojie Zhu2, Zuowei Yan1, Ruixue Bai1, Xilin Zhang1, Yanbo Ren1, Xiaoyu Cheng1, Hui Ma2(), Chongyun Jiang1()
1. College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
2. School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
 Download: PDF(8327 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Excitonic devices are an emerging class of technology that utilizes excitons as carriers for encoding, transmitting, and storing information. Van der Waals heterostructures based on transition metal dichalcogenides often exhibit a type II band alignment, which facilitates the generation of interlayer excitons. As a bonded pair of electrons and holes in the separation layer, interlayer excitons offer the chance to investigate exciton transport due to their intrinsic out-of-plane dipole moment and extended exciton lifetime. Furthermore, interlayer excitons can potentially analyze other encoding strategies for information processing beyond the conventional utilization of spin and charge. The review provided valuable insights and recommendations for researchers studying interlayer excitonic devices within van der Waals heterostructures based on transition metal dichalcogenides. Firstly, we provide an overview of the essential attributes of transition metal dichalcogenide materials, focusing on their fundamental properties, excitonic effects, and the distinctive features exhibited by interlayer excitons in van der Waals heterostructures. Subsequently, this discourse emphasizes the recent advancements in interlayer excitonic devices founded on van der Waals heterostructures, with specific attention is given to the utilization of valley electronics for information processing, employing the valley index. In conclusion, this paper examines the potential and current challenges associated with excitonic devices.

Keywords excitonic devices      van der Waals heterostructures      transition metal dichalcogenides      interlayer excitons      valley-Hall effect      optoelectronics     
Corresponding Author(s): Hui Ma,Chongyun Jiang   
Just Accepted Date: 21 November 2023   Issue Date: 03 January 2024
 Cite this article:   
Yulun Liu,Yaojie Zhu,Zuowei Yan, et al. Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures[J]. Front. Chem. Sci. Eng., 2024, 18(2): 16.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2382-0
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I2/16
Fig.1  Structure and electronic properties of TMDs. (a) Atomic structure of single-layer TMDs: trigonal prismatic 2H phase, distorted octahedral 1T phase, orthorhombic Td phase, monoclinic 1T′ phase, and Pe phase. Reprinted with permission from ref [43], copyright 2023, John Wiley & Sons Inc. (b) The evolution of the band structure of monolayer MoS2 from 1H to 1T′. Reprinted with permission from ref [42], copyright 2021, Royal Society of Chemistry. (c) The evolution of the band structure of 2H-MoS2 from bulk to monolayer (The red (blue) curve indicates the conduction band (valence band), the arrows indicate the transition paths, and the dashed line serves as a contrast to the solid line). Reprinted with permission from ref [44], copyright 2017, Springer Nature. (d) Illustration of the band structure of monolayer 2H-MoS2, displaying the spin splitting of the band structure at the K and K′ points on the corners of the Brillouin zone (The colors orange and blue are indicative of spin polarization in the upward and downward directions, respectively). Reprinted with permission from ref [44], copyright 2017, Springer Nature. (e) Optical absorption and PL spectra of monolayer MoS2 at 14 K (Upper panel: differential reflectance spectra showing narrow A-exciton and broad B-exciton features. The red, yellow and green arrows represent the three different photon energy used to excite the sample in the PL measurement. Lower panel: PL spectrum for 532 nm excitation. A, B excitons and lower energy localized state excitons can be identified from the spectrum). Reprinted with permission from ref [48], copyright 2012, Springer Nature. (f) Schematic of bright and dark excitons based on monolayer WX2, MoX2, with arrows indicating the spin direction. The optical transitions at the lowest energy of the K valley in monolayer WX2 (MoX2) are in the dark (bright) state.
Fig.2  Excitonic effects in monolayer TMDs. (a) Two exciton types: the Frenkel type and the Wannier type. (b) The exciton binding energy Eb is related to the optical band gap E and the electronic band gap Eg. (c) Hexagonal Brillouin zone and the optical selection rule for the K(K′) valley. the K(K′) valley can be excited by σ+ (σ) circularly polarized light. (d, e) Modulation of valley pseudospin by: optical [57], electrical filed [58], and magnetic field [59], respectively. Reprinted with permission from ref [57], copyright 2015, Springer Nature, ref [58], copyright 2022, Springer Nature, and ref [59], copyright 2015, Springer Nature.
Fig.3  IXs in TMDs vdW heterostructures. (a) Schematic representation of IXs in bulk TMDs. The IXs are spatially separated with electrons and holes in different layers. Reprinted with permission from ref [68], copyright 2018, Royal Society of Chemistry. (b) Calculations of the energy band arrangement in a single layer of TMDs (The bars (line-dot plots) represent the CBM (red) and VBM (blue) values obtained from the PBE (HSE06) calculations. The positions of CBM and VBM in the Brillouin zone are shown in the picture). Reprinted with permission from ref [75], copyright 2016, American Physical Society. (c) PL spectrum of the WSe2/MoSe2 heterostructure (IXs is located at ~1.4 eV (red line). The orange spectrum shows the PL of the intralayer exciton with an integration time of 100 times longer, and the intensity of the intralayer exciton is significantly quenched. The inset shows the exciton PL spectra for monolayer MoSe2 (purple) and WSe2 (green)). Reprinted with permission from ref [90], 2021, Springer Nature. (d) Schematic of charge transfer in type II heterostructures. Reprinted with permission from ref [110], copyright 2017, Walter de Gruyter. (e) PLE spectra of the WSe2/MoSe2 heterostructure. The PLE intensity graphs show two prominent resonances at 1.64 and 1.72 eV corresponding to the monolayer MoSe2 and WSe2 intralayer exciton states. Reprinted with permission from ref [94], copyright 2021, Springer Nature. (f) Schematic of the WSe2/MoSe2 vdW heterostructure of a bilayer h-BN insertion. Reprinted with permission from ref [24], copyright 2022, American Chemical Society. (g) Two stacking patterns of vdW heterostructures: 0° stacking (3R stacking) and 60° stacking (2H stacking). Reprinted with permission from ref [111], copyright 2016, Royal Society of Chemistry.
Fig.4  Recent progress in vdW heterostructure fabrication and synthesis. (a) TMDs heterobilayers stacked mechanically (top) and grown by CVD (bottom). Reprinted with permission from ref [124], copyright 2022, Springer Nature. (b) STEM images of the heterobilayers with AA (g) and AB (h) stacking. The insets are filtered images. The scale bar is 0.5 nm. Reprinted with permission from ref [113], copyright 2018, Springer Nature. (c) Schematic and optical images of the vertically stacked IP WS2/MoS2 heterostructures synthesized at 850 °C (650 °C), showing the bilayer feature and the high yield of the triangular heterostructures. Reprinted with permission from ref [112], copyright 2014, Springer Nature. (d) Schematic process flow for assembly of 2D heterostructures by pick-up and drop-down (PPC, polypropylene carbonate). Reprinted with permission from ref [118], copyright 2016, Springer Nature. (e) Schematic of the Au-assisted exfoliation of 2D materials process. Reprinted with permission from ref [122], copyright 2020, Springer Nature.
Fig.5  Fundamental properties of IXs. (a) Schematic illustration of the IXs dipole moment in MoSe2/WSe2 heterostructures under a vertical electric field. Reprinted with permission from ref [146], copyright 2020, Springer Nature. Due to the type II energy band arrangement, electrons and holes are separated in MoSe2 and WSe2, respectively, forming permanent OP dipoles. The electron and hole wave functions are depicted as green and violet ellipses, respectively. (b) Stark effect of IXs in MoSe2/WSe2 heterostructures [125]. The energy shift is linear under vertical electric field tuning. Reprinted with permission from ref [125], copyright 2019, Springer Nature. (c) Low-temperature PL spectra of IXs in MoSe2/WSe2 heterostructures [128]. As the excitation power increases, the IXs density increases and the dipole-dipole repulsion leads to a blue shift in the emission energy (HBL, hetero-bilayer; LIX, localized IX). Reprinted with permission from ref [128], copyright 2020, Springer Nature. (d) PL decay curves of IXs in MoSe2/WSe2 heterostructures at temperatures ranging from 5 to 50 K with exciton lifetimes on the order of ns. Reprinted with permission from ref [20], copyright 2023, John Wiley and Sons Inc. (e–g) Landau g-factors for IXs in MoSe2/WSe2 heterostructures with twist angles of 57° (e), 20° (f) and 2° (g). Reprinted with permission from ref [105], copyright 2019, Springer Nature.
Fig.6  Typical tuning methods for IXs in TMDs vdW heterostructures. (a) IXs PL spectra versus electric field. Reprinted with permission from ref [33], copyright 2019, American Association for the Advancement of Science. (b) Magneto-PL spectra of IXs. Reprinted with permission from ref [143], copyright 2020, American Chemical Society. (c) Variation of the IXs PL peak energy with twist angle. Reprinted with permission from ref [132], copyright 2019, Springer Nature. (d) Temperature-dependent IXs PL in the WSe2/MoSe2 heterostructures. Reprinted with permission from ref [90], copyright 2021, Springer Nature. (e) Power-dependent IXs PL in the WSe2/MoSe2 heterostructures. Reprinted with permission from ref [90], copyright 2021, Springer Nature. (f) Room-temperature IXs emissions in free-standing WS2/WSe2 heterostructures. Reprinted with permission from ref [129], copyright 2022, Springer Nature. (g) Evolution of the IXs PL spectrum under pressure in a color plot for the WSe2/MoSe2 heterostructures. Reprinted with permission from ref [148], copyright 2021, Springer Nature.
Fig.7  IXs trapped in Moiré superlattice potential. (a) Different local atomic arrangements occurred in the MoSe2/WSe2 vertical heterostructures with small twist angles (The three highlighted regions correspond to local atomic configurations with threefold rotational symmetry: RhH, RhX, RhM). Reprinted with permission from ref [89], copyright 2019, Springer Nature. (b) K valley excitons follow different optical selection rules depending on the atomic configuration within the Moiré pattern. Reprinted with permission from ref [89], copyright 2019, Springer Nature. (c) Left panel, Moiré potential for IXs transitions, showing a local minimum at the position; right panel, spatial plot of the optical selection rule for K-valley excitons; the high symmetry points are circularly polarized and the region in between is elliptically polarized. Reprinted with permission from ref [89], copyright 2019, Springer Nature. (d) Schematic of an exciton trapped in a Moiré potential. Reprinted with permission from ref [105], copyright 2019, Springer Nature. (e) Comparison of IXs PL in MoSe2/WSe2 heterostructures with a twist angle of 2° at excitation powers of 10 μW (dark red) and 20 nW (blue). The inset shows the linewidth of Moiré excitons of about 100 μeV at an excitation power of 20 nW. Reprinted with permission from ref [105], copyright 2019, Springer Nature. (f) Temperature-dependent differential reflectance spectra of Moiré excitons X1 and X2 in WS2/MoSe2 heterostructures (The black dashed line is the eye guide. The intensity of the two exciton states decreases with increasing temperature). Reprinted with permission from ref [157], copyright 2021, Springer Nature.
Fig.8  IX lasers. (a) The TMDs vdW heterostructure exhibits a type II energy band alignment, resulting in a three-level energy system conducive to laser emission. Reprinted with permission from ref [166], copyright 2019, Springer Nature. (b) Schematic diagram of the laser device, consists of a MoSe2/WSe2 heterostructure integrated into a silicon nitride grating resonator. Reprinted with permission from ref [166], copyright 2019, Springer Nature. (c) IXs laser emission at 5 K (The shaded boxes indicate the spectral range of IXs, MoSe2, and WSe2 exciton emission. The IXs laser demonstrates a remarkably narrow linewidth, measuring only 2 meV). Reprinted with permission from ref [166], copyright 2019, Springer Nature. (d) Moiré MoSe2/WSe2 heterostructure with a double gate [144]. An illustration of a Moiré superlattice with a twist angle of ~60° is shown in the dashed box (The Moiré superlattice is indicated as a solid black line, and the three circles (red, blue, and green) are indicated in three localized atomic configurations with threefold rotational symmetry). Reprinted with permission from ref [144], copyright 2020, American Association for the Advancement of Science. (e) The second-order correlation function g(2)(τ) for a single emitter at 1.401 eV is shown in (f). Reprinted with permission from ref [144], copyright 2020, American Association for the Advancement of Science. (f) PL spectrum of Moiré IXs in MoSe2/WSe2 heterostructure at 4 K. Reprinted with permission from ref [144], copyright 2020, American Association for the Advancement of Science. (g) Exciton laser emission from a MoS2/WSe2 Moiré heterostructure integrated with a silicon topological nanocavity. The Moiré exciton laser exhibits the highest spectral coherence (< 0.1 nm linewidth) compared to other 2D material-based laser systems. Reprinted with Permission from ref [168], copyright 2023, arXiv: 2302.01266.
Fig.9  IX channels. (a) Schematic diagram of an exciton transistor with exciton flux controlled by the top three gate voltages; (b, c) exciton energy maps (b) are calculated for the ON and OFF states of the exciton flow (c) as shown on the left and right, respectively; (d) gate dependence of the optical excitation on/off ratio at 3 μm from the excitation center. Reprinted with permission from ref [169], copyright 2018, Springer Nature. (e) Optically gated IXs time-resolved PL (The blue (cyan) line shows the PL of the IXs generated by the signal laser when the control laser is off (on)); (f) schematic of the cartoon of the IXs flow, where the transport of the IXs flow is determined by the control laser. Reprinted with permission from ref [24], copyright 2022, American Chemical Society. (g, h) Drift of IXs in real space when the SAW is (g) closed and (h) open (Inset: illustration of free diffusion and SAW-driven drift of IXs). Reprinted with permission from ref [170], copyright 2022, Springer Nature.
Fig.10  IX Photodetectors. (a) WS2/HfS2 device structure illustration. On a doped silicon substrate, heterostructures made of layers of WS2 with varying HfS2 thicknesses are stacked on top of one another; (b) schematic illustration of the energy band bending at the heterostructures? interface (electron-hole accumulation at the interface); (c) a comparison of the peak receptivity of WS2/HfS2 devices to other previously reported top-performing 2D-based photodetectors in the visible and infrared spectrum (Idevice = 0.5 nW, Vg = 0 V and Vds = ? 1.5 V). Reprinted with permission from ref [172], Springer Nature. (d) Schematic of the configuration of three WSe2/ReS2 heterodyne devices (Nos. 1–3) and the position of the focusing laser spot; (e) histogram showing the anisotropy ratios of the three devices (Nos.1–3) in all cases; (f) temporal optical response of a single optical switching cycle for devices (Nos. 1–3). Reprinted with permission from ref [173], copyright 2023, Wiley-VCH Verlag.
Fig.11  VHE transistor based on IXs. (a) VHE as shown in MoS2/WSe2 heterostructures; the electric field E in the plane and the strange speed of the valley and layer are both caused by the separation of the carrier layers; (b) setup for an experiment to measure VH; (c) an optical picture of the MoS2/WSe2 sample with the electrodes labeled; (d) an image of the sample is seen in the back reflection (The red dot is the laser excitation position); (e) VHE was seen at room temperature (The differences between the VH recorded at right and left circular polarization (RL), left and right circular polarization (LR), and horizontal and vertical polarization (HV) are shown by the black, red, and blue symbols, respectively); (f) VH value calculated based on Vx and Vg; (g) linear fitting (VH = αHVx + βH) of VH vs Vx at Vg = 23.50 V (black line) and Vg = 28.25 V (red line); black (red) dashed line corresponds to black (red) symbols in b; (h) Vg-dependent values of αH (proportional to VHE) and βH (proportional to CPC). Reprinted with permission from ref [179], copyright 2022, Springer Nature.
Fig.12  Valley-addressable memory based on IXs. (a) Illustrates of the IXs and dark exciton in MoSe2/WSe2 heterostructures (The IXs (dark excitons) are illustrated as solid black (dashed) ellipses. The dark exciton valley scattering is shown by the gray arrowed curves, while spin-up (spin-down) conduction and valence band scattering is shown by the red (blue) curves). Reprinted permission from ref [23], copyright 2018, Springer Nature. (b, c) Time-resolved PL and valley polarization at (b) Bz = 0 T and (c) Bz = –3 T. Reprinted permission from ref [23], copyright 2018, Springer Nature. (d) Schematic of the WS2/WSe2 heterostructures. Reprinted with permission from ref [181], copyright 2022, Springer Nature. (e) Schematic representation of the spin-singlet state (IXS) and spin-triplet state (IXT), respectively. Reprinted with permission from ref [181], copyright 2022, Springer Nature. (f) Degree of absolute circular polarization of IXs as a function of Vg. Doping with electrons or holes affects the valley-depolarization times, which consequently leads to the interlayer hysteresis. Reprinted with permission from ref [181], copyright 2022, Springer Nature. (g) Time-dependent IXs emission characteristics. The PL intensity corresponding to IXS (IXT) at 1.40 eV (1.42 eV) can be used as bits 0 (1). Writing and erasing voltages last for 3 min, while reading lasts for 64 min. Reprinted with permission from ref [181], copyright 2022, Springer Nature.
Fig.13  Valley polarization switch based on IXs. (a) Diagram of the MoSe2/WSe2 heterostructure device structure; (b) The IXs serve as the basis for polarization switching actions (ΔIRL = IR – IL as a function of the gate voltage VTG). Reprinted with permission from ref [125], copyright 2019, Springer Nature. (c) Schematic of the SiO2 cavity is placed on the top of the WSe2/WS2 heterostructure; (d) heterostructure band alignment via R-stacking. The black and purple elliptical dashed lines show the formation of IXS and IXT, respectively; (e) images of IXT (left) and IXS (right) emission in the back focal plane. Excited laser polarization is shown by the white arrow. P-polarized and s-polarized PL are extracted from the left and bottom panels in each image. Reprinted with permission from ref [182], copyright 2023, American Chemical Society.
1 Y Song , C Jia , H Xiong , B Wang , Z Jiang , K Huang , J Hwang , Z Li , C Hwang , Z Liu . et al.. Signatures of the exciton gas phase and its condensation in monolayer 1T-ZrTe2. Nature Communications, 2023, 14(1): 1116
https://doi.org/10.1038/s41467-023-36857-7
2 F Tagarelli , E Lopriore , D Erkensten , R Perea-Causín , S Brem , J Hagel , Z Sun , G Pasquale , K Watanabe , T Taniguchi . et al.. Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nature Photonics, 2023, 17(7): 615–621
https://doi.org/10.1038/s41566-023-01198-w
3 B Datta , M Khatoniar , P Deshmukh , F Thouin , R Bushati , S De Liberato , S K Cohen , V M Menon . Highly nonlinear dipolar exciton-polaritons in bilayer MoS2. Nature Communications, 2022, 13(1): 6341
https://doi.org/10.1038/s41467-022-33940-3
4 Z Zhang , E C Regan , D Wang , W Zhao , S Wang , M Sayyad , K Yumigeta , K Watanabe , T Taniguchi , S Tongay . et al.. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and Moiré WS2/WSe2. Nature Physics, 2022, 18(10): 1214–1220
https://doi.org/10.1038/s41567-022-01702-z
5 D Erkensten , S Brem , R Perea-Causin , E Malic . Microscopic origin of anomalous interlayer exciton transport in van der Waals heterostructures. Physical Review Materials, 2022, 6(9): 094006
https://doi.org/10.1103/PhysRevMaterials.6.094006
6 H Yuan , Z Liu , G Xu , B Zhou , S Wu , D Dumcenco , K Yan , Y Zhang , S K Mo , P Dudin . et al.. Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Letters, 2016, 16(8): 4738–4745
https://doi.org/10.1021/acs.nanolett.5b05107
7 Y Zhang , T R Chang , B Zhou , Y T Cui , H Yan , Z Liu , F Schmitt , J Lee , R Moore , Y Chen . et al.. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature Nanotechnology, 2014, 9(2): 111–115
https://doi.org/10.1038/nnano.2013.277
8 Q Li , J H Song , F Xu , J van de Groep , J Hong , A Daus , Y J Lee , A C Johnson , E Pop , F Liu . et al.. A purcell-enabled monolayer semiconductor free-space optical modulator. Nature Photonics, 2023, 17(10): 897–903
https://doi.org/10.1038/s41566-023-01250-9
9 Q Zhang , H Sun , J Tang , X Dai , Z Wang , C Z Ning . Prolonging valley polarization lifetime through gate-controlled exciton-to-trion conversion in monolayer molybdenum ditelluride. Nature Communications, 2022, 13(1): 4101
https://doi.org/10.1038/s41467-022-31672-y
10 Y S Chen , S K Chiu , D L Tsai , C Y Liu , H A Ting , Y C Yao , H Son , G Haider , M Kalbáč , C C Ting . et al.. Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. npj 2D Materials and Applications, 2022, 6(1): 1–8
11 J Xiao , Y Zhang , H Chen , N Xu , S Deng . Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode. Nano-Micro Letters, 2018, 10(4): 60
https://doi.org/10.1007/s40820-018-0212-6
12 Y Jiang , R Wang , X Li , Z Ma , L Li , J Su , Y Yan , X Song , C Xia . Photovoltaic field-effect photodiodes based on double van der Waals heterojunctions. ACS Nano, 2021, 15(9): 14295–14304
https://doi.org/10.1021/acsnano.1c02830
13 X Yu , G Zhao , C Liu , C Wu , H Huang , J He , N A Zhang . MoS2 and Graphene alternately stacking van der Waals heterostructure for Li+/Mg2+ co-intercalation. Advanced Functional Materials, 2021, 31(42): 2103214
https://doi.org/10.1002/adfm.202103214
14 X Liu , W Wang , F Yang , S Feng , Z Hu , J Lu , Z Ni . Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Science China. Information Sciences, 2021, 64(4): 140404
https://doi.org/10.1007/s11432-020-3101-1
15 Y Wu , X Chen , J Cao , Y Zhu , W Yuan , Z Hu , Z Ao , G W Brudvig , F Tian , J C Yu . et al.. Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect. Applied Catalysis B: Environmental, 2022, 303(4): 120878
https://doi.org/10.1016/j.apcatb.2021.120878
16 Y Zeng , W Dai , R Ma , Z Li , Z Ou , C Wang , Y Yu , T Zhu , X Liu , T Wang . et al.. Distinguishing ultrafast energy transfer in atomically thin MoS2/WS2 heterostructures. Small, 2022, 18(44): 2204317
https://doi.org/10.1002/smll.202204317
17 Y Zhou , C S Garoufalis , S Baskoutas , Z Zeng , Y Jia . Twisting enabled charge transfer excitons in epitaxially fused quantum dot molecules. Nano Letters, 2022, 22(12): 4912–4918
https://doi.org/10.1021/acs.nanolett.2c01459
18 Z Hu , X Liu , P L Hernandez-Martinez , S Zhang , P Gu , W Du , W Xu , H V Demir , H Liu , Q Xiong . Interfacial charge and energy transfer in van der Waals heterojunctions. InfoMat, 2022, 4(3): e12290
https://doi.org/10.1002/inf2.12290
19 J Kiemle , F Sigger , M Lorke , B Miller , K Watanabe , T Taniguchi , A Holleitner , U Wurstbauer . Control of the orbital character of indirect excitons in MoS2/WS2 heterobilayers. Physical Review. B, 2020, 101(12): 121404
https://doi.org/10.1103/PhysRevB.101.121404
20 H Kim , K Aino , K Shinokita , W Zhang , K Watanabe , T Taniguchi , K Matsuda . Dynamics of Moiré exciton in a twisted MoSe2/WSe2 heterobilayer. Advanced Optical Materials, 2023, 11(14): 2300146
https://doi.org/10.1002/adom.202300146
21 Q Tan , A Rasmita , S Li , S Liu , Z Huang , Q Xiong , S A Yang , K S Novoselov , W Gao . Layer-engineered interlayer excitons. Science Advances, 2021, 7(30): eabh0863
https://doi.org/10.1126/sciadv.abh0863
22 J Kim , C Jin , B Chen , H Cai , T Zhao , P Lee , S Kahn , K Watanabe , T Taniguchi , S Tongay . et al.. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Science Advances, 2017, 3(7): e1700518
https://doi.org/10.1126/sciadv.1700518
23 C Jiang , W Xu , A Rasmita , Z Huang , K Li , Q Xiong , W Gao . Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nature Communications, 2018, 9(1): 753
https://doi.org/10.1038/s41467-018-03174-3
24 D N Shanks , F Mahdikhanysarvejahany , T G Stanfill , M R Koehler , D G Mandrus , T Taniguchi , K Watanabe , B J LeRoy , J R Schaibley . Interlayer exciton diode and transistor. Nano Letters, 2022, 22(16): 6599–6605
https://doi.org/10.1021/acs.nanolett.2c01905
25 Y Tang , J Gu , S Liu , K Watanabe , T Taniguchi , J Hone , K F Mak , J Shan . Tuning layer-hybridized Moiré excitons by the quantum-confined Stark effect. Nature Nanotechnology, 2021, 16(1): 52–57
https://doi.org/10.1038/s41565-020-00783-2
26 Y Meng , T Wang , C Jin , Z Li , S Miao , Z Lian , T Taniguchi , K Watanabe , F Song , S F Shi . Electrical switching between exciton dissociation to exciton funneling in MoSe2/WS2 heterostructure. Nature Communications, 2020, 11(1): 2640
https://doi.org/10.1038/s41467-020-16419-x
27 A Y Joe , L A Jauregui , K Pistunova , A M Mier Valdivia , Z Lu , D S Wild , G Scuri , K De Greve , R J Gelly , Y Zhou . et al.. Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Physical Review. B, 2021, 103(16): L161411
https://doi.org/10.1103/PhysRevB.103.L161411
28 J Hagel , S Brem , E Malic . Electrical tuning of Moiré excitons in MoSe2 bilayers. 2D Materials, 2022, 10(1): 014013
29 D Erkensten , S Brem , R Perea-Causín , J Hagel , F Tagarelli , E Lopriore , A Kis , E Malic . Electrically tunable dipolar interactions between layer-hybridized excitons. Nanoscale, 2023, 15(26): 11064–11071
https://doi.org/10.1039/D3NR01049J
30 P Nagler , G Plechinger , M V Ballottin , A Mitioglu , S Meier , N Paradiso , C Strunk , A Chernikov , P C M Christianen , C Schüller . et al.. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Materials, 2017, 4(2): 025112
31 O Karni , E Barré , S C Lau , R Gillen , E Y Ma , B Kim , K Watanabe , T Taniguchi , J Maultzsch , K Barmak . et al.. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Physical Review Letters, 2019, 123(24): 247402
https://doi.org/10.1103/PhysRevLett.123.247402
32 P Rivera , H Yu , K L Seyler , N P Wilson , W Yao , X Xu . Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nature Nanotechnology, 2018, 13(11): 1004–1015
https://doi.org/10.1038/s41565-018-0193-0
33 L A Jauregui , A Y Joe , K Pistunova , D S Wild , A A High , Y Zhou , G Scuri , K De Greve , A Sushko , C H Yu . et al.. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science, 2019, 366(6467): 870–875
https://doi.org/10.1126/science.aaw4194
34 H C Kamban , T G Pedersen . Interlayer excitons in van der Waals heterostructures: binding energy, stark shift, and field-induced dissociation. Scientific Reports, 2020, 10(1): 5537
https://doi.org/10.1038/s41598-020-62431-y
35 P Merkl , F Mooshammer , P Steinleitner , A Girnghuber , K Q Lin , P Nagler , J Holler , C Schueller , J M Lupton , T Korn . et al.. Ultrafast transition between exciton phases in van der Waals heterostructures. Nature Materials, 2019, 18(7): 691–696
https://doi.org/10.1038/s41563-019-0337-0
36 X Y Dong , R Z Li , J P Deng , Z W Wang . Interlayer exciton-polaron effect in transition metal dichalcogenides van der Waals heterostructures. Journal of Physics and Chemistry of Solids, 2019, 134(1): 1–4
https://doi.org/10.1016/j.jpcs.2019.05.022
37 E Ponomarev , N Ubrig , I Gutiérrez-Lezama , H Berger , A F Morpurgo . Semiconducting van der Waals interfaces as artificial semiconductors. Nano Letters, 2018, 18(8): 5146–5152
https://doi.org/10.1021/acs.nanolett.8b02066
38 M Brotons-Gisbert , H Baek , A Campbell , K Watanabe , T Taniguchi , B D Gerardot . Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Physical Review X, 2021, 11(3): 031033
https://doi.org/10.1103/PhysRevX.11.031033
39 M Brotons-Gisbert , H Baek , A Molina-Sánchez , A Campbell , E Scerri , D White , K Watanabe , T Taniguchi , C Bonato , B D Gerardot . Spin-layer locking of interlayer excitons trapped in Moiré potentials. Nature Materials, 2020, 19(6): 630–636
https://doi.org/10.1038/s41563-020-0687-7
40 H Yu , G B Liu , J Tang , X Xu , W Yao . Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Science Advances, 2017, 3(11): e1701696
https://doi.org/10.1126/sciadv.1701696
41 F A Rasmussen , K S Thygesen . Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. Journal of Physical Chemistry C, 2015, 119(23): 13169–13183
https://doi.org/10.1021/acs.jpcc.5b02950
42 X Yin , C S Tang , Y Zheng , J Gao , J Wu , H Zhang , M Chhowalla , W Chen , A T S Wee . Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 2021, 50(18): 10087–10115
https://doi.org/10.1039/D1CS00236H
43 Y Li , L Su , Y Lu , Q Luo , P Liang , H Shu , X Chen . High-throughput screening of phase-engineered atomically thin transition-metal dichalcogenides for van der Waals contacts at the schottky-mott limit. InfoMat, 2023, 5(7): e12407
https://doi.org/10.1002/inf2.12407
44 S Manzeli , D Ovchinnikov , D Pasquier , O V Yazyev , A Kis . 2D transition metal dichalcogenides. Nature Reviews. Materials, 2017, 2(8): 17033
https://doi.org/10.1038/natrevmats.2017.33
45 K F Mak , C Lee , J Hone , J Shan , T F Heinz . Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805
https://doi.org/10.1103/PhysRevLett.105.136805
46 A Splendiani , L Sun , Y Zhang , T Li , J Kim , C Y Chim , G Galli , F Wang . Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271–1275
https://doi.org/10.1021/nl903868w
47 D Xiao , G B Liu , W Feng , X Xu , W Yao . Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 2012, 108(19): 196802
https://doi.org/10.1103/PhysRevLett.108.196802
48 K F Mak , K He , J Shan , T F Heinz . Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 2012, 7(8): 494–498
https://doi.org/10.1038/nnano.2012.96
49 M Koperski , M R Molas , A Arora , K Nogajewski , M Bartos , J Wyzula , D Vaclavkova , P Kossacki , M Potemski . Orbital, spin and valley contributions to zeeman splitting of excitonic resonances in MoSe2, WSe2 and WS2 monolayers. 2D Materials, 2018, 6(1): 015001
50 X X Zhang , Y You , S Y F Zhao , T F Heinz . Experimental evidence for dark excitons in monolayer WSe2. Physical Review Letters, 2015, 115(25): 257403
https://doi.org/10.1103/PhysRevLett.115.257403
51 Z Ye , T Cao , K OʼBrien , H Zhu , X Yin , Y Wang , S G Louie , X Zhang . Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517): 214–218
https://doi.org/10.1038/nature13734
52 M R Molas , C Faugeras , A O Slobodeniuk , K Nogajewski , M Bartos , D M Basko , M Potemski . Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Materials, 2017, 4(2): 021003
53 A Arora , K Nogajewski , M Molas , M Koperski , M Potemski . Exciton band structure in layered MoSe2: from a monolayer to the bulk limit. Nanoscale, 2015, 7(48): 20769–20775
https://doi.org/10.1039/C5NR06782K
54 K Hao , R Shreiner , A Kindseth , A A High . Optically controllable magnetism in atomically thin semiconductors. Science Advances, 2022, 8(39): eabq7650
https://doi.org/10.1126/sciadv.abq7650
55 Z Li , Y Xiao , Y Gong , Z Wang , Y Kang , S Zu , P M Ajayan , P Nordlander , Z Fang . Active light control of the MoS2 monolayer exciton binding energy. ACS Nano, 2015, 9(10): 10158–10164
https://doi.org/10.1021/acsnano.5b03764
56 A Chernikov , T C Berkelbach , H M Hill , A Rigosi , Y Li , B Aslan , D R Reichman , M S Hybertsen , T F Heinz . Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Physical Review Letters, 2014, 113(7): 076802
https://doi.org/10.1103/PhysRevLett.113.076802
57 E J Sie , J W McIver , Y H Lee , L Fu , J Kong , N Gedik . Valley-selective optical stark effect in monolayer WS2. Nature Materials, 2015, 14(3): 290–294
https://doi.org/10.1038/nmat4156
58 R Shreiner , K Hao , A Butcher , A A High . Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor. Nature Photonics, 2022, 16(4): 330–336
https://doi.org/10.1038/s41566-022-00971-7
59 G Aivazian , Z Gong , A M Jones , R L Chu , J Yan , D G Mandrus , C Zhang , D Cobden , W Yao , X Xu . Magnetic control of valley pseudospin in monolayer WSe2. Nature Physics, 2015, 11(2): 148–152
https://doi.org/10.1038/nphys3201
60 H Zeng , J Dai , W Yao , D Xiao , X Cui . Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 2012, 7(8): 490–493
https://doi.org/10.1038/nnano.2012.95
61 T Cao , G Wang , W Han , H Ye , C Zhu , J Shi , Q Niu , P Tan , E Wang , B Liu . et al.. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications, 2012, 3(1): 887
https://doi.org/10.1038/ncomms1882
62 A M Jones , H Yu , N J Ghimire , S Wu , G Aivazian , J S Ross , B Zhao , J Yan , D G Mandrus , D Xiao . et al.. Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotechnology, 2013, 8(9): 634–638
https://doi.org/10.1038/nnano.2013.151
63 F Mujeeb , P Chakrabarti , V Mahamiya , A Shukla , S Dhar . Influence of defects on the valley polarization properties of monolayer MoS2 grown by chemical vapor deposition. Physical Review. B, 2023, 107(11): 115429
https://doi.org/10.1103/PhysRevB.107.115429
64 C Mai , A Barrette , Y Yu , Y G Semenov , K W Kim , L Cao , K Gundogdu . Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Letters, 2014, 14(1): 202–206
https://doi.org/10.1021/nl403742j
65 E J Sie , C H Lui , Y H Lee , L Fu , J Kong , N Gedik . Large, valley-exclusive bloch-siegert shift in monolayer WS2. Science, 2017, 355(6329): 1066–1069
https://doi.org/10.1126/science.aal2241
66 G Scuri , T I Andersen , Y Zhou , D S Wild , J Sung , R J Gelly , D Bérubé , H Heo , L Shao , A Y Joe . et al.. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Physical Review Letters, 2020, 124(21): 217403
https://doi.org/10.1103/PhysRevLett.124.217403
67 A Srivastava , M Sidler , A V Allain , D S Lembke , A Kis , A Imamoğlu . Valley zeeman effect in elementary optical excitations of monolayer WSe2. Nature Physics, 2015, 11(2): 141–147
https://doi.org/10.1038/nphys3203
68 A Arora , T Deilmann , P Marauhn , M Drüppel , R Schneider , M R Molas , D Vaclavkova , S Vasconcellos . Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. Nanoscale, 2018, 10(33): 15571–15577
https://doi.org/10.1039/C8NR03764G
69 M Fortin-Deschenes , K Watanabe , T Taniguchi , F Xia . Van der Waals epitaxy of tunable Moiré enabled by alloying. Nature Materials, 2023, 22(10): 1–8
https://doi.org/10.1038/s41563-023-01596-z
70 S Conti , A Chaves , T Pandey , L Covaci , F M Peeters , D Neilson , M V Milosevic . Flattening conduction and valence bands for interlayer excitons in a Moiré MoS2/WSe2 heterobilayer. Nanoscale, 2023, 15(34): 14032–14042
https://doi.org/10.1039/D3NR01183F
71 C Ge , D Zhang , F Xiao , H Zhao , M He , L Huang , S Hou , Q Tong , A Pan , X Wang . Observation and modulation of high-temperature Moiré-locale excitons in van der Waals heterobilayers. ACS Nano, 2023, 17(16): 16115–16122
https://doi.org/10.1021/acsnano.3c04943
72 F Li , Y Wang , Y Liang , Y Dai , B Huang , W Wei . Direct formation of interlayer excitons in MoSSe/WSSe van der Waals heterobilayer. Journal of Physics Condensed Matter, 2023, 35(30): 304005
https://doi.org/10.1088/1361-648X/accfdb
73 S Y Lim , H G Kim , Y W Choi , T Taniguchi , K Watanabe , H J Choi , H Cheong . Modulation of phonons and excitons due to Moiré potentials in twisted bilayer of WSe2/MoSe2. ACS Nano, 2023, 17(14): 13938–13947
https://doi.org/10.1021/acsnano.3c03883
74 C Louca , A Genco , S Chiavazzo , T P Lyons , S Randerson , C Trovatello , P Claronino , R Jayaprakash , X Hu , J Howarth . et al.. Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers. Nature Communications, 2023, 14(1): 3818
https://doi.org/10.1038/s41467-023-39358-9
75 V O Özçelik , J G Azadani , C Yang , S J Koester , T Low . Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Physical Review. B, 2016, 94(3): 035125
https://doi.org/10.1103/PhysRevB.94.035125
76 Y S Kim , S Kang , J P So , J C Kim , K Kim , S Yang , Y Jung , Y Shin , S Lee , D Lee . et al.. Atomic-layer-confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides. Science Advances, 2021, 7(13): eabd7921
https://doi.org/10.1126/sciadv.abd7921
77 C Zhang , C Gong , Y Nie , K-A Min , C Liang , Y J Oh , H Zhang , W Wang , S Hong , L Colombo . et al.. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Materials, 2016, 4(1): 015026
78 K Xu , Y Xu , H Zhang , B Peng , H Shao , G Ni , J Li , M Yao , H Lu , H Zhu . et al.. The role of Andersonʼs rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures. Physical Chemistry Chemical Physics, 2018, 20(48): 30351–30364
https://doi.org/10.1039/C8CP05522J
79 Y Guo , J Robertson . Band engineering in transition metal dichalcogenides: stacked versus lateral heterostructures. Applied Physics Letters, 2016, 108(23): 233104
https://doi.org/10.1063/1.4953169
80 N R Wilson , P V Nguyen , K Seyler , P Rivera , A J Marsden , Z P L Laker , G C Constantinescu , V Kandyba , A Barinov , N D M Hine . et al.. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Science Advances, 2017, 3(2): e1601832
https://doi.org/10.1126/sciadv.1601832
81 M H Chiu , C Zhang , H W Shiu , C P Chuu , C H Chen , C Y S Chang , C H Chen , M Y Chou , C K Shih , L J Li . Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature Communications, 2015, 6(1): 7666
https://doi.org/10.1038/ncomms8666
82 H Zeng , X Liu , H Zhang , X Cheng . New theoretical insights into the photoinduced carrier transfer dynamics in WS2/WSe2 van der Waals heterostructures. Physical Chemistry Chemical Physics, 2021, 23(1): 694–701
https://doi.org/10.1039/D0CP04517A
83 L Wu , C Cong , J Shang , W Yang , Y Chen , J Zhou , W Ai , Y Wang , S Feng , H Zhang . et al.. Raman scattering investigation of twisted WS2/MoS2 heterostructures: interlayer mechanical coupling versus charge transfer. Nano Research, 2021, 14(7): 2215–2223
https://doi.org/10.1007/s12274-020-3193-y
84 T Zheng , Y C Lin , N Rafizadeh , D B Geohegan , Z Ni , K Xiao , H Zhao . Janus monolayers for ultrafast and directional charge transfer in transition metal dichalcogenide heterostructures. ACS Nano, 2022, 16(3): 4197–4205
https://doi.org/10.1021/acsnano.1c10082
85 T R Kafle , B Kattel , S D Lane , T Wang , H Zhao , W L Chan . Charge transfer exciton and spin flipping at organic transition-metal dichalcogenide interfaces. ACS Nano, 2017, 11(10): 10184–10192
https://doi.org/10.1021/acsnano.7b04751
86 G Froehlicher , E Lorchat , S Berciaud . Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures. Physical Review X, 2018, 8(1): 011007
https://doi.org/10.1103/PhysRevX.8.011007
87 V R Policht , M Russo , F Liu , C Trovatello , M Maiuri , Y Bai , X Zhu , S Dal Conte , G Cerullo . Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Letters, 2021, 21(11): 4738–4743
https://doi.org/10.1021/acs.nanolett.1c01098
88 X Hong , J Kim , S F Shi , Y Zhang , C Jin , Y Sun , S Tongay , J Wu , Y Zhang , F Wang . Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 2014, 9(9): 682–686
https://doi.org/10.1038/nnano.2014.167
89 K Tran , G Moody , F Wu , X Lu , J Choi , K Kim , A Rai , D A Sanchez , J Quan , A Singh . et al.. Evidence for Moiré excitons in van der waals heterostructures. Nature, 2019, 567(7746): 71–75
https://doi.org/10.1038/s41586-019-0975-z
90 E Liu , E Barré , Baren J van , M Wilson , T Taniguchi , K Watanabe , Y T Cui , N M Gabor , T F Heinz , Y C Chang , C H Lui . Signatures of Moiré trions in WSe2/MoSe2 heterobilayers. Nature, 2021, 594(7861): 46–50
