| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Single-Ni-atoms on nitrogenated humic acid based porous carbon for CO2 electroreduction  | 
  					 
  					  										
						Delei Yu, Ying Chen, Yao Chen, Xiangchun Liu( ), Xianwen Wei( ), Ping Cui | 
					 
															
						| Anhui Key Laboratory of Coal Clean Conversion & Utilization, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243002, China | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  We proposed a facile synthesis of single-Ni-atom catalysts on low-cost porous carbon using a calcination method at the temperatures of 850–1000 °C, which were used for CO2 electrochemical reduction to CO. The porous carbon was prepared by carbonizing cheap and abundant humic acid. The structural characterizations of the as-synthesized catalysts and their electrocatalytic performances were analyzed. The results showed that the single-Ni-atom catalyst activated at 950 °C showed an optimum catalytic performance, and it reached a CO Faradaic efficiency of 91.9% with a CO partial current density of 6.9 mA·cm−2 at −0.9 V vs. reversible hydrogen electrode (RHE). Additionally, the CO Faradaic efficiency and current density of the optimum catalyst changed slightly after 8 h of continuous operation, suggesting that it possessed an excellent stability. The structure-activity relations indicate that the variation in the CO2 electrochemical reduction performance for the as-synthesized catalysts is ascribed to the combined effects of the increase in the content of pyrrolic N, the evaporation of Ni and N, the decrease in pore volume, and the change in graphitization degree. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				CO2 electroreduction  
																		  																																				single-Ni-atom catalysts  
																		  																																				humic acid based porous carbon  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Xiangchun Liu,Xianwen Wei   
																													     		
													     	 | 
														 
																																										
															| 
																															Just Accepted Date: 12 January 2024  
																																																													Issue Date: 12 April 2024
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														      C Long , X Liu , K Wan , Y Jiang , P An , C Yang , G Wu , W Wang , J Guo , L Li . et al.. Regulating reconstruction of oxide-derived Cu for electrochemical CO2 reduction toward n-propanol. Science Advances, 2023, 9(43): eadi6119 
														     														     	 
														     															     		https://doi.org/10.1126/sciadv.adi6119
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														      Y Zhang , C Yu , X Tan , S Cui , W Li , J Qiu . Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO. New Carbon Materials, 2021, 36(1): 19–33 
														     														     	 
														     															     		https://doi.org/10.1016/j.carbon.2021.02.007
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														      J Bo , M Li , X Zhu , Q Ge , J Han , H Wang . Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios. Frontiers of Chemical Science and Engineering, 2022, 16(4): 498–510 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-021-2082-6
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														      J Li , P Pršlja , T Shinagawa , Fernández A J Martín , F Krumeich , K Artyushkova , P Atanassov , A Zitolo , Y Zhou , R García-Muelas . et al.. Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catalysis, 2019, 9(11): 10426–10439 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.9b02594
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														      Y Zhao , X Wang , X Sang , S Zheng , B Yang , L Lei , Y Hou , Z Li . Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1772–1781 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-022-2197-4
														     															     															     															 | 
																  
																														
															| 6 | 
															 
														      T Möller , W Ju , A Bagger , X Wang , F Luo , T N Thanh , A S Varela , J Rossmeisl , P Strasser . Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy & Environmental Science, 2019, 12(2): 640–647 
														     														     	 
														     															     		https://doi.org/10.1039/C8EE02662A
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														      C Long , K Wan , X Qiu , X Zhang , J Han , P An , Z Yang , X Li , J Guo , X Shi . et al.. Single site catalyst with enzyme-mimic micro-environment for electroreduction of CO2. Nano Research, 2022, 15(3): 1817–1823 
														     														     	 
														     															     		https://doi.org/10.1007/s12274-021-3756-6
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														      W Ju , A Bagger , G P Hao , A S Varela , I Sinev , V Bon , B Roldan Cuenya , S Kaskel , J Rossmeisl , P Strasser . Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8(1): 944 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-017-01035-z
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														      Y J Sa , H Jung , D Shin , H Y Jeong , S Ringe , H Kim , Y J Hwang , S H Joo . Thermal transformation of molecular Ni2+–N4 sites for enhanced CO2 electroreduction activity. ACS Catalysis, 2020, 10(19): 10920–10931 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.0c02325
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														      A S Varela , N Ranjbar Sahraie , J Steinberg , W Ju , H S Oh , P Strasser . Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angewandte Chemie International Edition, 2015, 54(37): 10758–10762 
														     														     	 
														     															     		https://doi.org/10.1002/anie.201502099
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														      P Su , K Iwase , S Nakanishi , K Hashimoto , K Kamiya . Nickel-nitrogen-modified graphene: an efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide. Small, 2016, 12(44): 6083–6089 
														     														     	 
														     															     		https://doi.org/10.1002/smll.201602158
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														      C Yan , H Li , Y Ye , H Wu , F Cai , R Si , J Xiao , S Miao , S Xie , F Yang . et al.. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy & Environmental Science, 2018, 11(5): 1204–1210 
														     														     	 
														     															     		https://doi.org/10.1039/C8EE00133B
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														      K Jiang , S Siahrostami , T Zheng , Y Hu , S Hwang , E Stavitski , Y Peng , J Dynes , M Gangisetty , D Su . et al.. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy & Environmental Science, 2018, 11(4): 893–903 
														     														     	 
														     															     		https://doi.org/10.1039/C7EE03245E
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														      R Daiyan , X Zhu , Z Tong , L Gong , A Razmjou , R S Liu , Z Xia , X Lu , L Dai , R Amal . Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy, 2020, 78: 105213 
														     														     	 
														     															     		https://doi.org/10.1016/j.nanoen.2020.105213
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														      X Yang , J Cheng , X Xuan , N Liu , J Liu . Boosting defective carbon by anchoring well-defined atomically dispersed Ni–N4 sites for electrocatalytic CO2 reduction. ACS Sustainable Chemistry & Engineering, 2020, 8(28): 10536–10543 
														     														     	 
														     															     		https://doi.org/10.1021/acssuschemeng.0c03222
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														      R Boppella , P M Austeria , Y Kim , E Kim , I Song , Y Eom , D P Kumar , M Balamurugan , E Sim , D H Kim . et al.. Pyrrolic N-stabilized monovalent Ni single-atom electrocatalyst for efficient CO2 reduction: identifying the role of pyrrolic-N and synergistic electrocatalysis. Advanced Functional Materials, 2022, 32(35): 2202351 
														     														     	 
														     															     		https://doi.org/10.1002/adfm.202202351
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														      J Wu , R M Yadav , M Liu , P P Sharma , C S Tiwary , L Ma , X Zou , X D Zhou , B I Yakobson , J Lou . et al.. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano, 2015, 9(5): 5364–5371 
														     														     	 
														     															     		https://doi.org/10.1021/acsnano.5b01079
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														      P P Sharma , J Wu , R M Yadav , M Liu , C J Wright , C S Tiwary , B I Yakobson , J Lou , P M Ajayan , X D Zhou . Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angewandte Chemie International Edition, 2015, 54(46): 13701–13705 
														     														     	 
														     															     		https://doi.org/10.1002/anie.201506062
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														      K Jiang , S Siahrostami , A J Akey , Y Li , Z Lu , J Lattimer , Y Hu , C Stokes , M Gangishetty , G Chen . et al.. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem, 2017, 3(6): 950–960 
														     														     	 
														     															     		https://doi.org/10.1016/j.chempr.2017.09.014
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														      Z Mo , S Ajmal , M Tabish , A Kumar , G Yasin , W Zhao . Metal-organic frameworks-based advanced catalysts for anthropogenic CO2 conversion toward sustainable future. Fuel Processing Technology, 2023, 244: 107705 
														     														     	 
														     															     		https://doi.org/10.1016/j.fuproc.2023.107705
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														      T Zheng , K Jiang , N Ta , Y Hu , J Zeng , J Liu , H Wang . Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule, 2019, 3(1): 265–278 
														     														     	 
														     															     		https://doi.org/10.1016/j.joule.2018.10.015
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														      C Wang , T Cheng , D Zhang , X Pan . Electrochemical properties of humic acid and its novel applications: A tip of the iceberg. Science of the Total Environment, 2023, 863: 160755 
														     														     	 
														     															     		https://doi.org/10.1016/j.scitotenv.2022.160755
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														      G Huang , W Kang , B Xing , L Chen , C Zhang . Oxygen-rich and hierarchical porous carbons prepared from coal based humic acid for supercapacitor electrodes. Fuel Processing Technology, 2016, 142: 1–5 
														     														     	 
														     															     		https://doi.org/10.1016/j.fuproc.2015.09.025
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														      M Zhong , S Gao , Q Zhou , J Yue , F Ma , G Xu . Characterization of char from high temperature fluidized bed coal pyrolysis in complex atmospheres. Particuology, 2016, 25: 59–67 
														     														     	 
														     															     		https://doi.org/10.1016/j.partic.2014.12.018
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														      Y Li , N M Adli , W Shan , M Wang , M J Zachman , S Hwang , H Tabassum , S Karakalos , Z Feng , G Wang . et al.. Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy & Environmental Science, 2022, 15(5): 2108–2119 
														     														     	 
														     															     		https://doi.org/10.1039/D2EE00318J
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														      S Liang , Q Jiang , Q Wang , Y Liu . Revealing the real role of nickel decorated nitrogen-doped carbon catalysts for electrochemical reduction of CO2 to CO. Advanced Energy Materials, 2021, 11(36): 2101477 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202101477
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														      X Li , W Bi , M Chen , Y Sun , H Ju , W Yan , J Zhu , X Wu , W Chu , C Wu . et al.. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. Journal of the American Chemical Society, 2017, 139(42): 14889–14892 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.7b09074
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														      Z Sun , T Ma , H Tao , Q Fan , B Han . Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem, 2017, 3(4): 560–587 
														     														     	 
														     															     		https://doi.org/10.1016/j.chempr.2017.09.009
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														      Q Lu , J Rosen , Y Zhou , G S Hutchings , Y C Kimmel , J G Chen , F Jiao . A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Communications, 2014, 5(1): 3242 
														     														     	 
														     															     		https://doi.org/10.1038/ncomms4242
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														      M R Gao , J X Liang , Y R Zheng , Y F Xu , J Jiang , Q Gao , J Li , S H Yu . An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6(1): 5982 
														     														     	 
														     															     		https://doi.org/10.1038/ncomms6982
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														      X C Liu , J Hu , R L Xie , B Fang , P Cui . Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale. Frontiers of Chemical Science and Engineering, 2021, 15(2): 363–372 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-020-1944-7
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														      M Yang , L Wang , M Li , T Hou , Y Li . Structural stability and O2 dissociation on nitrogen-doped graphene with transition metal atoms embedded: a first-principles study. AIP Advances, 2015, 5(6): 067136 
														     														     	 
														     															     		https://doi.org/10.1063/1.4922841
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														      H B Yang , S F Hung , S Liu , K Yuan , S Miao , L Zhang , X Huang , H Y Wang , W Cai , R Chen . et al.. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3(2): 140–147 
														     														     	 
														     															     		https://doi.org/10.1038/s41560-017-0078-8
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														      D Brazzolotto , M Gennari , N Queyriaux , T R Simmons , J Pécaut , S Demeshko , F Meyer , M Orio , V Artero , C Duboc . Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nature Chemistry, 2016, 8(11): 1054–1060 
														     														     	 
														     															     		https://doi.org/10.1038/nchem.2575
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														      S Ebner , B Jaun , M Goenrich , R K Thauer , J Harmer . Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase. Journal of the American Chemical Society, 2010, 132(2): 567–575 
														     														     	 
														     															     		https://doi.org/10.1021/ja906367h
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														      Q Jia , N Ramaswamy , H Hafiz , U Tylus , K Strickland , G Wu , B Barbiellini , A Bansil , E F Holby , P Zelenay . et al.. Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano, 2015, 9(12): 12496–12505 
														     														     	 
														     															     		https://doi.org/10.1021/acsnano.5b05984
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														      J Q Yu , Q H Guo , L Ding , Y Gong , G S Yu . Studying effects of solid structure evolution on gasification reactivity of coal chars by in-situ Raman spectroscopy. Fuel, 2020, 270: 117603 
														     														     	 
														     															     		https://doi.org/10.1016/j.fuel.2020.117603
														     															     															     															 | 
																  
																														
															| 38 | 
															 
														      Y K Xiong , L J Jin , H Yang , Y Li , H Q Hu . Insight into the aromatic ring structures of a low-rank coal by step-wise oxidation degradation. Fuel Processing Technology, 2020, 210: 106563 
														     														     	 
														     															     		https://doi.org/10.1016/j.fuproc.2020.106563
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														      X J Li , J I Hayashi , C Z Li . FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel, 2006, 85(12–13): 1700–1707 
														     														     	 
														     															     		https://doi.org/10.1016/j.fuel.2006.03.008
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														      W Ni , Z Liu , Y Zhang , C Ma , H Deng , S Zhang , S Wang . Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe–N4 site. Advanced Materials, 2021, 33(1): e2003238 
														     														     	 
														     															     		https://doi.org/10.1002/adma.202003238
														     															     															     															 | 
																  
																														
															| 41 | 
															 
														      X Liu , G Li , H Zhao , Y Ye , R Xie , Z Zhao , Z Lei , P Cui . Changes in caking properties of caking bituminous coals during low-temperature pyrolysis process. Fuel, 2022, 321: 124023 
														     														     	 
														     															     		https://doi.org/10.1016/j.fuel.2022.124023
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														      L Lu , V Sahajwalla , D Harris . Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace. Energy & Fuels, 2000, 14(4): 869–876 
														     														     	 
														     															     		https://doi.org/10.1021/ef990236s
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														      X C Liu , B Fang , Z G Zhao , R L Xie , Z Lei , Q Ling , P Cui . Modification mechanism of caking and coking properties of Shenmu subbituminous coal by low-temperature rapid pyrolysis treatment. Journal of Iron and Steel Research International, 2019, 26(10): 1052–1060 
														     														     	 
														     															     		https://doi.org/10.1007/s42243-019-00261-7
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														      D Ghosh , G Periyasamy , B Pandey , S K Pati . Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(37): 7943–7951 
														     														     	 
														     															     		https://doi.org/10.1039/C4TC01385A
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														      S Li , S Zhao , X Lu , M Ceccato , X M Hu , A Roldan , J Catalano , M Liu , T Skrydstrup , K Daasbjerg . Low-valence Znδ+ (0 < δ < 2) single-atom material as highly efficient electrocatalyst for CO2 reduction. Angewandte Chemie International Edition, 2021, 60(42): 22826–22832 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202107550
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														      M Jia , C Choi , T S Wu , C Ma , P Kang , H Tao , Q Fan , S Hong , S Liu , Y L Soo . et al.. Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chemical Science, 2018, 9(47): 8775–8780 
														     														     	 
														     															     		https://doi.org/10.1039/C8SC03732A
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														      F Wang , Z Miao , J Mu , Y Zhao , M Liang , J Meng , X Wu , P Zhou , J Zhao , S Zhuo . et al.. A Ni nanoparticles encapsulated in N-doped carbon catalyst for efficient electroreduction CO2: identification of active sites for adsorption and activation of CO2 molecules. Chemical Engineering Journal, 2022, 428: 131323 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2021.131323
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |