|
|
Propane dehydro-aromatization reaction over PtFe@S-1 coupling with Zn/ZSM-5 tandem catalysts: the role of Zn species |
Kai Bian1,2, Sirui Liu2, Huahua Fan2, Guanghui Zhang2( ), Xinwei Zhang1, Gideon Abaidoo Ocran2, Mingrui Wang2, Quanjie Liu1, Xiaowa Nie2, Shuandi Hou1( ), Xinwen Guo2( ) |
1. Sinopec Dalian Research Institute of Petroleum and Petrochemicals, Dalian 116045, China 2. State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract Unraveling the structure-activity relationship and improving the catalytic performance is paramount in propane dehydro-aromatization reactions. Herein, a tandem catalyst with high propane dehydro-aromatization reaction performance was prepared via coupling the PtFe@S-1 with Zn/ZSM-5 zeolites (PtFe@S-1&1.0Zn/ZSM-5), which exhibits high dehydrogenation activity, aromatics selectivity (~60% at ~78% propane conversion), and stability. The addition of zinc inhibits the cleavage of C6= intermediates on ZSM-5 and promotes the aromatization pathway by weakening zeolite acid strength, significantly improving the selectivity to aromatics. This understanding of the structure-activity relationship in propane dehydro-aromatization reaction helps develop future high-performance catalysts.
|
Keywords
propane dehydro-aromatization reaction
tandem catalysts
the structure-activity relationship of zinc species
|
Corresponding Author(s):
Guanghui Zhang,Shuandi Hou,Xinwen Guo
|
Just Accepted Date: 15 March 2024
Issue Date: 28 April 2024
|
|
1 |
X Cui , P Gao , S Li , C Yang , Z Liu , H Wang , L Zhong , Y Sun . Selective production of aromatics directly from carbon dioxide hydrogenation. ACS Catalysis, 2019, 9(5): 3866–3876
https://doi.org/10.1021/acscatal.9b00640
|
2 |
C Zhou , J Shi , W Zhou , K Cheng , Q Zhang , J Kang , Y Wang . Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide. ACS Catalysis, 2020, 10(1): 302–310
https://doi.org/10.1021/acscatal.9b04309
|
3 |
Y Sun , L Wei , Z Zhang , H Zhang , Y Li . Coke formation over zeolite catalysts in light alkanes aromatization and anti-carbon-deposition strategies and perspectives: a review. Energy & Fuels, 2023, 37(3): 1657–1677
https://doi.org/10.1021/acs.energyfuels.2c03479
|
4 |
K Cheng , W Zhou , J Kang , S He , S Shi , Q Zhang , Y Pan , W Wen , Y Wang . Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem, 2017, 3(2): 334–347
https://doi.org/10.1016/j.chempr.2017.05.007
|
5 |
Campo P del , C Martínez , A Corma . Activation and conversion of alkanes in the confined space of zeolite-type materials. Chemical Society Reviews, 2021, 50(15): 8511–8595
https://doi.org/10.1039/D0CS01459A
|
6 |
H Zhang , L Wei , Y Sun , F Liang , C Wang . Transformation of metal species and catalytic reaction mechanism of metal modified ZSM-5 in alkane aromatization. Fuel Processing Technology, 2023, 245: 107739
https://doi.org/10.1016/j.fuproc.2023.107739
|
7 |
D Xu , S Wang , B Wu , B Zhang , Y Qin , C Huo , L Huang , X Wen , Y Yang , Y Li . Highly dispersed single-atom Pt and Pt clusters in the Fe-modified KL zeolite with enhanced selectivity for n-heptane aromatization. ACS Applied Materials & Interfaces, 2019, 11(33): 29858–29867
https://doi.org/10.1021/acsami.9b08137
|
8 |
X Ren , Z P Hu , J Han , Y Wei , Z Liu . Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1801–1808
https://doi.org/10.1007/s11705-023-2325-9
|
9 |
X Chen , M Dong , X Niu , K Wang , G Chen , W Fan , J Wang , Z Qin . Influence of Zn species in HZSM-5 on ethylene aromatization. Chinese Journal of Catalysis, 2015, 36(6): 880–888
https://doi.org/10.1016/S1872-2067(14)60289-8
|
10 |
X Bai , A Samanta , B Robinson , L Li , J Hu . Deactivation mechanism and regeneration study of Ga-Pt promoted HZSM-5 catalyst in ethane dehydroaromatization. Industrial & Engineering Chemistry Research, 2018, 57(13): 4505–4513
https://doi.org/10.1021/acs.iecr.7b05094
|
11 |
P MÉRiaudeau . Naccache C. Dehydrocyclization of alkanes over zeolite-supported metal catalysts: monofunctional or bifunctional route. Catalysis Reviews, 1997, 39(1-2): 5–48
|
12 |
A Hagen , F Roessner . Ethane to aromatic hydrocarbons: past, present, future. Catalysis Reviews. Science and Engineering, 2000, 42(4): 403–437
https://doi.org/10.1081/CR-100101952
|
13 |
G Caeiro , R H Carvalho , X Wang , M Lemos , F Lemos , M Guisnet , Ribeiro F Ramôa . Activation of C2–C4 alkanes over acid and bifunctional zeolite catalysts. Journal of Molecular Catalysis A. Chemical, 2006, 255(1-2): 131–158
https://doi.org/10.1016/j.molcata.2006.03.068
|
14 |
H Fan , X Nie , H Wang , M Janik , C Song , X Guo . Mechanistic understanding of ethane dehydrogenation and aromatization over Zn/ZSM-5: effects of Zn modification and CO2 co-reactant. Catalysis Science & Technology, 2020, 10(24): 8359–8373
https://doi.org/10.1039/D0CY01566K
|
15 |
E Gomez , X Nie , J H Lee , Z Xie , J G Chen . Tandem reactions of CO2 reduction and ethane aromatization. Journal of the American Chemical Society, 2019, 141(44): 17771–17782
https://doi.org/10.1021/jacs.9b08538
|
16 |
G Chen , L Fang , T Li , Y Xiang . Ultralow-loading Pt/Zn hybrid cluster in zeolite HZSM-5 for efficient dehydroaromatization. Journal of the American Chemical Society, 2022, 144(26): 11831–11839
https://doi.org/10.1021/jacs.2c04278
|
17 |
H Fan , X Nie , C Song , X Guo . Mechanistic insight into the promotional effect of CO2 on propane aromatization over Zn/ZSM-5. Industrial & Engineering Chemistry Research, 2022, 61(29): 10483–10495
https://doi.org/10.1021/acs.iecr.2c00430
|
18 |
A Bhan , W Nicholas Delgass . Propane aromatization over HZSM-5 and Ga/HZSM-5 catalysts. Catalysis Reviews. Science and Engineering, 2008, 50(1): 19–151
https://doi.org/10.1080/01614940701804745
|
19 |
J Liu , N He , Y Zhao , L Lin , W Zhou , G Xiong , H Xie , H Guo . The crucial role of skeleton structure and carbon number on short-chain alkane activation over Zn/HZSM-5 catalyst: an experimental and computational study. Catalysis Letters, 2018, 148(7): 2069–2081
https://doi.org/10.1007/s10562-018-2394-4
|
20 |
L Lin , J Liu , X Zhang , J Wang , C Liu , G Xiong , H Guo . Effect of zeolitic hydroxyl nests on the acidity and propane aromatization performance of zinc nitrate impregnation-modified HZSM-5 zeolite. Industrial & Engineering Chemistry Research, 2020, 59(37): 16146–16160
https://doi.org/10.1021/acs.iecr.0c02596
|
21 |
W Zhou , J Liu , L Lin , X Zhang , N He , C Liu , H Guo . Enhanced dehydrogenative aromatization of propane by incorporating Fe and Pt into the Zn/HZSM-5 catalyst. Industrial & Engineering Chemistry Research, 2018, 57(48): 16246–16256
https://doi.org/10.1021/acs.iecr.8b03865
|
22 |
M Xin , E Xing , X Gao , Y Wang , Y Ouyang , G Xu , Y Luo , X Shu . Ga substitution during modification of ZSM-5 and its influences on catalytic aromatization performance. Industrial & Engineering Chemistry Research, 2019, 58(17): 6970–6981
https://doi.org/10.1021/acs.iecr.9b00295
|
23 |
C W Chang , H Pham , R Alcala , A Datye , J T Miller . Dehydroaromatization pathway of propane on PtZn/SiO2 + ZSM-5 bifunctional catalyst. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 394–409
https://doi.org/10.1021/acssuschemeng.1c06579
|
24 |
J Wang , C Liu , P Zhu , H Liu , X Zhang , Y Zhang , J Liu , L Zhang , W Zhang . Synthesis of hierarchical ZSM-5 nano-aggregated microspheres for application in enhancing the stability of n-hexane aromatization. New Journal of Chemistry, 2021, 45(39): 18659–18668
https://doi.org/10.1039/D1NJ03077A
|
25 |
Z Wei , T Xia , M Liu , Q Cao , Y Xu , K Zhu , X Zhu . Alkaline modification of ZSM-5 catalysts for methanol aromatization: the effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450–460
https://doi.org/10.1007/s11705-015-1542-2
|
26 |
Y Fang , F Yang , X He , X Zhu . Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization. Frontiers of Chemical Science and Engineering, 2019, 13(3): 543–553
https://doi.org/10.1007/s11705-018-1778-8
|
27 |
X Zhao , J Xu , F Deng . Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism. Frontiers of Chemical Science and Engineering, 2020, 14(2): 159–187
https://doi.org/10.1007/s11705-019-1885-1
|
28 |
K Bian , G Zhang , M Wang , S Liu , C J Breckner , D P Dean , J Zhu , J T Miller , S Hou , C Song . et al.. Promoting propane dehydrogenation over PtFe bimetallic catalysts by optimizing the state of Fe species. Chemical Engineering Science, 2023, 275: 118748
https://doi.org/10.1016/j.ces.2023.118748
|
29 |
K Bian , G Zhang , J Zhu , X Wang , M Wang , F Lou , Y Liu , C Song , X Guo . Promoting propane dehydrogenation with CO2 over the PtFe bimetallic catalyst by eliminating the non-selective Fe(0) phase. ACS Catalysis, 2022, 12(11): 6559–6569
https://doi.org/10.1021/acscatal.2c00649
|
30 |
C Dai , A Zhang , M Liu , X Guo , C Song . Hollow ZSM-5 with silicon-rich surface, double shells, and functionalized interior with metallic nanoparticles and carbon nanotubes. Advanced Functional Materials, 2015, 25(48): 7479–7487
https://doi.org/10.1002/adfm.201502980
|
31 |
J Li , M Liu , S Li , X Guo , C Song . Influence of diffusion and acid properties on methane and propane selectivity in methanol-to-olefins reaction. Industrial & Engineering Chemistry Research, 2019, 58(5): 1896–1905
https://doi.org/10.1021/acs.iecr.8b03969
|
32 |
N M Schweitzer , B Hu , U Das , H Kim , J Greeley , L A Curtiss , P C Stair , J T Miller , A S Hock . Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catalysis, 2014, 4(4): 1091–1098
https://doi.org/10.1021/cs401116p
|
33 |
V J Cybulskis , B C Bukowski , H T Tseng , J R Gallagher , Z Wu , E Wegener , A J Kropf , B Ravel , F H Ribeiro , J Greeley . et al.. Zinc promotion of platinum for catalytic light alkane dehydrogenation: insights into geometric and electronic effects. ACS Catalysis, 2017, 7(6): 4173–4181
https://doi.org/10.1021/acscatal.6b03603
|
34 |
S Grimme , J Antony , T Schwabe , C Muck-Lichtenfeld . Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Organic & Biomolecular Chemistry, 2007, 5(5): 741–758
https://doi.org/10.1039/B615319B
|
35 |
G Henkelman , B P Uberuaga , H Jónsson . A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904
https://doi.org/10.1063/1.1329672
|
36 |
K Bian , A Zhang , H Yang , B Fan , S Xu , X Guo , C Song . Synthesis and characterization of Fe-substituted ZSM-5 zeolite and its catalytic performance for alkylation of benzene with dilute ethylene. Industrial & Engineering Chemistry Research, 2020, 59(52): 22413–22421
https://doi.org/10.1021/acs.iecr.0c01909
|
37 |
H Chen , W Li , M Zhang , W Wang , X H Zhang , F Lu , K Cheng , Q Zhang , Y Wang . Boosting propane dehydroaromatization by confining PtZn alloy nanoparticles within H-ZSM-5 crystals. Catalysis Science & Technology, 2022, 12(24): 7281–7292
https://doi.org/10.1039/D2CY01096H
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|