https://doi.org/10.1038/s41586-021-03541-z
91 P Rivera , J R Schaibley , A M Jones , J S Ross , S Wu , G Aivazian , P Klement , K Seyler , G Clark , N J Ghimire . et al.. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nature Communications, 2015, 6(1): 6242
https://doi.org/10.1038/ncomms7242
92 M Baranowski , A Surrente , L Klopotowski , J M Urban , N Zhang , D K Maude , K Wiwatowski , S Mackowski , Y C Kung , D Dumcenco . et al.. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Letters, 2017, 17(10): 6360–6365
https://doi.org/10.1021/acs.nanolett.7b03184
93 K Shinokita , K Watanabe , T Taniguchi , K Matsuda . Valley relaxation of the Moiré excitons in a WSe2/MoSe2 heterobilayer. ACS Nano, 2022, 16(10): 16862–16868
https://doi.org/10.1021/acsnano.2c06813
94 W Li , X Lu , J Wu , A Srivastava . Optical control of the valley zeeman effect through many-exciton interactions. Nature Nanotechnology, 2021, 16(2): 148–152
https://doi.org/10.1038/s41565-020-00804-0
95 E M Alexeev , A Catanzaro , O V Skrypka , P K Nayak , S Ahn , S Pak , J Lee , J I Sohn , K S Novoselov , H S Shin . et al.. Imaging of interlayer coupling in van der waals heterostructures using a bright-field optical microscope. Nano Letters, 2017, 17(9): 5342–5349
https://doi.org/10.1021/acs.nanolett.7b01763
96 D H Luong , H S Lee , G P Neupane , S Roy , G Ghimire , J H Lee , Q A Vu , Y H Lee . Tunneling photocurrent assisted by interlayer excitons in staggered van der Waals hetero-bilayers. Advanced Materials, 2017, 29(33): 1701512
https://doi.org/10.1002/adma.201701512
97 Z Sun , A Ciarrocchi , F Tagarelli , J F Gonzalez Marin , K Watanabe , T Taniguchi , A Kis . Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. Nature Photonics, 2022, 16(1): 79–85
https://doi.org/10.1038/s41566-021-00908-6
98 I Schwartz , Y Shimazaki , C Kuhlenkamp , K Watanabe , T Taniguchi , M Kroner , A Imamoğlu . Electrically tunable feshbach resonances in twisted bilayer semiconductors. Science, 2021, 374(6565): 336–340
https://doi.org/10.1126/science.abj3831
99 R Ya Kezerashvili , A Spiridonova . Magnetoexcitons in transition metal dichalcogenides monolayers, bilayers, and van der Waals heterostructures. Physical Review Research, 2021, 3(3): 033078
https://doi.org/10.1103/PhysRevResearch.3.033078
100 S Latini , K T Winther , T Olsen , K S Thygesen . Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Letters, 2017, 17(2): 938–945
https://doi.org/10.1021/acs.nanolett.6b04275
101 H Zhou , Y Zhao , W Tao , Y Li , Q Zhou , H Zhu . Controlling exciton and valley dynamics in two-dimensional heterostructures with atomically precise interlayer proximity. ACS Nano, 2020, 14(4): 4618–4625
https://doi.org/10.1021/acsnano.0c00218
102 Y Shimazaki , I Schwartz , K Watanabe , T Taniguchi , M Kroner , A Imamoğlu . Strongly correlated electrons and hybrid excitons in a Moiré heterostructure. Nature, 2020, 580(7804): 472–477
https://doi.org/10.1038/s41586-020-2191-2
103 L Ma , P X Nguyen , Z Wang , Y Zeng , K Watanabe , T Taniguchi , A H MacDonald , K F Mak , J Shan . Strongly correlated excitonic insulator in atomic double layers. Nature, 2021, 598(7882): 585–589
https://doi.org/10.1038/s41586-021-03947-9
104 D A Ruiz-Tijerina , V FalʼKo . Interlayer hybridization and Moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Physical Review. B, 2019, 99(12): 125424
https://doi.org/10.1103/PhysRevB.99.125424
105 K L Seyler , P Rivera , H Yu , N P Wilson , E L Ray , D G Mandrus , J Yan , W Yao , X Xu . Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66–70
https://doi.org/10.1038/s41586-019-0957-1
106 K Wu , H Zhong , Q Guo , J Tang , J Zhang , L Qian , Z Shi , C Zhang , S Yuan , S Zhang . et al.. Identification of twist-angle-dependent excitons in WS2/WSe2 heterobilayers. National Science Review, 2022, 9(6): nwab135
https://doi.org/10.1093/nsr/nwab135
107 E Marcellina , X Liu , Z Hu , A Fieramosca , Y Huang , W Du , S Liu , J Zhao , K Watanabe , T Taniguchi . et al.. Evidence for Moiré trions in twisted MoSe2 homobilayers. Nano Letters, 2021, 21(10): 4461–4468
https://doi.org/10.1021/acs.nanolett.1c01207
108 N Sokolowski , S Palai , M Dyksik , K Posmyk , M Baranowski , A Surrente , D Maude , F Carrascoso , O Cakiroglu , E Sanchez . et al.. Twist-angle dependent dehybridization of momentum-indirect excitons in MoSe2/MoS2 heterostructures. 2D Materials, 2023, 10(3): 034003
109 Y Yoon , Z Zhang , R Qi , A Y Joe , R Sailus , K Watanabe , T Taniguchi , S Tongay , F Wang . Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Letters, 2022, 22(24): 10140–10146
https://doi.org/10.1021/acs.nanolett.2c04030
110 M Bernardi , C Ataca , M Palummo , J C Grossman . Optical and electronic properties of two-dimensional layered materials. Nanophotonics, 2017, 6(2): 479–493
https://doi.org/10.1515/nanoph-2015-0030
111 X Zhang , Q H Tan , J B Wu , W Shi , P H Tan . Review on the raman spectroscopy of different types of layered materials. Nanoscale, 2016, 8(12): 6435–6450
https://doi.org/10.1039/C5NR07205K
112 Y Gong , J Lin , X Wang , G Shi , S Lei , Z Lin , X Zou , G Ye , R Vajtai , B I Yakobson . et al.. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014, 13(12): 1135–1142
https://doi.org/10.1038/nmat4091
113 W T Hsu , L S Lu , P H Wu , M H Lee , P J Chen , P Y Wu , Y C Chou , H T Jeng , L J Li , M W Chu . et al.. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nature Communications, 2018, 9(1): 1356
https://doi.org/10.1038/s41467-018-03869-7
114 C Zhang , C P Chuu , X Ren , M Y Li , L J Li , C Jin , M Y Chou , C K Shih . Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Science Advances, 2017, 3(1): e1601459
https://doi.org/10.1126/sciadv.1601459
115 J Hong , Z Hu , M Probert , K Li , D Lv , X Yang , L Gu , N Mao , Q Feng , L Xie . et al.. Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6(1): 6293
https://doi.org/10.1038/ncomms7293
116 D Rhodes , S H Chae , R Ribeiro-Palau , J Hone . Disorder in van der waals heterostructures of 2D materials. Nature Materials, 2019, 18(6): 541–549
https://doi.org/10.1038/s41563-019-0366-8
117 C R Dean , A F Young , I Meric , C Lee , L Wang , S Sorgenfrei , K Watanabe , T Taniguchi , P Kim , K L Shepard . et al.. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010, 5(10): 722–726
https://doi.org/10.1038/nnano.2010.172
118 F Pizzocchero , L Gammelgaard , B S Jessen , J M Caridad , L Wang , J Hone , P Bøggild , T J Booth . The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications, 2016, 7(1): 1–10
https://doi.org/10.1038/ncomms11894
119 A V Kretinin , Y Cao , J S Tu , G L Yu , R Jalil , K S Novoselov , S J Haigh , A Gholinia , A Mishchenko , M Lozada . et al.. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Letters, 2014, 14(6): 3270–3276
https://doi.org/10.1021/nl5006542
120 C H Lui , Z Ye , C Ji , K C Chiu , C T Chou , T I Andersen , C Means-Shively , H Anderson , J M Wu , T Kidd . et al.. Observation of interlayer phonon modes in van der Waals heterostructures. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(16): 165403
https://doi.org/10.1103/PhysRevB.91.165403
121 F Liu , W Wu , Y Bai , S H Chae , Q Li , J Wang , J Hone , X Y Zhu . Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science, 2020, 367(6480): 903–906
https://doi.org/10.1126/science.aba1416
122 Y Huang , Y H Pan , R Yang , L H Bao , L Meng , H L Luo , Y Q Cai , G D Liu , W J Zhao , Z Zhou . et al.. Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11(1): 2453
https://doi.org/10.1038/s41467-020-16266-w
123 J Shim , S H Bae , W Kong , D Lee , K Qiao , D Nezich , Y J Park , R Zhao , S Sundaram , X Li . et al.. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 2018, 362(6415): 665–670
https://doi.org/10.1126/science.aat8126
124 A Ciarrocchi , F Tagarelli , A Avsar , A Kis . Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nature Reviews. Materials, 2022, 7(6): 449–464
https://doi.org/10.1038/s41578-021-00408-7
125 A Ciarrocchi , D Unuchek , A Avsar , K Watanabe , T Taniguchi , A Kis . Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nature Photonics, 2019, 13(2): 131–136
https://doi.org/10.1038/s41566-018-0325-y
126 A Ripin , R Peng , X Zhang , S Chakravarthi , M He , X Xu , K M Fu , T Cao , M Li . Tunable phononic coupling in excitonic quantum emitters. Nature Nanotechnology, 2023, 18(6): 1020–1026
https://doi.org/10.1038/s41565-023-01410-6
127 Y Chen , Z Liu , J Li , X Cheng , J Ma , H Wang , D Li . Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(8): 10258–10264
https://doi.org/10.1021/acsnano.0c03624
128 M Kremser , M Brotons-Gisbert , J Knörzer , J Gückelhorn , M Meyer , M Barbone , A V Stier , B D Gerardot , K Müller , J J Finley . Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface. npj 2D Materials and Applications, 2020, 4(1): 1–6
129 X Sun , Y Zhu , H Qin , B Liu , Y Tang , T Lü , S Rahman , T Yildirim , Y Lu . Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature, 2022, 610(7932): 478–484
https://doi.org/10.1038/s41586-022-05193-z
130 F Wu , T Lovorn , A H MacDonald . Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Physical Review. B, 2018, 97(3): 035306
https://doi.org/10.1103/PhysRevB.97.035306
131 H Yu , Y Wang , Q Tong , X Xu , W Yao . Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Physical Review Letters, 2015, 115(18): 187002
https://doi.org/10.1103/PhysRevLett.115.187002
132 E M Alexeev , D A Ruiz-Tijerina , M Danovich , M J Hamer , D J Terry , P K Nayak , S Ahn , S Pak , J Lee , J I Sohn . et al.. Resonantly hybridized excitons in Moiré superlattices in van der Waals heterostructures. Nature, 2019, 567(7746): 81–86
https://doi.org/10.1038/s41586-019-0986-9
133 L Zhang , Z Zhang , F Wu , D Wang , R Gogna , S Hou , K Watanabe , T Taniguchi , K Kulkarni , T Kuo . Twist-angle dependence of Moiré excitons in WS2/MoSe2 heterobilayers. Nature Communications, 2020, 11(1): 5888
https://doi.org/10.1038/s41467-020-19466-6
134 P Rivera , K L Seyler , H Yu , J R Schaibley , J Yan , D G Mandrus , W Yao , X Xu . Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688–691
https://doi.org/10.1126/science.aac7820
135 J Förste , N V Tepliakov , S Y Kruchinin , J Lindlau , V Funk , M Förg , K Watanabe , T Taniguchi , A S Baimuratov , A Högele . Exciton g-factors in monolayer and bilayer WSe2 from experiment and theory. Nature Communications, 2020, 11(1): 4539
https://doi.org/10.1038/s41467-020-18019-1
136 Z Li , J Förste , K Watanabe , T Taniguchi , B Urbaszek , A S Baimuratov , I C Gerber , A Högele , I Bilgin . Stacking-dependent exciton multiplicity in WSe2 bilayers. Physical Review. B, 2022, 106(4): 045411
https://doi.org/10.1103/PhysRevB.106.045411
137 Z Li , T Wang , S Miao , Y Li , Z Lu , C Jin , Z Lian , Y Meng , M Blei , T Taniguchi . et al.. Phonon-exciton interactions in WSe2 under a quantizing magnetic field. Nature Communications, 2020, 11(1): 3104
https://doi.org/10.1038/s41467-020-16934-x
138 E Liu , J van Baren , T Taniguchi , K Watanabe , Y C Chang , C H Lui . Landau-quantized excitonic absorption and luminescence in a monolayer valley semiconductor. Physical Review Letters, 2020, 124(9): 097401
https://doi.org/10.1103/PhysRevLett.124.097401
139 M He , P Rivera , D Van Tuan , N P Wilson , M Yang , T Taniguchi , K Watanabe , J Yan , D G Mandrus , H Yu . et al.. Valley phonons and exciton complexes in a monolayer semiconductor. Nature Communications, 2020, 11(1): 618
https://doi.org/10.1038/s41467-020-14472-0
140 P E Junior Faria , J Fabian . Signatures of electric field and layer separation effects on the spin-valley physics of MoSe2/WSe2 heterobilayers: from energy bands to dipolar excitons. Nanomaterials, 2023, 13(7): 1187
https://doi.org/10.3390/nano13071187
141 D S Smirnov , J Holler , M Kempf , J Zipfel , P Nagler , M Ballottin , A A Mitioglu , A Chernikov , P C M Christianen , C Schueller . et al.. Valley-magnetophonon resonance for interlayer excitons. 2D Materials, 2022, 9(4): 045016
142 P Nagler , M V Ballottin , A A Mitioglu , F Mooshammer , N Paradiso , C Strunk , R Huber , A Chernikov , P C M Christianen , C Schüller . et al.. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nature Communications, 2017, 8(1): 1551
https://doi.org/10.1038/s41467-017-01748-1
143 T Wang , S Miao , Z Li , Y Meng , Z Lu , Z Lian , M Blei , T Taniguchi , K Watanabe , S Tongay . et al.. Giant valley-zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Letters, 2020, 20(1): 694–700
https://doi.org/10.1021/acs.nanolett.9b04528
144 H Baek , M Brotons-Gisbert , Z X Koong , A Campbell , M Rambach , K Watanabe , T Taniguchi , B D Gerardot . Highly energy-tunable quantum light from Moiré-trapped excitons. Science Advances, 2020, 6(37): eaba8526
https://doi.org/10.1126/sciadv.aba8526
145 T Woźniak , P E Junior Faria , G Seifert , A Chaves , J Kunstmann . Exciton g factors of van der Waals heterostructures from first-principles calculations. Physical Review. B, 2020, 101(23): 235408
https://doi.org/10.1103/PhysRevB.101.235408
146 W Li , X Lu , S Dubey , L Devenica , A Srivastava . Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nature Materials, 2020, 19(6): 624–629
https://doi.org/10.1038/s41563-020-0661-4
147 B Miller , A Steinhoff , B Pano , J Klein , F Jahnke , A Holleitner , U Wurstbauer . Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Letters, 2017, 17(9): 5229–5237
https://doi.org/10.1021/acs.nanolett.7b01304
148 J Xia , J Yan , Z Wang , Y He , Y Gong , W Chen , T C Sum , Z Liu , P M Ajayan , Z Shen . Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers. Nature Physics, 2021, 17(1): 92–98
https://doi.org/10.1038/s41567-020-1005-7
149 H Moon , G Grosso , C Chakraborty , C Peng , T Taniguchi , K Watanabe , D Englund . Dynamic exciton funneling by local strain control in a monolayer semiconductor. Nano Letters, 2020, 20(9): 6791–6797
https://doi.org/10.1021/acs.nanolett.0c02757
150 Y He , Y Yang , Z Zhang , Y Gong , W Zhou , Z Hu , G Ye , X Zhang , E Bianco , S Lei . et al.. Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Letters, 2016, 16(5): 3314–3320
https://doi.org/10.1021/acs.nanolett.6b00932
151 X B Lu , X Q Li , L Yang . Modulated interlayer exciton properties in a two-dimensional Moiré crystal. Physical Review. B, 2019, 100(15): 155416
https://doi.org/10.1103/PhysRevB.100.155416
152 W T Geng , V Wang , Y C Liu , T Ohno , J Nara . Moiré potential, lattice corrugation, and band gap spatial variation in a twist-free MoTe2/MoS2 heterobilayer. Journal of Physical Chemistry Letters, 2020, 11(7): 2637–2646
https://doi.org/10.1021/acs.jpclett.0c00605
153 C Jin , E C Regan , A Yan , M Iqbal Bakti Utama , D Wang , S Zhao , Y Qin , S Yang , Z Zheng , S Shi . et al.. Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746): 76–80
https://doi.org/10.1038/s41586-019-0976-y
154 B Wu , H Zheng , S Li , J Ding , J He , Y Zeng , K Chen , Z Liu , S Chen , A Pan . et al.. Evidence for Moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light, Science & Applications, 2022, 11(1): 166
https://doi.org/10.1038/s41377-022-00854-0
155 Z Li , X Lu , D F Cordovilla Leon , Z Lyu , H Xie , J Hou , Y Lu , X Guo , A Kaczmarek , T Taniguchi . et al.. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano, 2021, 15(1): 1539–1547
https://doi.org/10.1021/acsnano.0c08981
156 J Wang , Q Shi , E M Shih , L Zhou , W Wu , Y Bai , D Rhodes , K Barmak , J Hone , C R Dean . et al.. Diffusivity reveals three distinct phases of interlayer excitons in MoSe2/WSe2 heterobilayers. Physical Review Letters, 2021, 126(10): 106804
https://doi.org/10.1103/PhysRevLett.126.106804
157 L Zhang , F Wu , S Hou , Z Zhang , Y H Chou , K Watanabe , T Taniguchi , S R Forrest , H Deng . Van der Waals heterostructure polaritons with Moiré-induced nonlinearity. Nature, 2021, 591(7848): 61–65
https://doi.org/10.1038/s41586-021-03228-5
158 Q Tong , H Yu , Q Zhu , Y Wang , X Xu , W Yao . Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nature Physics, 2017, 13(4): 356–362
https://doi.org/10.1038/nphys3968
159 S Zhao , Z Li , X Huang , A Rupp , J Göser , I A Vovk , S Y Kruchinin , K Watanabe , T Taniguchi , I Bilgin . et al.. Excitons in mesoscopically reconstructed Moiré heterostructures. Nature Nanotechnology, 2023, 18(6): 572–579
https://doi.org/10.1038/s41565-023-01356-9
160 N P Wilson , W Yao , J Shan , X Xu . Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383–392
https://doi.org/10.1038/s41586-021-03979-1
161 D Chen , Z Lian , X Huang , Y Su , M Rashetnia , L Yan , M Blei , T Taniguchi , K Watanabe , S Tongay . et al.. Tuning Moiré excitons and correlated electronic states through layer degree of freedom. Nature Communications, 2022, 13(1): 4810
https://doi.org/10.1038/s41467-022-32493-9
162 J Sung , Y Zhou , G Scuri , V Zólyomi , T I Andersen , H Yoo , D S Wild , A Y Joe , R J Gelly , H Heo . et al.. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nature Nanotechnology, 2020, 15(9): 750–754
https://doi.org/10.1038/s41565-020-0728-z
163 H Yu , W Yao . Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor Moiré superlattices. Physical Review X, 2021, 11(2): 021042
https://doi.org/10.1103/PhysRevX.11.021042
164 S Brem , K Q Lin , R Gillen , J M Bauer , J Maultzsch , J M Lupton , E Malic . Hybridized intervalley Moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale, 2020, 12(20): 11088–11094
https://doi.org/10.1039/D0NR02160A
165 Y Tang , L Li , T Li , Y Xu , S Liu , K Barmak , K Watanabe , T Taniguchi , A H MacDonald , J Shan . et al.. Simulation of hubbard model physics in WSe2/WS2 Moiré superlattices. Nature, 2020, 579(7799): 353–358
https://doi.org/10.1038/s41586-020-2085-3
166 E Y Paik , L Zhang , G W Burg , R Gogna , E Tutuc , H Deng . Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 2019, 576(7785): 80–84
https://doi.org/10.1038/s41586-019-1779-x
167 Y Liu , H Fang , A Rasmita , Y Zhou , J Li , T Yu , Q Xiong , N Zheludev , J Liu , W Gao . Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Science Advances, 2019, 5(4): eaav4506
https://doi.org/10.1126/sciadv.aav4506
168 Q LinH FangY LiuY ZhangM FischerJ LiJ HagelS BremE MalicN Stenger, et al.. A room temperature Moiré interlayer exciton laser. 2023, arXiv: 2302.01266
169 D Unuchek , A Ciarrocchi , A Avsar , K Watanabe , T Taniguchi , A Kis . Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560(7718): 340–344
https://doi.org/10.1038/s41586-018-0357-y
170 R Peng , A Ripin , Y Ye , J Zhu , C Wu , S Lee , H Li , T Taniguchi , K Watanabe , T Cao . et al.. Long-range transport of 2D excitons with acoustic waves. Nature Communications, 2022, 13(1): 1334
https://doi.org/10.1038/s41467-022-29042-9
171 M Long , E Liu , P Wang , A Gao , H Xia , W Luo , B Wang , J Zeng , Y Fu , K Xu . et al.. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Letters, 2016, 16(4): 2254–2259
https://doi.org/10.1021/acs.nanolett.5b04538
172 S Lukman , L Ding , L Xu , Y Tao , A C Riis-Jensen , G Zhang , Q Y S Wu , M Yang , S Luo , C Hsu . et al.. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nature Nanotechnology, 2020, 15(8): 675–682
https://doi.org/10.1038/s41565-020-0717-2
173 J Yan , X Yang , X Liu , C Du , F Qin , M Yang , Z Zheng , J Li . Van der Waals heterostructures with built-in mie resonances for polarization-sensitive photodetection. Advanced Science, 2023, 10(9): 2207022
https://doi.org/10.1002/advs.202207022
174 J R Schaibley , H Y Yu , G Clark , P Rivera , J S Ross , K L Seyler , W Yao , X D Xu . Valleytronics in 2D materials. Nature Reviews. Materials, 2016, 1(11): 16055
https://doi.org/10.1038/natrevmats.2016.55
175 J Lee , K F Mak , J Shan . Electrical control of the valley hall effect in bilayer MoS2 transistors. Nature Nanotechnology, 2016, 11(5): 421–425
https://doi.org/10.1038/nnano.2015.337
176 N Ubrig , S Jo , M Philippi , D Costanzo , H Berger , A B Kuzmenko , A F Morpurgo . Microscopic origin of the valley hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Letters, 2017, 17(9): 5719–5725
https://doi.org/10.1021/acs.nanolett.7b02666
177 Z Huang , Y Liu , K Dini , Q Tan , Z Liu , H Fang , J Liu , T Liew , W Gao . Robust room temperature valley hall effect of interlayer excitons. Nano Letters, 2020, 20(2): 1345–1351
https://doi.org/10.1021/acs.nanolett.9b04836
178 L Li , L Shao , X Liu , A Gao , H Wang , B Zheng , G Hou , K Shehzad , L Yu , F Miao , Y Shi , Y Xu , X Wang . Room-temperature valleytronic transistor. Nature Nanotechnology, 2020, 15(9): 743–749
https://doi.org/10.1038/s41565-020-0727-0
179 C Jiang , A Rasmita , H Ma , Q Tan , Z Zhang , Z Huang , S Lai , N Wang , S Liu , X Liu . et al.. A room-temperature gate-tunable bipolar valley hall effect in molybdenum disulfide/tungsten diselenide heterostructures. Nature Electronics, 2022, 5(1): 23–27
https://doi.org/10.1038/s41928-021-00686-7
180 L Zhang , R Gogna , G W Burg , J Horng , E Paik , Y H Chou , K Kim , E Tutuc , H Deng . Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Physical Review. B, 2019, 100(4): 041402
https://doi.org/10.1103/PhysRevB.100.041402
181 T Ye , Y Li , J Li , H Shen , J Ren , C Z Ning , D Li . Nonvolatile electrical switching of optical and valleytronic properties of interlayer excitons. Light, Science & Applications, 2022, 11(1): 23
https://doi.org/10.1038/s41377-022-00718-7
182 Y Hu , X Wen , J Lin , W Yao , Y Chen , J Li , S Chen , L Wang , W Xu , D Li . All-optical valley polarization switch via controlling spin-triplet and spin-singlet interlayer exciton emission in WS2/WSe2 heterostructure. Nano Letters, 2023, 23(14): 6581–6587
https://doi.org/10.1021/acs.nanolett.3c01698
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed