|
|
Synthesis of tetrahedrally coordinated CoO for higher alcohol synthesis directly from syngas |
Zhuoshi Li1,2, Han Yang1, Xiaofeng Pei1, Jiahui Li1, Jing Lv1,3, Shouying Huang1,3, Yue Wang1,2,3( ), Xinbin Ma1,3 |
1. Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China 2. Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China 3. Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China |
|
|
Abstract Higher alcohol synthesis directly from syngas is highly desirable as one of the efficient non-petroleum energy conversion routes. Co0–CoO catalysts showed great potential for this reaction, but the alcohol selectivity still needs to be improved and the crystal structure effect of CoO on catalytic behaviors lacks investigation. Here, a series of tetrahedrally coordinated CoO polymorphs were prepared by a thermal decomposition method, which consisted of wurtzite CoO and zinc blende CoO with varied contents. After diluting with SiO2, the catalyst showed excellent performance for higher alcohol synthesis with ROH selectivity of 45.8% and higher alcohol distribution of 84.1 wt % under the CO conversion of 38.0%. With increasing the content of wurtzite CoO, the Co0/Co2+ ratio gradually increased in the spent catalysts, while the proportion of highly active hexagonal close packed cobalt in Co0 decreased, leading to first decreased then increased CO conversion. Moreover, the higher content of zinc blende CoO in fresh catalyst facilitated the retention of more Co2+ sites in spent catalysts, promoting the ROH selectivity but slightly decreasing the distribution of higher alcohols. The catalyst with 40% wurtzite CoO obtained the optimal performance with a space time yield toward higher alcohols of 7.9 mmol·gcat–1·h–1.
|
Keywords
higher alcohol synthesis
CO hydrogenation
wurtzite CoO
zinc blende CoO
hexagonal-closest-packed Co
|
Corresponding Author(s):
Yue Wang
|
Just Accepted Date: 03 April 2024
Issue Date: 12 July 2024
|
|
1 |
T Lin , F Yu , Y An , T Qin , L Li , K Gong , L Zhong , Y Sun . Cobalt carbide nanocatalysts for efficient syngas conversion to value-added chemicals with high selectivity. Accounts of Chemical Research, 2021, 54(8): 1961–1971
https://doi.org/10.1021/acs.accounts.0c00883
|
2 |
M Gupta , M Smith , J Spivey . Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts. ACS Catalysis, 2011, 1(6): 641–656
https://doi.org/10.1021/cs2001048
|
3 |
K Fang , D Li , M Lin , M Xiang , W Wei , Y Sun . A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today, 2009, 147(2): 133–138
https://doi.org/10.1016/j.cattod.2009.01.038
|
4 |
X Xue , Y Weng , S Yang , S Meng , Q Sun , Y Zhang . Research progress of catalysts for synthesis of low-carbon alcohols from synthesis gas. RSC Advances, 2021, 11(11): 6163–6172
https://doi.org/10.1039/D0RA08329A
|
5 |
H Luk , C Mondelli , D Ferre , J Stewart , J Perez-Ramirez . Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews, 2017, 46(5): 1358–1426
https://doi.org/10.1039/C6CS00324A
|
6 |
Z Fan , W Chen , X Pan , X Bao . Catalytic conversion of syngas into C2 oxygenates over Rh-based catalysts-effect of carbon supports. Catalysis Today, 2009, 147(2): 86–93
https://doi.org/10.1016/j.cattod.2009.03.004
|
7 |
Z Zeng , Z Li , L Kang , X Han , Z Qi , S Guo , J Wang , A Rykov , J Lv , Y Wang . et al.. A monodisperse ε′-(CoxFe1−x)2.2C bimetallic carbide catalyst for direct conversion of syngas to higher alcohols. ACS Catalysis, 2022, 12(10): 6016–6028
https://doi.org/10.1021/acscatal.2c01078
|
8 |
S Guo , Z Li , R Yin , J Li , Z Zeng , Z Hu , G Luo , J Lv , S Huang , Y Wang . et al.. Oxygen vacancy over CoMnOx catalysts boosts selective ethanol production in the higher alcohol synthesis from syngas. ACS Catalysis, 2023, 13(21): 14404–14414
https://doi.org/10.1021/acscatal.3c03488
|
9 |
S Liu , Q Zhao , X Han , C Wei , H Liang , Y Wang , S Huang , X Ma . Proximity effect of Fe–Zn bimetallic catalysts on CO2 hydrogenation performance. Transactions of Tianjin University, 2023, 29(4): 293–303
https://doi.org/10.1007/s12209-023-00360-3
|
10 |
H O Torshizi , A Nakhaei Pour , A Mohammadi , Y Zamani , S M Kamali Shahri . Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity. Frontiers of Chemical Science and Engineering, 2021, 15(2): 299–309
https://doi.org/10.1007/s11705-020-1925-x
|
11 |
H Du , M Jiang , M Zhao , X Ma , Z Xu , Z Zhao . Activity and selectivity enhancement of silica supported cobalt catalyst for alcohols production from syngas via Fischer-Tropsch synthesis. International Journal of Hydrogen Energy, 2022, 47(7): 4559–4567
https://doi.org/10.1016/j.ijhydene.2021.11.070
|
12 |
L Guo , P Liu , K Gong , X Qi , T Lin . Effect of metal promoters on catalytic performance of Co/AC for higher alcohols synthesis from syngas. Journal of Fuel Chemistry & Technology, 2023, 51(11): 1663–1672
https://doi.org/10.1016/S1872-5813(23)60368-8
|
13 |
W Cui , Y Li , H Zhang , Z Wei , B Gao , J Dai , T Hu . In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas. Applied Catalysis B: Environmental, 2020, 278: 119262
https://doi.org/10.1016/j.apcatb.2020.119262
|
14 |
T Chen , J Su , Z Zhang , C Cao , X Wang , R Si , X Liu , B Shi , J Xu , Y Han . Structure evolution of Co–CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts. ACS Catalysis, 2018, 8(9): 8606–8617
https://doi.org/10.1021/acscatal.8b00453
|
15 |
I Have , J Kromwijk , M Monai , D Ferri , E Sterk , F Meirer , B Weckhuysen . Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nature Communications, 2022, 13(1): 324
https://doi.org/10.1038/s41467-022-27981-x
|
16 |
M Wang , G Zhang , J Zhu , W Li , J Wang , K Bian , Y Liu , F Ding , C Song , X Guo . Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO2 hydrogenation. Chemical Engineering Journal, 2022, 446: 137217
https://doi.org/10.1016/j.cej.2022.137217
|
17 |
W Sun , T Kuang , G Wei , Y Li , Y Liu , S Lyu , Y Zhang , J Li , L Wang . Design and construction of size-controlled CoO/CS catalysts for Fischer-Tropsch synthesis. Nano Research, 2024, 17(4): 2520–2527
https://doi.org/10.1007/s12274-023-6199-4
|
18 |
S Lyu , L Wang , J Zhang , C Liu , J Sun , B Peng , Y Wang , K Rappé , Y Zhang , J Li . et al.. Role of active phase in Fischer-Tropsch synthesis: experimental evidence of CO activation over single-phase cobalt catalysts. ACS Catalysis, 2018, 8(9): 7787–7798
https://doi.org/10.1021/acscatal.8b00834
|
19 |
Z Li , G Luo , Z Hu , X Pei , Z Zeng , S Guo , J Lv , S Huang , Y Wang , X Ma . Zinc blende CoO as an efficient CO non-dissociative adsorption site for direct synthesis of higher alcohols from syngas. ACS Catalysis, 2024, 14(4): 2181–2193
https://doi.org/10.1021/acscatal.3c05579
|
20 |
I Golosovsky , M Estrader , A López-Ortega , A Roca , L López-Conesa , Corro E Del , S Estradé , F Peiró , I Puente-Orench , J Nogués . Zinc blende and wurtzite CoO polymorph nanoparticles: rational synthesis and commensurate and incommensurate magnetic order. Applied Materials Today, 2019, 16: 322–331
https://doi.org/10.1016/j.apmt.2019.06.005
|
21 |
Z Li , L Zhong , F Yu , Y An , Y Dai , Y Yang , T Lin , S Li , H Wang , P Gao . et al.. Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-Tropsch to olefin reactions. ACS Catalysis, 2017, 7(5): 3622–3631
https://doi.org/10.1021/acscatal.6b03478
|
22 |
H Shi , X He . Large-scale synthesis and magnetic properties of cubic CoO nanoparticles. Journal of Physics and Chemistry of Solids, 2012, 73(5): 646–650
https://doi.org/10.1016/j.jpcs.2012.01.001
|
23 |
A Roca , I Golosovsky , E Winkler , A Lopez-Ortega , M Estrader , R Zysler , M Baro , J Nogues . Unravelling the elusive antiferromagnetic order in wurtzite and zinc blende CoO polymorph nanoparticles. Small, 2018, 14(15): e1703963
https://doi.org/10.1002/smll.201703963
|
24 |
R Grimes , A Fitch . Thermal decomposition of cobalt(II) acetate tetrahydrate studied with time-resolved neutron diffraction and thermogravimetric analysis. Journal of Materials Chemistry, 1991, 1(3): 461–468
https://doi.org/10.1039/jm9910100461
|
25 |
R Grimes , K Lagerlöf . Polymorphs of cobalt oxide. Journal of the American Ceramic Society, 1991, 74(2): 270–273
https://doi.org/10.1111/j.1151-2916.1991.tb06873.x
|
26 |
F Huang , J Banfield . Size-dependent phase transformation kinetics in nanocrystalline ZnS. Journal of the American Chemical Society, 2005, 127(12): 4523–4529
https://doi.org/10.1021/ja048121c
|
27 |
C Jr Windisch , G Exarhos , S Sharma . Influence of temperature and electronic disorder on the Raman spectra of nickel cobalt oxides. Journal of Applied Physics, 2002, 92(9): 5572–5574
https://doi.org/10.1063/1.1509838
|
28 |
A Ravindra , B Behera , P Padhan . Laser induced structural phase transformation of cobalt oxides nanostructures. Journal of Nanoscience and Nanotechnology, 2014, 14(7): 5591–5595
https://doi.org/10.1166/jnn.2014.9023
|
29 |
S Mo , Q Zhang , S Li , Q Ren , M Zhang , Y Xue , R Peng , H Xiao , Y Chen , D Ye . Integrated cobalt oxide based nanoarray catalysts with hierarchical architectures: in situ Raman spectroscopy investigation on the carbon monoxide reaction mechanism. ChemCatChem, 2018, 10(14): 3012–3026
https://doi.org/10.1002/cctc.201800363
|
30 |
J Xu , W Ji , X Wang , H Shu , Z Shen , S Tang . Temperature dependence of the Raman scattering spectra of Zn/ZnO nanoparticles. Journal of Raman Spectroscopy, 1998, 29(7): 613–615
https://doi.org/10.1002/(SICI)1097-4555(199807)29:7<613::AID-JRS277>3.0.CO;2-P
|
31 |
P Wang , S Chen , Y Bai , X Gao , X Li , K Sun , H Xie , G Yang , Y Han , Y Tan . Effect of the promoter and support on cobalt-based catalysts for higher alcohols synthesis through CO hydrogenation. Fuel, 2017, 195: 69–81
https://doi.org/10.1016/j.fuel.2017.01.050
|
32 |
Y Yu , S You , J Du , Z Xing , Y Dai , H Chen , Z Cai , N Ren , J Zou . ZIF-67-derived CoO (tetrahedral Co2+)@nitrogen-doped porous carbon protected by oxygen vacancies-enriched SnO2 as highly active catalyst for oxygen reduction and Pt co-catalyst for methanol oxidation. Applied Catalysis B: Environmental, 2019, 259: 118043
https://doi.org/10.1016/j.apcatb.2019.118043
|
33 |
Y Pei , J Liu , Y Zhao , Y Ding , T Liu , W Dong , H Zhu , H Su , L Yan , J Li . et al.. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface. ACS Catalysis, 2015, 5(6): 3620–3624
https://doi.org/10.1021/acscatal.5b00791
|
34 |
J Anton , J Nebel , C Göbel , T Gabrysch , H Song , C Froese , H Ruland , M Muhler , S Kaluza . CO hydrogenation to higher alcohols over Cu–Co-based catalysts derived from hydrotalcite-type precursors. Topics in Catalysis, 2016, 59(15–16): 1361–1370
https://doi.org/10.1007/s11244-016-0663-2
|
35 |
G Luo , Z Li , Q Liu , S Guo , X Pei , J Lv , S Huang , Y Wang , X Ma . Enhanced synthesis of C2+ alcohols from syngas over a Co–Co2C catalyst supported on mesoporous carbon-silica composites. Chemical Engineering Journal, 2023, 475: 146206
https://doi.org/10.1016/j.cej.2023.146206
|
36 |
K Cheng , V Subramanian , A Carvalho , V Ordomsky , Y Wang , A Khodakov . The role of carbon pre-coating for the synthesis of highly efficient cobalt catalysts for Fischer-Tropsch synthesis. Journal of Catalysis, 2016, 337: 260–271
https://doi.org/10.1016/j.jcat.2016.02.019
|
37 |
T Qin , T Lin , X Qi , C Wang , L Li , Z Tang , L Zhong , Y Sun . Tuning chemical environment and synergistic relay reaction to promote higher alcohols synthesis via syngas conversion. Applied Catalysis B: Environmental, 2021, 285: 119840
https://doi.org/10.1016/j.apcatb.2020.119840
|
38 |
L Zhao , X Mu , M Yu , K Fang . A novel catalyst for higher alcohol synthesis from syngas: CoZn supported on MnAl oxide. Fuel Processing Technology, 2018, 177: 16–29
https://doi.org/10.1016/j.fuproc.2018.04.006
|
39 |
Y Liu , L Jia , B Hou , D Sun , D Li . Cobalt aluminate-modified alumina as a carrier for cobalt in Fischer-Tropsch synthesis. Applied Catalysis A: General, 2017, 530: 30–36
https://doi.org/10.1016/j.apcata.2016.11.014
|
40 |
J Wang , J Wang , X Huang , C Chen , Z Ma , L Jia , B Hou , D Li . CoAl spinel oxide modified ordered mesoporous alumina supported cobalt-based catalysts for Fischer-Tropsch synthesis. International Journal of Hydrogen Energy, 2018, 43(29): 13122–13132
https://doi.org/10.1016/j.ijhydene.2018.04.093
|
41 |
N Kang , Q Yang , K An , S Li , L Zhang , Y Liu . Mixed oxides of La–Ga–O modified Co/ZrO2 for higher alcohols synthesis from syngas. Catalysis Today, 2019, 330: 46–53
https://doi.org/10.1016/j.cattod.2018.01.034
|
42 |
T Wang , Y Ding , J Xiong , L Yan , H Zhu , Y Lu , L Lin . Effect of vanadium promotion on activated carbon-supported cobalt catalysts in Fischer-Tropsch synthesis. Catalysis Letters, 2006, 107(1–2): 47–52
https://doi.org/10.1007/s10562-005-9730-1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|