Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (5) : 52    https://doi.org/10.1007/s11705-024-2411-7
Single-Ni-atoms on nitrogenated humic acid based porous carbon for CO2 electroreduction
Delei Yu, Ying Chen, Yao Chen, Xiangchun Liu(), Xianwen Wei(), Ping Cui
Anhui Key Laboratory of Coal Clean Conversion & Utilization, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243002, China
 Download: PDF(1395 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We proposed a facile synthesis of single-Ni-atom catalysts on low-cost porous carbon using a calcination method at the temperatures of 850–1000 °C, which were used for CO2 electrochemical reduction to CO. The porous carbon was prepared by carbonizing cheap and abundant humic acid. The structural characterizations of the as-synthesized catalysts and their electrocatalytic performances were analyzed. The results showed that the single-Ni-atom catalyst activated at 950 °C showed an optimum catalytic performance, and it reached a CO Faradaic efficiency of 91.9% with a CO partial current density of 6.9 mA·cm−2 at −0.9 V vs. reversible hydrogen electrode (RHE). Additionally, the CO Faradaic efficiency and current density of the optimum catalyst changed slightly after 8 h of continuous operation, suggesting that it possessed an excellent stability. The structure-activity relations indicate that the variation in the CO2 electrochemical reduction performance for the as-synthesized catalysts is ascribed to the combined effects of the increase in the content of pyrrolic N, the evaporation of Ni and N, the decrease in pore volume, and the change in graphitization degree.

Keywords CO2 electroreduction      single-Ni-atom catalysts      humic acid based porous carbon     
Corresponding Author(s): Xiangchun Liu,Xianwen Wei   
Just Accepted Date: 12 January 2024   Issue Date: 12 April 2024
 Cite this article:   
Delei Yu,Ying Chen,Yao Chen, et al. Single-Ni-atoms on nitrogenated humic acid based porous carbon for CO2 electroreduction[J]. Front. Chem. Sci. Eng., 2024, 18(5): 52.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2411-7
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I5/52
Fig.1  (a) FEsCO on the as-prepared catalysts in the CO2-saturated 0.1 mol·L?1 KHCO3 at different potentials; (b) FEsCO and total current densities on Ni-N-HAPC-950 at different potentials; (c) CO partial current density (jCO) values of the as-prepared catalysts; (d) FEsCO and current densities on N-HAPC-950 and Ni-N-HAPC-950 at ?0.9 VRHE; (e) linear sweep voltammetry curves of Ni-N-HAPC-950 collected in the CO2- and Ar-saturated 0.1 mol·L?1 KHCO3 solutions.
Fig.2  (a) Cdl, (b) Tafel plots, and (c) electrochemical impedance spectra for HA, HAPC, and Ni-N-HAPC; (d) current-time response of Ni-N-HAPC-950 for CO2ER at ?0.9 VRHE.
Fig.3  SEM images of (a) HA, (b) HAPC, and (c–f) Ni-N-HAPC.
Fig.4  (a) SEM image of Ni-N-HAPC-950. (b) C, (c) N, (d) Ni, and (e) O elemental mappings.
Fig.5  (a) TEM and (b) HRTEM images for Ni-N-HAPC-950.
Fig.6  High resolution XPS spectra of N 1s for (a) HA, (b) HAPC, and (c–f) Ni-N-HAPC.
Fig.7  Relative contents of pyridinic, pyrrolic, graphitic, and oxidized N in all catalysts extracted from XPS.
Fig.8  Ni 2p XPS spectra of all catalysts.
Fig.9  XRD patterns of all catalysts.
Fig.10  Schematic of Ni-N-HAPC catalysts preparation and their CO2ER mechanism.
1 C Long , X Liu , K Wan , Y Jiang , P An , C Yang , G Wu , W Wang , J Guo , L Li . et al.. Regulating reconstruction of oxide-derived Cu for electrochemical CO2 reduction toward n-propanol. Science Advances, 2023, 9(43): eadi6119
https://doi.org/10.1126/sciadv.adi6119
2 Y Zhang , C Yu , X Tan , S Cui , W Li , J Qiu . Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO. New Carbon Materials, 2021, 36(1): 19–33
https://doi.org/10.1016/j.carbon.2021.02.007
3 J Bo , M Li , X Zhu , Q Ge , J Han , H Wang . Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios. Frontiers of Chemical Science and Engineering, 2022, 16(4): 498–510
https://doi.org/10.1007/s11705-021-2082-6
4 J Li , P Pršlja , T Shinagawa , Fernández A J Martín , F Krumeich , K Artyushkova , P Atanassov , A Zitolo , Y Zhou , R García-Muelas . et al.. Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catalysis, 2019, 9(11): 10426–10439
https://doi.org/10.1021/acscatal.9b02594
5 Y Zhao , X Wang , X Sang , S Zheng , B Yang , L Lei , Y Hou , Z Li . Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1772–1781
https://doi.org/10.1007/s11705-022-2197-4
6 T Möller , W Ju , A Bagger , X Wang , F Luo , T N Thanh , A S Varela , J Rossmeisl , P Strasser . Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy & Environmental Science, 2019, 12(2): 640–647
https://doi.org/10.1039/C8EE02662A
7 C Long , K Wan , X Qiu , X Zhang , J Han , P An , Z Yang , X Li , J Guo , X Shi . et al.. Single site catalyst with enzyme-mimic micro-environment for electroreduction of CO2. Nano Research, 2022, 15(3): 1817–1823
https://doi.org/10.1007/s12274-021-3756-6
8 W Ju , A Bagger , G P Hao , A S Varela , I Sinev , V Bon , B Roldan Cuenya , S Kaskel , J Rossmeisl , P Strasser . Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8(1): 944
https://doi.org/10.1038/s41467-017-01035-z
9 Y J Sa , H Jung , D Shin , H Y Jeong , S Ringe , H Kim , Y J Hwang , S H Joo . Thermal transformation of molecular Ni2+–N4 sites for enhanced CO2 electroreduction activity. ACS Catalysis, 2020, 10(19): 10920–10931
https://doi.org/10.1021/acscatal.0c02325
10 A S Varela , N Ranjbar Sahraie , J Steinberg , W Ju , H S Oh , P Strasser . Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angewandte Chemie International Edition, 2015, 54(37): 10758–10762
https://doi.org/10.1002/anie.201502099
11 P Su , K Iwase , S Nakanishi , K Hashimoto , K Kamiya . Nickel-nitrogen-modified graphene: an efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide. Small, 2016, 12(44): 6083–6089
https://doi.org/10.1002/smll.201602158
12 C Yan , H Li , Y Ye , H Wu , F Cai , R Si , J Xiao , S Miao , S Xie , F Yang . et al.. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy & Environmental Science, 2018, 11(5): 1204–1210
https://doi.org/10.1039/C8EE00133B
13 K Jiang , S Siahrostami , T Zheng , Y Hu , S Hwang , E Stavitski , Y Peng , J Dynes , M Gangisetty , D Su . et al.. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy & Environmental Science, 2018, 11(4): 893–903
https://doi.org/10.1039/C7EE03245E
14 R Daiyan , X Zhu , Z Tong , L Gong , A Razmjou , R S Liu , Z Xia , X Lu , L Dai , R Amal . Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy, 2020, 78: 105213
https://doi.org/10.1016/j.nanoen.2020.105213
15 X Yang , J Cheng , X Xuan , N Liu , J Liu . Boosting defective carbon by anchoring well-defined atomically dispersed Ni–N4 sites for electrocatalytic CO2 reduction. ACS Sustainable Chemistry & Engineering, 2020, 8(28): 10536–10543
https://doi.org/10.1021/acssuschemeng.0c03222
16 R Boppella , P M Austeria , Y Kim , E Kim , I Song , Y Eom , D P Kumar , M Balamurugan , E Sim , D H Kim . et al.. Pyrrolic N-stabilized monovalent Ni single-atom electrocatalyst for efficient CO2 reduction: identifying the role of pyrrolic-N and synergistic electrocatalysis. Advanced Functional Materials, 2022, 32(35): 2202351
https://doi.org/10.1002/adfm.202202351
17 J Wu , R M Yadav , M Liu , P P Sharma , C S Tiwary , L Ma , X Zou , X D Zhou , B I Yakobson , J Lou . et al.. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano, 2015, 9(5): 5364–5371
https://doi.org/10.1021/acsnano.5b01079
18 P P Sharma , J Wu , R M Yadav , M Liu , C J Wright , C S Tiwary , B I Yakobson , J Lou , P M Ajayan , X D Zhou . Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angewandte Chemie International Edition, 2015, 54(46): 13701–13705
https://doi.org/10.1002/anie.201506062
19 K Jiang , S Siahrostami , A J Akey , Y Li , Z Lu , J Lattimer , Y Hu , C Stokes , M Gangishetty , G Chen . et al.. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem, 2017, 3(6): 950–960
https://doi.org/10.1016/j.chempr.2017.09.014
20 Z Mo , S Ajmal , M Tabish , A Kumar , G Yasin , W Zhao . Metal-organic frameworks-based advanced catalysts for anthropogenic CO2 conversion toward sustainable future. Fuel Processing Technology, 2023, 244: 107705
https://doi.org/10.1016/j.fuproc.2023.107705
21 T Zheng , K Jiang , N Ta , Y Hu , J Zeng , J Liu , H Wang . Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule, 2019, 3(1): 265–278
https://doi.org/10.1016/j.joule.2018.10.015
22 C Wang , T Cheng , D Zhang , X Pan . Electrochemical properties of humic acid and its novel applications: A tip of the iceberg. Science of the Total Environment, 2023, 863: 160755
https://doi.org/10.1016/j.scitotenv.2022.160755
23 G Huang , W Kang , B Xing , L Chen , C Zhang . Oxygen-rich and hierarchical porous carbons prepared from coal based humic acid for supercapacitor electrodes. Fuel Processing Technology, 2016, 142: 1–5
https://doi.org/10.1016/j.fuproc.2015.09.025
24 M Zhong , S Gao , Q Zhou , J Yue , F Ma , G Xu . Characterization of char from high temperature fluidized bed coal pyrolysis in complex atmospheres. Particuology, 2016, 25: 59–67
https://doi.org/10.1016/j.partic.2014.12.018
25 Y Li , N M Adli , W Shan , M Wang , M J Zachman , S Hwang , H Tabassum , S Karakalos , Z Feng , G Wang . et al.. Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy & Environmental Science, 2022, 15(5): 2108–2119
https://doi.org/10.1039/D2EE00318J
26 S Liang , Q Jiang , Q Wang , Y Liu . Revealing the real role of nickel decorated nitrogen-doped carbon catalysts for electrochemical reduction of CO2 to CO. Advanced Energy Materials, 2021, 11(36): 2101477
https://doi.org/10.1002/aenm.202101477
27 X Li , W Bi , M Chen , Y Sun , H Ju , W Yan , J Zhu , X Wu , W Chu , C Wu . et al.. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. Journal of the American Chemical Society, 2017, 139(42): 14889–14892
https://doi.org/10.1021/jacs.7b09074
28 Z Sun , T Ma , H Tao , Q Fan , B Han . Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem, 2017, 3(4): 560–587
https://doi.org/10.1016/j.chempr.2017.09.009
29 Q Lu , J Rosen , Y Zhou , G S Hutchings , Y C Kimmel , J G Chen , F Jiao . A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Communications, 2014, 5(1): 3242
https://doi.org/10.1038/ncomms4242
30 M R Gao , J X Liang , Y R Zheng , Y F Xu , J Jiang , Q Gao , J Li , S H Yu . An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6(1): 5982
https://doi.org/10.1038/ncomms6982
31 X C Liu , J Hu , R L Xie , B Fang , P Cui . Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale. Frontiers of Chemical Science and Engineering, 2021, 15(2): 363–372
https://doi.org/10.1007/s11705-020-1944-7
32 M Yang , L Wang , M Li , T Hou , Y Li . Structural stability and O2 dissociation on nitrogen-doped graphene with transition metal atoms embedded: a first-principles study. AIP Advances, 2015, 5(6): 067136
https://doi.org/10.1063/1.4922841
33 H B Yang , S F Hung , S Liu , K Yuan , S Miao , L Zhang , X Huang , H Y Wang , W Cai , R Chen . et al.. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3(2): 140–147
https://doi.org/10.1038/s41560-017-0078-8
34 D Brazzolotto , M Gennari , N Queyriaux , T R Simmons , J Pécaut , S Demeshko , F Meyer , M Orio , V Artero , C Duboc . Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nature Chemistry, 2016, 8(11): 1054–1060
https://doi.org/10.1038/nchem.2575
35 S Ebner , B Jaun , M Goenrich , R K Thauer , J Harmer . Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase. Journal of the American Chemical Society, 2010, 132(2): 567–575
https://doi.org/10.1021/ja906367h
36 Q Jia , N Ramaswamy , H Hafiz , U Tylus , K Strickland , G Wu , B Barbiellini , A Bansil , E F Holby , P Zelenay . et al.. Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano, 2015, 9(12): 12496–12505
https://doi.org/10.1021/acsnano.5b05984
37 J Q Yu , Q H Guo , L Ding , Y Gong , G S Yu . Studying effects of solid structure evolution on gasification reactivity of coal chars by in-situ Raman spectroscopy. Fuel, 2020, 270: 117603
https://doi.org/10.1016/j.fuel.2020.117603
38 Y K Xiong , L J Jin , H Yang , Y Li , H Q Hu . Insight into the aromatic ring structures of a low-rank coal by step-wise oxidation degradation. Fuel Processing Technology, 2020, 210: 106563
https://doi.org/10.1016/j.fuproc.2020.106563
39 X J Li , J I Hayashi , C Z Li . FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel, 2006, 85(12–13): 1700–1707
https://doi.org/10.1016/j.fuel.2006.03.008
40 W Ni , Z Liu , Y Zhang , C Ma , H Deng , S Zhang , S Wang . Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe–N4 site. Advanced Materials, 2021, 33(1): e2003238
https://doi.org/10.1002/adma.202003238
41 X Liu , G Li , H Zhao , Y Ye , R Xie , Z Zhao , Z Lei , P Cui . Changes in caking properties of caking bituminous coals during low-temperature pyrolysis process. Fuel, 2022, 321: 124023
https://doi.org/10.1016/j.fuel.2022.124023
42 L Lu , V Sahajwalla , D Harris . Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace. Energy & Fuels, 2000, 14(4): 869–876
https://doi.org/10.1021/ef990236s
43 X C Liu , B Fang , Z G Zhao , R L Xie , Z Lei , Q Ling , P Cui . Modification mechanism of caking and coking properties of Shenmu subbituminous coal by low-temperature rapid pyrolysis treatment. Journal of Iron and Steel Research International, 2019, 26(10): 1052–1060
https://doi.org/10.1007/s42243-019-00261-7
44 D Ghosh , G Periyasamy , B Pandey , S K Pati . Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(37): 7943–7951
https://doi.org/10.1039/C4TC01385A
45 S Li , S Zhao , X Lu , M Ceccato , X M Hu , A Roldan , J Catalano , M Liu , T Skrydstrup , K Daasbjerg . Low-valence Znδ+ (0 < δ < 2) single-atom material as highly efficient electrocatalyst for CO2 reduction. Angewandte Chemie International Edition, 2021, 60(42): 22826–22832
https://doi.org/10.1002/anie.202107550
46 M Jia , C Choi , T S Wu , C Ma , P Kang , H Tao , Q Fan , S Hong , S Liu , Y L Soo . et al.. Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chemical Science, 2018, 9(47): 8775–8780
https://doi.org/10.1039/C8SC03732A
47 F Wang , Z Miao , J Mu , Y Zhao , M Liang , J Meng , X Wu , P Zhou , J Zhao , S Zhuo . et al.. A Ni nanoparticles encapsulated in N-doped carbon catalyst for efficient electroreduction CO2: identification of active sites for adsorption and activation of CO2 molecules. Chemical Engineering Journal, 2022, 428: 131323
https://doi.org/10.1016/j.cej.2021.131323
[1] FCE-23090-OF-YD_suppl_1 Download
[1] Azeem Mustafa, Bachirou Guene Lougou, Yong Shuai, Zhijiang Wang, Haseeb-ur-Rehman, Samia Razzaq, Wei Wang, Ruming Pan, Jiupeng Zhao. Self-supported copper-based gas diffusion electrodes improve the local CO2 concentration for efficient electrochemical CO2 reduction[J]. Front. Chem. Sci. Eng., 2024, 18(3): 29-.
[2] Huiyi Li, Jianmin Gao, Jingjing Shan, Qian Du, Yu Zhang, Xin Guo, Shaohua Wu, Zhijiang Wang. Boosting the direct conversion of NH4HCO3 electrolyte to syngas on Ag/Zn zeolitic imidazolate framework derived nitrogen-carbon skeleton[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1196-1207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed