Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (8) : 87    https://doi.org/10.1007/s11705-024-2440-2
Propane dehydro-aromatization reaction over PtFe@S-1 coupling with Zn/ZSM-5 tandem catalysts: the role of Zn species
Kai Bian1,2, Sirui Liu2, Huahua Fan2, Guanghui Zhang2(), Xinwei Zhang1, Gideon Abaidoo Ocran2, Mingrui Wang2, Quanjie Liu1, Xiaowa Nie2, Shuandi Hou1(), Xinwen Guo2()
1. Sinopec Dalian Research Institute of Petroleum and Petrochemicals, Dalian 116045, China
2. State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
 Download: PDF(1787 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Unraveling the structure-activity relationship and improving the catalytic performance is paramount in propane dehydro-aromatization reactions. Herein, a tandem catalyst with high propane dehydro-aromatization reaction performance was prepared via coupling the PtFe@S-1 with Zn/ZSM-5 zeolites (PtFe@S-1&1.0Zn/ZSM-5), which exhibits high dehydrogenation activity, aromatics selectivity (~60% at ~78% propane conversion), and stability. The addition of zinc inhibits the cleavage of C6= intermediates on ZSM-5 and promotes the aromatization pathway by weakening zeolite acid strength, significantly improving the selectivity to aromatics. This understanding of the structure-activity relationship in propane dehydro-aromatization reaction helps develop future high-performance catalysts.

Keywords propane dehydro-aromatization reaction      tandem catalysts      the structure-activity relationship of zinc species     
Corresponding Author(s): Guanghui Zhang,Shuandi Hou,Xinwen Guo   
Just Accepted Date: 15 March 2024   Issue Date: 28 April 2024
 Cite this article:   
Kai Bian,Sirui Liu,Huahua Fan, et al. Propane dehydro-aromatization reaction over PtFe@S-1 coupling with Zn/ZSM-5 tandem catalysts: the role of Zn species[J]. Front. Chem. Sci. Eng., 2024, 18(8): 87.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2440-2
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I8/87
  Scheme1 The design of tandem catalysts in PDA reaction.
Fig.1  (a) The XRD patterns and (b) UV-Vis spectra of ZSM-5-25 and xZn/ZSM-5 samples.
Fig.2  The SEM images for the reduced PtFe@S-1, ZSM-5-25 and xZn/ZSM-5 samples. (a, b) PtFe@S-1; (c) ZSM-5-25; (d) 0.5Zn/ZSM-5; (e) 1.0Zn/ZSM-5; (f) 2.0Zn/ZSM-5.
Fig.3  The PDA catalytic performance for (a, c, e) PtFe@S-1&ZSM-5-25 and (b, d, f) PtFe@S-1&1.0Zn/ZSM-5 catalysts with different filling methods (Dual bed; granule stack and powder mixing; reaction conditions: T = 550 °C, ambient pressure, 0.15 g of PtFe@S-1 (blue ball) and 0.15 g of ZSM-5-25 or 1.0Zn/ZSM-5 zeolites (yellow ball), C3H8/N2 = 5/35 mL·min–1).
Fig.4  The mass spectra of C3H8-TPSR results on (a) ZSM-5-25, (b) 1.0Zn/ZSM-5, (c) PtFe@S-1, (d) PtFe@S-1&ZSM-5-25, and (e) PtFe@S-1&1.0Zn/ZSM-5.
  Scheme2 The conjecture on the role of zinc in dehydro-aromatization of propane catalyzed by PtFe@S-1&1.0Zn/ZSM-5.
Fig.5  The catalytic performance of propylene conversion on (a) ZSM-5-25, (b) Pt/ZSM-5, (c) PtFe/ZSM-5 and (d) 1.0Zn/ZSM-5 (reaction conditions: T = 550 °C, ambient pressure, 0.07 g of catalysts, C3H6/N2 = 1.25/30 mL·min–1).
Fig.6  The catalytic performance of (a) cyclohexene and (b) 1-hexene conversion on different catalysts (reaction conditions: T = 550 °C, ambient pressure, 0.07 g of catalysts, C6H12/N2 = 0.02/40 mL·min–1).
Fig.7  The optimal reaction energy diagrams of 1-hexene cracking to C2 and C4 olefins on (a) ZSM-5 and (b) Zn/ZSM-5.
Fig.8  (a) The C3H6-TPD, (b) NH3-TPD and (c) Py-IR spectra for ZSM-5-25 and different xZn/ZSM-5 samples.
Fig.9  The PDA catalytic performance for PtFe@S-1&xZn/ZSM-5 with different amount of Zn. (a) ZSM-5-25; (b) 0.5Zn/ZSM-5; (c) 1.0Zn/ZSM-5; (d) 2.0Zn/ZSM-5 (reaction conditions: T = 550 °C, ambient pressure, 0.30 g of PtFe@S-1&xZn/ZSM-5, C3H8/N2 = 5/35 mL·min–1).
1 X Cui , P Gao , S Li , C Yang , Z Liu , H Wang , L Zhong , Y Sun . Selective production of aromatics directly from carbon dioxide hydrogenation. ACS Catalysis, 2019, 9(5): 3866–3876
https://doi.org/10.1021/acscatal.9b00640
2 C Zhou , J Shi , W Zhou , K Cheng , Q Zhang , J Kang , Y Wang . Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide. ACS Catalysis, 2020, 10(1): 302–310
https://doi.org/10.1021/acscatal.9b04309
3 Y Sun , L Wei , Z Zhang , H Zhang , Y Li . Coke formation over zeolite catalysts in light alkanes aromatization and anti-carbon-deposition strategies and perspectives: a review. Energy & Fuels, 2023, 37(3): 1657–1677
https://doi.org/10.1021/acs.energyfuels.2c03479
4 K Cheng , W Zhou , J Kang , S He , S Shi , Q Zhang , Y Pan , W Wen , Y Wang . Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem, 2017, 3(2): 334–347
https://doi.org/10.1016/j.chempr.2017.05.007
5 Campo P del , C Martínez , A Corma . Activation and conversion of alkanes in the confined space of zeolite-type materials. Chemical Society Reviews, 2021, 50(15): 8511–8595
https://doi.org/10.1039/D0CS01459A
6 H Zhang , L Wei , Y Sun , F Liang , C Wang . Transformation of metal species and catalytic reaction mechanism of metal modified ZSM-5 in alkane aromatization. Fuel Processing Technology, 2023, 245: 107739
https://doi.org/10.1016/j.fuproc.2023.107739
7 D Xu , S Wang , B Wu , B Zhang , Y Qin , C Huo , L Huang , X Wen , Y Yang , Y Li . Highly dispersed single-atom Pt and Pt clusters in the Fe-modified KL zeolite with enhanced selectivity for n-heptane aromatization. ACS Applied Materials & Interfaces, 2019, 11(33): 29858–29867
https://doi.org/10.1021/acsami.9b08137
8 X Ren , Z P Hu , J Han , Y Wei , Z Liu . Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1801–1808
https://doi.org/10.1007/s11705-023-2325-9
9 X Chen , M Dong , X Niu , K Wang , G Chen , W Fan , J Wang , Z Qin . Influence of Zn species in HZSM-5 on ethylene aromatization. Chinese Journal of Catalysis, 2015, 36(6): 880–888
https://doi.org/10.1016/S1872-2067(14)60289-8
10 X Bai , A Samanta , B Robinson , L Li , J Hu . Deactivation mechanism and regeneration study of Ga-Pt promoted HZSM-5 catalyst in ethane dehydroaromatization. Industrial & Engineering Chemistry Research, 2018, 57(13): 4505–4513
https://doi.org/10.1021/acs.iecr.7b05094
11 P MÉRiaudeau . Naccache C. Dehydrocyclization of alkanes over zeolite-supported metal catalysts: monofunctional or bifunctional route. Catalysis Reviews, 1997, 39(1-2): 5–48
12 A Hagen , F Roessner . Ethane to aromatic hydrocarbons: past, present, future. Catalysis Reviews. Science and Engineering, 2000, 42(4): 403–437
https://doi.org/10.1081/CR-100101952
13 G Caeiro , R H Carvalho , X Wang , M Lemos , F Lemos , M Guisnet , Ribeiro F Ramôa . Activation of C2–C4 alkanes over acid and bifunctional zeolite catalysts. Journal of Molecular Catalysis A. Chemical, 2006, 255(1-2): 131–158
https://doi.org/10.1016/j.molcata.2006.03.068
14 H Fan , X Nie , H Wang , M Janik , C Song , X Guo . Mechanistic understanding of ethane dehydrogenation and aromatization over Zn/ZSM-5: effects of Zn modification and CO2 co-reactant. Catalysis Science & Technology, 2020, 10(24): 8359–8373
https://doi.org/10.1039/D0CY01566K
15 E Gomez , X Nie , J H Lee , Z Xie , J G Chen . Tandem reactions of CO2 reduction and ethane aromatization. Journal of the American Chemical Society, 2019, 141(44): 17771–17782
https://doi.org/10.1021/jacs.9b08538
16 G Chen , L Fang , T Li , Y Xiang . Ultralow-loading Pt/Zn hybrid cluster in zeolite HZSM-5 for efficient dehydroaromatization. Journal of the American Chemical Society, 2022, 144(26): 11831–11839
https://doi.org/10.1021/jacs.2c04278
17 H Fan , X Nie , C Song , X Guo . Mechanistic insight into the promotional effect of CO2 on propane aromatization over Zn/ZSM-5. Industrial & Engineering Chemistry Research, 2022, 61(29): 10483–10495
https://doi.org/10.1021/acs.iecr.2c00430
18 A Bhan , W Nicholas Delgass . Propane aromatization over HZSM-5 and Ga/HZSM-5 catalysts. Catalysis Reviews. Science and Engineering, 2008, 50(1): 19–151
https://doi.org/10.1080/01614940701804745
19 J Liu , N He , Y Zhao , L Lin , W Zhou , G Xiong , H Xie , H Guo . The crucial role of skeleton structure and carbon number on short-chain alkane activation over Zn/HZSM-5 catalyst: an experimental and computational study. Catalysis Letters, 2018, 148(7): 2069–2081
https://doi.org/10.1007/s10562-018-2394-4
20 L Lin , J Liu , X Zhang , J Wang , C Liu , G Xiong , H Guo . Effect of zeolitic hydroxyl nests on the acidity and propane aromatization performance of zinc nitrate impregnation-modified HZSM-5 zeolite. Industrial & Engineering Chemistry Research, 2020, 59(37): 16146–16160
https://doi.org/10.1021/acs.iecr.0c02596
21 W Zhou , J Liu , L Lin , X Zhang , N He , C Liu , H Guo . Enhanced dehydrogenative aromatization of propane by incorporating Fe and Pt into the Zn/HZSM-5 catalyst. Industrial & Engineering Chemistry Research, 2018, 57(48): 16246–16256
https://doi.org/10.1021/acs.iecr.8b03865
22 M Xin , E Xing , X Gao , Y Wang , Y Ouyang , G Xu , Y Luo , X Shu . Ga substitution during modification of ZSM-5 and its influences on catalytic aromatization performance. Industrial & Engineering Chemistry Research, 2019, 58(17): 6970–6981
https://doi.org/10.1021/acs.iecr.9b00295
23 C W Chang , H Pham , R Alcala , A Datye , J T Miller . Dehydroaromatization pathway of propane on PtZn/SiO2 + ZSM-5 bifunctional catalyst. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 394–409
https://doi.org/10.1021/acssuschemeng.1c06579
24 J Wang , C Liu , P Zhu , H Liu , X Zhang , Y Zhang , J Liu , L Zhang , W Zhang . Synthesis of hierarchical ZSM-5 nano-aggregated microspheres for application in enhancing the stability of n-hexane aromatization. New Journal of Chemistry, 2021, 45(39): 18659–18668
https://doi.org/10.1039/D1NJ03077A
25 Z Wei , T Xia , M Liu , Q Cao , Y Xu , K Zhu , X Zhu . Alkaline modification of ZSM-5 catalysts for methanol aromatization: the effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450–460
https://doi.org/10.1007/s11705-015-1542-2
26 Y Fang , F Yang , X He , X Zhu . Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization. Frontiers of Chemical Science and Engineering, 2019, 13(3): 543–553
https://doi.org/10.1007/s11705-018-1778-8
27 X Zhao , J Xu , F Deng . Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism. Frontiers of Chemical Science and Engineering, 2020, 14(2): 159–187
https://doi.org/10.1007/s11705-019-1885-1
28 K Bian , G Zhang , M Wang , S Liu , C J Breckner , D P Dean , J Zhu , J T Miller , S Hou , C Song . et al.. Promoting propane dehydrogenation over PtFe bimetallic catalysts by optimizing the state of Fe species. Chemical Engineering Science, 2023, 275: 118748
https://doi.org/10.1016/j.ces.2023.118748
29 K Bian , G Zhang , J Zhu , X Wang , M Wang , F Lou , Y Liu , C Song , X Guo . Promoting propane dehydrogenation with CO2 over the PtFe bimetallic catalyst by eliminating the non-selective Fe(0) phase. ACS Catalysis, 2022, 12(11): 6559–6569
https://doi.org/10.1021/acscatal.2c00649
30 C Dai , A Zhang , M Liu , X Guo , C Song . Hollow ZSM-5 with silicon-rich surface, double shells, and functionalized interior with metallic nanoparticles and carbon nanotubes. Advanced Functional Materials, 2015, 25(48): 7479–7487
https://doi.org/10.1002/adfm.201502980
31 J Li , M Liu , S Li , X Guo , C Song . Influence of diffusion and acid properties on methane and propane selectivity in methanol-to-olefins reaction. Industrial & Engineering Chemistry Research, 2019, 58(5): 1896–1905
https://doi.org/10.1021/acs.iecr.8b03969
32 N M Schweitzer , B Hu , U Das , H Kim , J Greeley , L A Curtiss , P C Stair , J T Miller , A S Hock . Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catalysis, 2014, 4(4): 1091–1098
https://doi.org/10.1021/cs401116p
33 V J Cybulskis , B C Bukowski , H T Tseng , J R Gallagher , Z Wu , E Wegener , A J Kropf , B Ravel , F H Ribeiro , J Greeley . et al.. Zinc promotion of platinum for catalytic light alkane dehydrogenation: insights into geometric and electronic effects. ACS Catalysis, 2017, 7(6): 4173–4181
https://doi.org/10.1021/acscatal.6b03603
34 S Grimme , J Antony , T Schwabe , C Muck-Lichtenfeld . Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Organic & Biomolecular Chemistry, 2007, 5(5): 741–758
https://doi.org/10.1039/B615319B
35 G Henkelman , B P Uberuaga , H Jónsson . A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904
https://doi.org/10.1063/1.1329672
36 K Bian , A Zhang , H Yang , B Fan , S Xu , X Guo , C Song . Synthesis and characterization of Fe-substituted ZSM-5 zeolite and its catalytic performance for alkylation of benzene with dilute ethylene. Industrial & Engineering Chemistry Research, 2020, 59(52): 22413–22421
https://doi.org/10.1021/acs.iecr.0c01909
37 H Chen , W Li , M Zhang , W Wang , X H Zhang , F Lu , K Cheng , Q Zhang , Y Wang . Boosting propane dehydroaromatization by confining PtZn alloy nanoparticles within H-ZSM-5 crystals. Catalysis Science & Technology, 2022, 12(24): 7281–7292
https://doi.org/10.1039/D2CY01096H
[1] FCE-23118-of-BK_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed