Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (8) : 92    https://doi.org/10.1007/s11705-024-2448-7
Synthesis of tetrahedrally coordinated CoO for higher alcohol synthesis directly from syngas
Zhuoshi Li1,2, Han Yang1, Xiaofeng Pei1, Jiahui Li1, Jing Lv1,3, Shouying Huang1,3, Yue Wang1,2,3(), Xinbin Ma1,3
1. Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
3. Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
 Download: PDF(2463 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Higher alcohol synthesis directly from syngas is highly desirable as one of the efficient non-petroleum energy conversion routes. Co0–CoO catalysts showed great potential for this reaction, but the alcohol selectivity still needs to be improved and the crystal structure effect of CoO on catalytic behaviors lacks investigation. Here, a series of tetrahedrally coordinated CoO polymorphs were prepared by a thermal decomposition method, which consisted of wurtzite CoO and zinc blende CoO with varied contents. After diluting with SiO2, the catalyst showed excellent performance for higher alcohol synthesis with ROH selectivity of 45.8% and higher alcohol distribution of 84.1 wt % under the CO conversion of 38.0%. With increasing the content of wurtzite CoO, the Co0/Co2+ ratio gradually increased in the spent catalysts, while the proportion of highly active hexagonal close packed cobalt in Co0 decreased, leading to first decreased then increased CO conversion. Moreover, the higher content of zinc blende CoO in fresh catalyst facilitated the retention of more Co2+ sites in spent catalysts, promoting the ROH selectivity but slightly decreasing the distribution of higher alcohols. The catalyst with 40% wurtzite CoO obtained the optimal performance with a space time yield toward higher alcohols of 7.9 mmol·gcat–1·h–1.

Keywords higher alcohol synthesis      CO hydrogenation      wurtzite CoO      zinc blende CoO      hexagonal-closest-packed Co     
Corresponding Author(s): Yue Wang   
Just Accepted Date: 03 April 2024   Issue Date: 12 July 2024
 Cite this article:   
Zhuoshi Li,Han Yang,Xiaofeng Pei, et al. Synthesis of tetrahedrally coordinated CoO for higher alcohol synthesis directly from syngas[J]. Front. Chem. Sci. Eng., 2024, 18(8): 92.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2448-7
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I8/92
Fig.1  XRD patterns and the corresponding semiquantitative analysis of the as-prepared xW-CoO polymorphs.
Fig.2  (a–c) TEM images and particle size statistical histograms of the as-prepared xW-CoO polymorphs: (a) 0.4W-CoO, (b) 0.75W-CoO, and (c) 1.0W-CoO; (d–f) corresponding HRTEM images of (a–c).
Fig.3  XRD patterns of the (a) fresh xW-CoO/SiO2 and (b) spent xW-CoO/SiO2 catalysts. (c) Slow-scanning XRD of (b) in the range of 2θ = 43°–49° and the corresponding semiquantitative results.
Fig.4  Raman spectra of the (a) xW-CoO nanocrystals, (b) fresh xW-CoO/SiO2, and (c) spent xW-CoO/SiO2 catalysts.
Fig.5  (a) Co 2p XPS spectra of the spent xW-CoO/SiO2 catalysts; (b) H2-TPR profiles of the fresh xW-CoO/SiO2 catalysts.
Catalyst CO conv. Selectivity/% Alcohol distribution/(wt %) STY of C2+OH/(mol·gcat–1·h–1)
CH4 HCn (n > 1) ROH CO2 MeOH C2+OH Others
1.0W-CoOb) 52.7 14.5 59.1 25.6 0.8 9.4 89.8 0.8 5.7
1.0W-CoOc) 34.7 14.1 53.8 31.1 1.0 9.6 89.4 0.8 4.6
0.75W-CoOb) 34.2 12.4 47.6 40.6 0.4 11.0 88.1 0.9 6.1
0.4W-CoOb) 38.0 13.6 39.7 45.8 0.9 15.2 84.1 0.7 7.9
Tab.1  Catalytic performance of the xW-CoO/SiO2 catalystsa)
Fig.6  Structure-performance relationship of the xW-CoO/SiO2 catalysts. (a) The CO conversion, Co0 content in total Co species, and hcp-Co content in metallic cobalt of different xW-CoO/SiO2 catalysts; (b) ROH selectivity, HA distribution in total alcohols, and Co2+ content in total Co species. Reaction conditions: P = 3 MPa, T = 260 °C, H2/CO = 2, and GHSV = 3600 mL·gcat–1·h–1.
Fig.7  (a) High-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM) image, (b–d) the corresponding EDS mapping images, and (e–f) HRTEM images of the spent 0.4W-CoO/SiO2 catalyst.
Fig.8  CO-TPD-MS profiles of the spent xW-CoO/SiO2 catalysts.
1 T Lin , F Yu , Y An , T Qin , L Li , K Gong , L Zhong , Y Sun . Cobalt carbide nanocatalysts for efficient syngas conversion to value-added chemicals with high selectivity. Accounts of Chemical Research, 2021, 54(8): 1961–1971
https://doi.org/10.1021/acs.accounts.0c00883
2 M Gupta , M Smith , J Spivey . Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts. ACS Catalysis, 2011, 1(6): 641–656
https://doi.org/10.1021/cs2001048
3 K Fang , D Li , M Lin , M Xiang , W Wei , Y Sun . A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today, 2009, 147(2): 133–138
https://doi.org/10.1016/j.cattod.2009.01.038
4 X Xue , Y Weng , S Yang , S Meng , Q Sun , Y Zhang . Research progress of catalysts for synthesis of low-carbon alcohols from synthesis gas. RSC Advances, 2021, 11(11): 6163–6172
https://doi.org/10.1039/D0RA08329A
5 H Luk , C Mondelli , D Ferre , J Stewart , J Perez-Ramirez . Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews, 2017, 46(5): 1358–1426
https://doi.org/10.1039/C6CS00324A
6 Z Fan , W Chen , X Pan , X Bao . Catalytic conversion of syngas into C2 oxygenates over Rh-based catalysts-effect of carbon supports. Catalysis Today, 2009, 147(2): 86–93
https://doi.org/10.1016/j.cattod.2009.03.004
7 Z Zeng , Z Li , L Kang , X Han , Z Qi , S Guo , J Wang , A Rykov , J Lv , Y Wang . et al.. A monodisperse ε′-(CoxFe1−x)2.2C bimetallic carbide catalyst for direct conversion of syngas to higher alcohols. ACS Catalysis, 2022, 12(10): 6016–6028
https://doi.org/10.1021/acscatal.2c01078
8 S Guo , Z Li , R Yin , J Li , Z Zeng , Z Hu , G Luo , J Lv , S Huang , Y Wang . et al.. Oxygen vacancy over CoMnOx catalysts boosts selective ethanol production in the higher alcohol synthesis from syngas. ACS Catalysis, 2023, 13(21): 14404–14414
https://doi.org/10.1021/acscatal.3c03488
9 S Liu , Q Zhao , X Han , C Wei , H Liang , Y Wang , S Huang , X Ma . Proximity effect of Fe–Zn bimetallic catalysts on CO2 hydrogenation performance. Transactions of Tianjin University, 2023, 29(4): 293–303
https://doi.org/10.1007/s12209-023-00360-3
10 H O Torshizi , A Nakhaei Pour , A Mohammadi , Y Zamani , S M Kamali Shahri . Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity. Frontiers of Chemical Science and Engineering, 2021, 15(2): 299–309
https://doi.org/10.1007/s11705-020-1925-x
11 H Du , M Jiang , M Zhao , X Ma , Z Xu , Z Zhao . Activity and selectivity enhancement of silica supported cobalt catalyst for alcohols production from syngas via Fischer-Tropsch synthesis. International Journal of Hydrogen Energy, 2022, 47(7): 4559–4567
https://doi.org/10.1016/j.ijhydene.2021.11.070
12 L Guo , P Liu , K Gong , X Qi , T Lin . Effect of metal promoters on catalytic performance of Co/AC for higher alcohols synthesis from syngas. Journal of Fuel Chemistry & Technology, 2023, 51(11): 1663–1672
https://doi.org/10.1016/S1872-5813(23)60368-8
13 W Cui , Y Li , H Zhang , Z Wei , B Gao , J Dai , T Hu . In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas. Applied Catalysis B: Environmental, 2020, 278: 119262
https://doi.org/10.1016/j.apcatb.2020.119262
14 T Chen , J Su , Z Zhang , C Cao , X Wang , R Si , X Liu , B Shi , J Xu , Y Han . Structure evolution of Co–CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts. ACS Catalysis, 2018, 8(9): 8606–8617
https://doi.org/10.1021/acscatal.8b00453
15 I Have , J Kromwijk , M Monai , D Ferri , E Sterk , F Meirer , B Weckhuysen . Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nature Communications, 2022, 13(1): 324
https://doi.org/10.1038/s41467-022-27981-x
16 M Wang , G Zhang , J Zhu , W Li , J Wang , K Bian , Y Liu , F Ding , C Song , X Guo . Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO2 hydrogenation. Chemical Engineering Journal, 2022, 446: 137217
https://doi.org/10.1016/j.cej.2022.137217
17 W Sun , T Kuang , G Wei , Y Li , Y Liu , S Lyu , Y Zhang , J Li , L Wang . Design and construction of size-controlled CoO/CS catalysts for Fischer-Tropsch synthesis. Nano Research, 2024, 17(4): 2520–2527
https://doi.org/10.1007/s12274-023-6199-4
18 S Lyu , L Wang , J Zhang , C Liu , J Sun , B Peng , Y Wang , K Rappé , Y Zhang , J Li . et al.. Role of active phase in Fischer-Tropsch synthesis: experimental evidence of CO activation over single-phase cobalt catalysts. ACS Catalysis, 2018, 8(9): 7787–7798
https://doi.org/10.1021/acscatal.8b00834
19 Z Li , G Luo , Z Hu , X Pei , Z Zeng , S Guo , J Lv , S Huang , Y Wang , X Ma . Zinc blende CoO as an efficient CO non-dissociative adsorption site for direct synthesis of higher alcohols from syngas. ACS Catalysis, 2024, 14(4): 2181–2193
https://doi.org/10.1021/acscatal.3c05579
20 I Golosovsky , M Estrader , A López-Ortega , A Roca , L López-Conesa , Corro E Del , S Estradé , F Peiró , I Puente-Orench , J Nogués . Zinc blende and wurtzite CoO polymorph nanoparticles: rational synthesis and commensurate and incommensurate magnetic order. Applied Materials Today, 2019, 16: 322–331
https://doi.org/10.1016/j.apmt.2019.06.005
21 Z Li , L Zhong , F Yu , Y An , Y Dai , Y Yang , T Lin , S Li , H Wang , P Gao . et al.. Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-Tropsch to olefin reactions. ACS Catalysis, 2017, 7(5): 3622–3631
https://doi.org/10.1021/acscatal.6b03478
22 H Shi , X He . Large-scale synthesis and magnetic properties of cubic CoO nanoparticles. Journal of Physics and Chemistry of Solids, 2012, 73(5): 646–650
https://doi.org/10.1016/j.jpcs.2012.01.001
23 A Roca , I Golosovsky , E Winkler , A Lopez-Ortega , M Estrader , R Zysler , M Baro , J Nogues . Unravelling the elusive antiferromagnetic order in wurtzite and zinc blende CoO polymorph nanoparticles. Small, 2018, 14(15): e1703963
https://doi.org/10.1002/smll.201703963
24 R Grimes , A Fitch . Thermal decomposition of cobalt(II) acetate tetrahydrate studied with time-resolved neutron diffraction and thermogravimetric analysis. Journal of Materials Chemistry, 1991, 1(3): 461–468
https://doi.org/10.1039/jm9910100461
25 R Grimes , K Lagerlöf . Polymorphs of cobalt oxide. Journal of the American Ceramic Society, 1991, 74(2): 270–273
https://doi.org/10.1111/j.1151-2916.1991.tb06873.x
26 F Huang , J Banfield . Size-dependent phase transformation kinetics in nanocrystalline ZnS. Journal of the American Chemical Society, 2005, 127(12): 4523–4529
https://doi.org/10.1021/ja048121c
27 C Jr Windisch , G Exarhos , S Sharma . Influence of temperature and electronic disorder on the Raman spectra of nickel cobalt oxides. Journal of Applied Physics, 2002, 92(9): 5572–5574
https://doi.org/10.1063/1.1509838
28 A Ravindra , B Behera , P Padhan . Laser induced structural phase transformation of cobalt oxides nanostructures. Journal of Nanoscience and Nanotechnology, 2014, 14(7): 5591–5595
https://doi.org/10.1166/jnn.2014.9023
29 S Mo , Q Zhang , S Li , Q Ren , M Zhang , Y Xue , R Peng , H Xiao , Y Chen , D Ye . Integrated cobalt oxide based nanoarray catalysts with hierarchical architectures: in situ Raman spectroscopy investigation on the carbon monoxide reaction mechanism. ChemCatChem, 2018, 10(14): 3012–3026
https://doi.org/10.1002/cctc.201800363
30 J Xu , W Ji , X Wang , H Shu , Z Shen , S Tang . Temperature dependence of the Raman scattering spectra of Zn/ZnO nanoparticles. Journal of Raman Spectroscopy, 1998, 29(7): 613–615
https://doi.org/10.1002/(SICI)1097-4555(199807)29:7<613::AID-JRS277>3.0.CO;2-P
31 P Wang , S Chen , Y Bai , X Gao , X Li , K Sun , H Xie , G Yang , Y Han , Y Tan . Effect of the promoter and support on cobalt-based catalysts for higher alcohols synthesis through CO hydrogenation. Fuel, 2017, 195: 69–81
https://doi.org/10.1016/j.fuel.2017.01.050
32 Y Yu , S You , J Du , Z Xing , Y Dai , H Chen , Z Cai , N Ren , J Zou . ZIF-67-derived CoO (tetrahedral Co2+)@nitrogen-doped porous carbon protected by oxygen vacancies-enriched SnO2 as highly active catalyst for oxygen reduction and Pt co-catalyst for methanol oxidation. Applied Catalysis B: Environmental, 2019, 259: 118043
https://doi.org/10.1016/j.apcatb.2019.118043
33 Y Pei , J Liu , Y Zhao , Y Ding , T Liu , W Dong , H Zhu , H Su , L Yan , J Li . et al.. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface. ACS Catalysis, 2015, 5(6): 3620–3624
https://doi.org/10.1021/acscatal.5b00791
34 J Anton , J Nebel , C Göbel , T Gabrysch , H Song , C Froese , H Ruland , M Muhler , S Kaluza . CO hydrogenation to higher alcohols over Cu–Co-based catalysts derived from hydrotalcite-type precursors. Topics in Catalysis, 2016, 59(15–16): 1361–1370
https://doi.org/10.1007/s11244-016-0663-2
35 G Luo , Z Li , Q Liu , S Guo , X Pei , J Lv , S Huang , Y Wang , X Ma . Enhanced synthesis of C2+ alcohols from syngas over a Co–Co2C catalyst supported on mesoporous carbon-silica composites. Chemical Engineering Journal, 2023, 475: 146206
https://doi.org/10.1016/j.cej.2023.146206
36 K Cheng , V Subramanian , A Carvalho , V Ordomsky , Y Wang , A Khodakov . The role of carbon pre-coating for the synthesis of highly efficient cobalt catalysts for Fischer-Tropsch synthesis. Journal of Catalysis, 2016, 337: 260–271
https://doi.org/10.1016/j.jcat.2016.02.019
37 T Qin , T Lin , X Qi , C Wang , L Li , Z Tang , L Zhong , Y Sun . Tuning chemical environment and synergistic relay reaction to promote higher alcohols synthesis via syngas conversion. Applied Catalysis B: Environmental, 2021, 285: 119840
https://doi.org/10.1016/j.apcatb.2020.119840
38 L Zhao , X Mu , M Yu , K Fang . A novel catalyst for higher alcohol synthesis from syngas: CoZn supported on MnAl oxide. Fuel Processing Technology, 2018, 177: 16–29
https://doi.org/10.1016/j.fuproc.2018.04.006
39 Y Liu , L Jia , B Hou , D Sun , D Li . Cobalt aluminate-modified alumina as a carrier for cobalt in Fischer-Tropsch synthesis. Applied Catalysis A: General, 2017, 530: 30–36
https://doi.org/10.1016/j.apcata.2016.11.014
40 J Wang , J Wang , X Huang , C Chen , Z Ma , L Jia , B Hou , D Li . CoAl spinel oxide modified ordered mesoporous alumina supported cobalt-based catalysts for Fischer-Tropsch synthesis. International Journal of Hydrogen Energy, 2018, 43(29): 13122–13132
https://doi.org/10.1016/j.ijhydene.2018.04.093
41 N Kang , Q Yang , K An , S Li , L Zhang , Y Liu . Mixed oxides of La–Ga–O modified Co/ZrO2 for higher alcohols synthesis from syngas. Catalysis Today, 2019, 330: 46–53
https://doi.org/10.1016/j.cattod.2018.01.034
42 T Wang , Y Ding , J Xiong , L Yan , H Zhu , Y Lu , L Lin . Effect of vanadium promotion on activated carbon-supported cobalt catalysts in Fischer-Tropsch synthesis. Catalysis Letters, 2006, 107(1–2): 47–52
https://doi.org/10.1007/s10562-005-9730-1
[1] FCE-23122-OF-LZ_suppl_1 Download
[1] ZHOU Jun, CHU Wei, ZHANG Hui, XU Huiyuan, ZHANG Tao. Effect of Fe content on FeMn catalysts for light alkenes synthesis[J]. Front. Chem. Sci. Eng., 2008, 2(3): 315-318.
[2] HUANG Lihong, CHU Wei, XU Junqiang, HONG Jingping, YI Min. Effect of glow discharge plasma on rhodium-based catalyst for oxygenates synthesis[J]. Front. Chem. Sci. Eng., 2007, 1(1): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed