| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Dealloyed TiCuMn efficiently catalyze the NO reduction and Zn-NO batteries  | 
  					 
  					  										
						Lang Zhang1, Tong Hou1, Weijia Liu1, Yeyu Wu2( ), Tianran Wei1, Junyang Ding3( ), Qian Liu4, Jun Luo5, Xijun Liu1( ) | 
					 
															
						1. State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China 2. Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China 3. Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China 4. Institute for Advanced Study, Chengdu University, Chengdu 610106, China 5. ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  Electrocatalytic NO reduction reaction offers a sustainable route to achieving environmental protection and NH3 production targets as well. In this work, a class of dealloyed Ti60Cu33Mn7 ribbons with enough nanoparticles for the high-efficient NO reduction reaction to NH3 is fabricated, reaching an excellent Faradaic efficiency of 93.2% at –0.5 V vs reversible hydrogen electrode and a high NH3 synthesis rate of 717.4 μmol·h–1·mgcat.–1 at –0.6 V vs reversible hydrogen electrode. The formed nanoparticles on the surface of the catalyst could facilitate the exposure of active sites and the transportation of various reactive ions and gases. Meanwhile, the Mn content in the TiCuMn ribbons modulates the chemical and physical properties of its surface, such as modifying the electronic structure of the Cu species, optimizing the adsorption energy of N* atoms, decreasing the strength of the NO adsorption, and eliminating the thermodynamic energy barrier, thus improving the NO reduction reaction catalytic performance. Moreover, a Zn-NO battery was fabricated using the catalyst and Zn plates, generating an NH3 yield of 129.1 µmol·h–1·cm–2 while offering a peak power density of 1.45 mW·cm–2. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				nitric oxide reduction  
																		  																																				NH3 electrosynthesis  
																		  																																				TiCuMn alloy  
																		  																																				Mn modulation  
																		  																																				Zn-NO battery  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Yeyu Wu,Junyang Ding,Xijun Liu   
																													     		
													     	 | 
														 
																																										
															| 
																															Just Accepted Date: 08 May 2024  
																																																													Issue Date: 12 July 2024
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														      Z Qu , F Sun , X Pi , X Li , D Wu , J Gao , G Zhao . One-step synergistic optimization of hierarchical pore topology and nitrogen dopants in activated coke for efficient catalytic oxidation of nitric oxide. Journal of Cleaner Production, 2022, 335: 130360 
														     														     	 
														     															     		https://doi.org/10.1016/j.jclepro.2022.130360
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														      L B Kreuzer , C K N Patel . Nitric oxide air pollution: detection by optoacoustic spectroscopy. Science, 1971, 173(3991): 45–47 
														     														     	 
														     															     		https://doi.org/10.1126/science.173.3991.45
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														      V T Chebrolu , D Jang , G M Rani , C Lim , K Yong , W B Kim . Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon Energy, 2023, 5(12): e361 
														     														     	 
														     															     		https://doi.org/10.1002/cey2.361
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														      S Zhang , Q Liu , X Tang , Z Zhou , T Fan , Y You , Q Zhang , S Zhang , J Luo , X Liu . Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes. Frontiers of Chemical Science and Engineering, 2023, 17(6): 726–734 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-022-2274-8
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														      H E Wu , G T Fei , X D Gao , X Guo , X X Gong , X L Ma , Q Wang , S H Xv . Research progress on preparation and application of polyaniline and its composite materials. China Powder Science and Technology, 2023, 29(5): 70–80
														     															 | 
																  
																														
															| 6 | 
															 
														      B Sun , S Lu , Y Qian , X Zhang , J Tian . Recent progress in research and design concepts for the characterization, testing, and photocatalysts for nitrogen reduction reaction. Carbon Energy, 2023, 5(3): e305 
														     														     	 
														     															     		https://doi.org/10.1002/cey2.305
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														      Y Q Ji , Z H Yu , L G Yan , S Wen . Research progress in preparation, modification and application of biomass-based single-atom catalysts. China Powder Science and Technology, 2023, 29(4): 100–107
														     															 | 
																  
																														
															| 8 | 
															 
														      J Theerthagiri , K Karuppasamy , A H Mahadi , C J Moon , N Rahamathulla , S Kheawhom , S Alameri , A Alfantazi , A P Murthy , M Y Choi . Electrochemical reduction of gaseous nitric oxide into ammonia: a review. Environmental Chemistry Letters, 2024, 22(1): 189–208 
														     														     	 
														     															     		https://doi.org/10.1007/s10311-023-01655-6
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														      L Gao , X B Xv , C Q Hu , J Zhong , L B Sun . Preparation and investigation of high performance Pt-Mn alloy catalyst towards oxygen reduction. China Powder Science and Technology, 2023, 29(2): 1–9
														     															 | 
																  
																														
															| 10 | 
															 
														      H Tounsi , S Djemal , C Petitto , G Delahay . Copper loaded hydroxyapatite catalyst for selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 2011, 107(1): 158–163 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcatb.2011.07.009
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														      G Zhang , G Wang , Y Wan , X Liu , K Chu . Ampere-level nitrate electroreduction to ammonia over monodispersed Bi-doped FeS2. ACS Nano, 2023, 17(21): 21328–21336 
														     														     	 
														     															     		https://doi.org/10.1021/acsnano.3c05946
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														      S Chen , G Qi , R Yin , Q Liu , L Feng , X Feng , G Hu , J Luo , X Liu , W Liu . Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarrays using Zn-nitrate batteries. Nanoscale, 2023, 15(48): 19577–19585 
														     														     	 
														     															     		https://doi.org/10.1039/D3NR05254K
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														      T Sun , F Gao , Y Wang , H Yi , Q Yu , S Zhao , X Tang . Morphology and valence state evolution of Cu: unraveling the impact on nitric oxide electroreduction. Journal of Energy Chemistry, 2024, 91: 276–286 
														     														     	 
														     															     		https://doi.org/10.1016/j.jechem.2023.11.046
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														      J Long , S Chen , Y Zhang , C Guo , X Fu , D Deng , J Xiao . Direct electrochemical ammonia synthesis from nitric oxide. Angewandte Chemie International Edition, 2020, 59(24): 9711–9718 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202002337
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														      P M Krzywda , Rodríguez A Paradelo , N E Benes , B T Mei , G Mul . Effect of electrolyte and electrode configuration on Cu-catalyzed nitric oxide reduction to ammonia. ChemElectroChem, 2022, 9(5): e202101273 
														     														     	 
														     															     		https://doi.org/10.1002/celc.202101273
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														      L Chen , W Sun , Z Xu , M Hao , B Li , X Liu , J Ma , L Wang , C Li , W Wang . Ultrafine Cu nanoparticles decorated porous TiO2 for high-efficient electrocatalytic reduction of NO to synthesize NH3. Ceramics International, 2022, 48(15): 21151–21161 
														     														     	 
														     															     		https://doi.org/10.1016/j.ceramint.2022.04.006
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														      J Shi , C Wang , R Yang , F Chen , N Meng , Y Yu , B Zhang . Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Science China. Chemistry, 2021, 64(9): 1493–1497 
														     														     	 
														     															     		https://doi.org/10.1007/s11426-021-1073-5
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														      Z Ren , H Zhang , S Wang , B Huang , Y Dai , W Wei . Nitric oxide reduction reaction for efficient ammonia synthesis on topological nodal-line semimetal Cu2Si monolayer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(15): 8568–8577 
														     														     	 
														     															     		https://doi.org/10.1039/D2TA00504B
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														      J Feng , Y Ji , Y Li . In silico design of copper-based alloys for ammonia synthesis from nitric oxide reduction accelerated by machine learning. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(26): 14195–14203 
														     														     	 
														     															     		https://doi.org/10.1039/D3TA01883K
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														      M Yang , T Wei , J He , Q Liu , L Feng , H Li , J Luo , X Liu . Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia. Nano Research, 2024, 17(3): 1209–1216 
														     														     	 
														     															     		https://doi.org/10.1007/s12274-023-5997-z
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														      T Curtin , Regan F O’ , C Deconinck , N Knüttle , B K Hodnett . The catalytic oxidation of ammonia: influence of water and sulfur on selectivity to nitrogen over promoted copper oxide/alumina catalysts. Catalysis Today, 2000, 55(1): 189–195 
														     														     	 
														     															     		https://doi.org/10.1016/S0920-5861(99)00238-2
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														      Z X Ge , T J Wang , Y Ding , S B Yin , F M Li , P Chen , Y Chen . Interfacial engineering enhances the electroactivity of frame-like concave RhCu bimetallic nanocubes for nitrate reduction. Advanced Energy Materials, 2022, 12(15): 2103916 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202103916
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														      W Zhang , X Qin , T Wei , Q Liu , J Luo , X Liu . Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. Journal of Colloid and Interface Science, 2023, 638: 650–657 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2023.02.026
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														      J Ding , X Hou , Y Qiu , S Zhang , Q Liu , J Luo , X Liu . Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. Inorganic Chemistry Communications, 2023, 151: 110621 
														     														     	 
														     															     		https://doi.org/10.1016/j.inoche.2023.110621
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														      G Wang , J Zhang , L Liu , J Z Zhou , Q Liu , G Qian , Z P Xu , R M Richards . Novel multi-metal containing MnCr catalyst made from manganese slag and chromium wastewater for effective selective catalytic reduction of nitric oxide at low temperature. Journal of Cleaner Production, 2018, 183: 917–924 
														     														     	 
														     															     		https://doi.org/10.1016/j.jclepro.2018.02.207
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														      H Hua , J Zeng , G Wang , J Zhang , J Zhou , Y Pan , Q Liu , Y Xu , G Qian , Z P Xu . Understanding of the high hydrothermal stability of a catalyst prepared from Mn slag for low-temperature selective catalytic reduction of NO. Journal of Hazardous Materials, 2020, 381: 120935 
														     														     	 
														     															     		https://doi.org/10.1016/j.jhazmat.2019.120935
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														      K Zhang , Z X Li , X Li , X Y Chen , H Q Tang , X H Liu , C Y Wang , J M Ma . Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries. Rare Metals, 2023, 42(3): 740–750 
														     														     	 
														     															     		https://doi.org/10.1007/s12598-022-02107-w
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														      B Wu , L Huang , L Yan , H Gang , Y Cao , D Wei , H Wang , Z Guo , W Zhang . Boron-modulated electronic-configuration tuning of cobalt for enhanced nitric oxide fixation to ammonia. Nano Letters, 2023, 23(15): 7120–7128 
														     														     	 
														     															     		https://doi.org/10.1021/acs.nanolett.3c01994
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														      J Liang , P Liu , Q Li , T Li , L Yue , Y Luo , Q Liu , N Li , B Tang , A A Alshehri . et al.. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angewandte Chemie International Edition, 2022, 61(18): e202202087 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202202087
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														      P Li , Z Jin , Z Fang , G Yu . A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy & Environmental Science, 2021, 14(6): 3522–3531 
														     														     	 
														     															     		https://doi.org/10.1039/D1EE00545F
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														      W Zhao , J Qin , W Teng , J Mu , C Chen , J Ke , J C Huang , B Liu , S Wang . Catalytic photo-redox of simulated air into ammonia over bimetallic MOFs nanosheets with oxygen vacancies. Applied Catalysis B: Environmental, 2022, 305: 121046 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcatb.2021.121046
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														      G W Watt , J D Chrisp . Spectrophotometric method for determination of hydrazine. Analytical Chemistry, 1952, 24(12): 2006–2008 
														     														     	 
														     															     		https://doi.org/10.1021/ac60072a044
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														      M Fu , Y Mao , H Wang , W Luo , Y Jiang , W Shen , M Li , R He . Enhancing the electrocatalytic performance of nitrate reduction to ammonia by in-situ nitrogen leaching. Chinese Chemical Letters, 2024, 35(2): 108341 
														     														     	 
														     															     		https://doi.org/10.1016/j.cclet.2023.108341
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														      R Sun , Z H Su , Z F Zhao , M Q Yang , T S Li , J X Zhao , Y C Shang . Ni3S2 nanocrystals in-situ grown on Ni foam as highly efficient electrocatalysts for alkaline hydrogen evolution. Rare Metals, 2023, 42(10): 3420–3429 
														     														     	 
														     															     		https://doi.org/10.1007/s12598-023-02337-6
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														      G Lu , S Gao , Q Liu , S Zhang , J Luo , X Liu . Design of material regulatory mechanism for electrocatalytic converting NO/NO3− to NH3 progress. Nature and Science, 2023, 3(3): e20220047
														     															 | 
																  
																														
															| 36 | 
															 
														      J Ding , H Yang , H Zhang , Z Wang , Q Liu , L Feng , G Hu , J Luo , X Liu . Dealloyed NiTiZrAg as an efficient electrocatalyst for hydrogen evolution in alkaline seawater. International Journal of Hydrogen Energy, 2024, 53: 318–324 
														     														     	 
														     															     		https://doi.org/10.1016/j.ijhydene.2023.12.007
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														      D Fang , F He , J Xie , L Xue . Calibration of binding energy positions with C1s for XPS results. Journal of Wuhan University of Technology-Mater. Science Edition, 2020, 35(4): 711–718
														     															 | 
																  
																														
															| 38 | 
															 
														      L N Chen , S H Wang , P Y Zhang , Z X Chen , X Lin , H J Yang , T Sheng , W F Lin , N Tian , S G Sun . et al.. Ru nanoparticles supported on partially reduced TiO2 as highly efficient catalyst for hydrogen evolution. Nano Energy, 2021, 88: 106211 
														     														     	 
														     															     		https://doi.org/10.1016/j.nanoen.2021.106211
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														      J S Tian , Y C Hu , W F Lu , J H Zhu , X D Liu , J Shen , G Wang , J Schroers . Dealloying of an amorphous TiCuRu alloy results in a nanostructured electrocatalyst for hydrogen evolution reaction. Carbon Energy, 2023, 5(8): e322 
														     														     	 
														     															     		https://doi.org/10.1002/cey2.322
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														      S Gupta , S Zhao , X X Wang , S Hwang , S Karakalos , S V Devaguptapu , S Mukherjee , D Su , H Xu , G Wu . Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon. ACS Catalysis, 2017, 7(12): 8386–8393 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.7b02949
														     															     															     															 | 
																  
																														
															| 41 | 
															 
														      M Y Fan , J J Wang , J Zhao , H Zhang , T Y Ma , X P Han , W B Hu . High-entropy oxide-supported platinum nanoparticles for efficient hydrogen evolution reaction. Rare Metals, 2024, 43(4): 1537–1546 
														     														     	 
														     															     		https://doi.org/10.1007/s12598-023-02553-0
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														      C Chen , S Li , X Zhu , S Bo , K Cheng , N He , M Qiu , C Xie , D Song , Y Liu . et al.. Balancing sub-reaction activity to boost electrocatalytic urea synthesis using a metal-free electrocatalyst. Carbon Energy, 2023, 5(10): e345 
														     														     	 
														     															     		https://doi.org/10.1002/cey2.345
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														      C Zhang , H Xu , Y Wang , M An , Y Wang , Z Yuan , W Zhang , C Li , M Guo , D Su . Reduction of 4-nitrophenol with nano-gold@graphene composite porous material. China Powder Science and Technology, 2023, 29(4): 80–93
														     															 | 
																  
																														
															| 44 | 
															 
														      K Chen , J Xiang , Y Guo , X Liu , X Li , K Chu . Pd1Cu single-atom alloys for high-current-density and durable NO-to-NH3 electroreduction. Nano Letters, 2024, 24(2): 541–548 
														     														     	 
														     															     		https://doi.org/10.1021/acs.nanolett.3c02259
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														      Y Qin , H Cao , Q Liu , S Yang , X Feng , H Wang , M Lian , D Zhang , H Wang , J Luo . et al.. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting. Frontiers of Chemical Science and Engineering, 2023, 18(1): 6 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-023-2373-1
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														      L Zhang , J Liang , Y Wang , T Mou , Y Lin , L Yue , T Li , Q Liu , Y Luo , N Li . et al.. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angewandte Chemie International Edition, 2021, 60(48): 25263–25268 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202110879
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														      J Liang , H Chen , T Mou , L Zhang , Y Lin , L Yue , Y Luo , Q Liu , N Li , A A Alshehri . et al.. Coupling denitrification and ammonia synthesis via selective electrochemical reduction of nitric oxide over Fe2O3 nanorods. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(12): 6454–6462 
														     														     	 
														     															     		https://doi.org/10.1039/D2TA00744D
														     															     															     															 | 
																  
																														
															| 48 | 
															 
														      T Mou , J Liang , Z Ma , L Zhang , Y Lin , T Li , Q Liu , Y Luo , Y Liu , S Gao . et al.. High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni2P nanoarray under ambient conditions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(43): 24268–24275 
														     														     	 
														     															     		https://doi.org/10.1039/D1TA07455E
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |