Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (9) : 101    https://doi.org/10.1007/s11705-024-2452-y
Dealloyed TiCuMn efficiently catalyze the NO reduction and Zn-NO batteries
Lang Zhang1, Tong Hou1, Weijia Liu1, Yeyu Wu2(), Tianran Wei1, Junyang Ding3(), Qian Liu4, Jun Luo5, Xijun Liu1()
1. State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
2. Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
3. Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
4. Institute for Advanced Study, Chengdu University, Chengdu 610106, China
5. ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
 Download: PDF(1068 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electrocatalytic NO reduction reaction offers a sustainable route to achieving environmental protection and NH3 production targets as well. In this work, a class of dealloyed Ti60Cu33Mn7 ribbons with enough nanoparticles for the high-efficient NO reduction reaction to NH3 is fabricated, reaching an excellent Faradaic efficiency of 93.2% at –0.5 V vs reversible hydrogen electrode and a high NH3 synthesis rate of 717.4 μmol·h–1·mgcat.–1 at –0.6 V vs reversible hydrogen electrode. The formed nanoparticles on the surface of the catalyst could facilitate the exposure of active sites and the transportation of various reactive ions and gases. Meanwhile, the Mn content in the TiCuMn ribbons modulates the chemical and physical properties of its surface, such as modifying the electronic structure of the Cu species, optimizing the adsorption energy of N* atoms, decreasing the strength of the NO adsorption, and eliminating the thermodynamic energy barrier, thus improving the NO reduction reaction catalytic performance. Moreover, a Zn-NO battery was fabricated using the catalyst and Zn plates, generating an NH3 yield of 129.1 µmol·h–1·cm–2 while offering a peak power density of 1.45 mW·cm–2.

Keywords nitric oxide reduction      NH3 electrosynthesis      TiCuMn alloy      Mn modulation      Zn-NO battery     
Corresponding Author(s): Yeyu Wu,Junyang Ding,Xijun Liu   
Just Accepted Date: 08 May 2024   Issue Date: 12 July 2024
 Cite this article:   
Lang Zhang,Tong Hou,Weijia Liu, et al. Dealloyed TiCuMn efficiently catalyze the NO reduction and Zn-NO batteries[J]. Front. Chem. Sci. Eng., 2024, 18(9): 101.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2452-y
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I9/101
Fig.1  Synthesis and characterization of d-TiCuMn7Ox. (a) Schematic depicting the synthetic process; (b, c) SEM images; (d) HRTEM images; (e–h) EDX elemental mapping images of d-TiCuMn7Ox.
Fig.2  Phase and composition characterizations of d-TiCuMn7Ox. (a) XRD patterns; HR XPS spectra of (b) Ti 2p, (c) Cu 2p, and (d) Mn 2p.
Fig.3  NORR performance of d-TiCuMn7Ox and control samples in 0.05 mol·L–1 H2SO4. (a) LSV curves of d-TiCuMn7Ox in Ar- and NO-saturated electrolyte. (b) The i-t-test results of d-TiCuMn7Ox at different applied potential. (c) UV-Vis absorption spectra of d-TiCuMn7Ox under the various applied potential. (d) NH3 yield and FENH3 of d-TiCuMn7Ox at various applied potential. (e) NH3 yield and FENH3 of control samples at –0.5 V vs RHE. (f) NH3 yield of d-TiCuMn7Ox at –0.6 V vs RHE under different operation conditions (OCP: open-circuit potential). (g) The cyclic stability test of d-TiCuMn7Ox at –0.5 V vs RHE. (h) The i-t stability test of d-TiCuMn7Ox at –0.5 V vs RHE.
Fig.4  Zn-NO battery with d-TiCuMn7Ox. (a) Discharge polarization curves and power density curves. (b) The open-circuit voltage. (c) Discharging tests at different current densities. (d) NH3 yield and FENH3 at different discharging current densities.
1 Z Qu , F Sun , X Pi , X Li , D Wu , J Gao , G Zhao . One-step synergistic optimization of hierarchical pore topology and nitrogen dopants in activated coke for efficient catalytic oxidation of nitric oxide. Journal of Cleaner Production, 2022, 335: 130360
https://doi.org/10.1016/j.jclepro.2022.130360
2 L B Kreuzer , C K N Patel . Nitric oxide air pollution: detection by optoacoustic spectroscopy. Science, 1971, 173(3991): 45–47
https://doi.org/10.1126/science.173.3991.45
3 V T Chebrolu , D Jang , G M Rani , C Lim , K Yong , W B Kim . Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon Energy, 2023, 5(12): e361
https://doi.org/10.1002/cey2.361
4 S Zhang , Q Liu , X Tang , Z Zhou , T Fan , Y You , Q Zhang , S Zhang , J Luo , X Liu . Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes. Frontiers of Chemical Science and Engineering, 2023, 17(6): 726–734
https://doi.org/10.1007/s11705-022-2274-8
5 H E Wu , G T Fei , X D Gao , X Guo , X X Gong , X L Ma , Q Wang , S H Xv . Research progress on preparation and application of polyaniline and its composite materials. China Powder Science and Technology, 2023, 29(5): 70–80
6 B Sun , S Lu , Y Qian , X Zhang , J Tian . Recent progress in research and design concepts for the characterization, testing, and photocatalysts for nitrogen reduction reaction. Carbon Energy, 2023, 5(3): e305
https://doi.org/10.1002/cey2.305
7 Y Q Ji , Z H Yu , L G Yan , S Wen . Research progress in preparation, modification and application of biomass-based single-atom catalysts. China Powder Science and Technology, 2023, 29(4): 100–107
8 J Theerthagiri , K Karuppasamy , A H Mahadi , C J Moon , N Rahamathulla , S Kheawhom , S Alameri , A Alfantazi , A P Murthy , M Y Choi . Electrochemical reduction of gaseous nitric oxide into ammonia: a review. Environmental Chemistry Letters, 2024, 22(1): 189–208
https://doi.org/10.1007/s10311-023-01655-6
9 L Gao , X B Xv , C Q Hu , J Zhong , L B Sun . Preparation and investigation of high performance Pt-Mn alloy catalyst towards oxygen reduction. China Powder Science and Technology, 2023, 29(2): 1–9
10 H Tounsi , S Djemal , C Petitto , G Delahay . Copper loaded hydroxyapatite catalyst for selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 2011, 107(1): 158–163
https://doi.org/10.1016/j.apcatb.2011.07.009
11 G Zhang , G Wang , Y Wan , X Liu , K Chu . Ampere-level nitrate electroreduction to ammonia over monodispersed Bi-doped FeS2. ACS Nano, 2023, 17(21): 21328–21336
https://doi.org/10.1021/acsnano.3c05946
12 S Chen , G Qi , R Yin , Q Liu , L Feng , X Feng , G Hu , J Luo , X Liu , W Liu . Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarrays using Zn-nitrate batteries. Nanoscale, 2023, 15(48): 19577–19585
https://doi.org/10.1039/D3NR05254K
13 T Sun , F Gao , Y Wang , H Yi , Q Yu , S Zhao , X Tang . Morphology and valence state evolution of Cu: unraveling the impact on nitric oxide electroreduction. Journal of Energy Chemistry, 2024, 91: 276–286
https://doi.org/10.1016/j.jechem.2023.11.046
14 J Long , S Chen , Y Zhang , C Guo , X Fu , D Deng , J Xiao . Direct electrochemical ammonia synthesis from nitric oxide. Angewandte Chemie International Edition, 2020, 59(24): 9711–9718
https://doi.org/10.1002/anie.202002337
15 P M Krzywda , Rodríguez A Paradelo , N E Benes , B T Mei , G Mul . Effect of electrolyte and electrode configuration on Cu-catalyzed nitric oxide reduction to ammonia. ChemElectroChem, 2022, 9(5): e202101273
https://doi.org/10.1002/celc.202101273
16 L Chen , W Sun , Z Xu , M Hao , B Li , X Liu , J Ma , L Wang , C Li , W Wang . Ultrafine Cu nanoparticles decorated porous TiO2 for high-efficient electrocatalytic reduction of NO to synthesize NH3. Ceramics International, 2022, 48(15): 21151–21161
https://doi.org/10.1016/j.ceramint.2022.04.006
17 J Shi , C Wang , R Yang , F Chen , N Meng , Y Yu , B Zhang . Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Science China. Chemistry, 2021, 64(9): 1493–1497
https://doi.org/10.1007/s11426-021-1073-5
18 Z Ren , H Zhang , S Wang , B Huang , Y Dai , W Wei . Nitric oxide reduction reaction for efficient ammonia synthesis on topological nodal-line semimetal Cu2Si monolayer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(15): 8568–8577
https://doi.org/10.1039/D2TA00504B
19 J Feng , Y Ji , Y Li . In silico design of copper-based alloys for ammonia synthesis from nitric oxide reduction accelerated by machine learning. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(26): 14195–14203
https://doi.org/10.1039/D3TA01883K
20 M Yang , T Wei , J He , Q Liu , L Feng , H Li , J Luo , X Liu . Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia. Nano Research, 2024, 17(3): 1209–1216
https://doi.org/10.1007/s12274-023-5997-z
21 T Curtin , Regan F O’ , C Deconinck , N Knüttle , B K Hodnett . The catalytic oxidation of ammonia: influence of water and sulfur on selectivity to nitrogen over promoted copper oxide/alumina catalysts. Catalysis Today, 2000, 55(1): 189–195
https://doi.org/10.1016/S0920-5861(99)00238-2
22 Z X Ge , T J Wang , Y Ding , S B Yin , F M Li , P Chen , Y Chen . Interfacial engineering enhances the electroactivity of frame-like concave RhCu bimetallic nanocubes for nitrate reduction. Advanced Energy Materials, 2022, 12(15): 2103916
https://doi.org/10.1002/aenm.202103916
23 W Zhang , X Qin , T Wei , Q Liu , J Luo , X Liu . Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. Journal of Colloid and Interface Science, 2023, 638: 650–657
https://doi.org/10.1016/j.jcis.2023.02.026
24 J Ding , X Hou , Y Qiu , S Zhang , Q Liu , J Luo , X Liu . Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. Inorganic Chemistry Communications, 2023, 151: 110621
https://doi.org/10.1016/j.inoche.2023.110621
25 G Wang , J Zhang , L Liu , J Z Zhou , Q Liu , G Qian , Z P Xu , R M Richards . Novel multi-metal containing MnCr catalyst made from manganese slag and chromium wastewater for effective selective catalytic reduction of nitric oxide at low temperature. Journal of Cleaner Production, 2018, 183: 917–924
https://doi.org/10.1016/j.jclepro.2018.02.207
26 H Hua , J Zeng , G Wang , J Zhang , J Zhou , Y Pan , Q Liu , Y Xu , G Qian , Z P Xu . Understanding of the high hydrothermal stability of a catalyst prepared from Mn slag for low-temperature selective catalytic reduction of NO. Journal of Hazardous Materials, 2020, 381: 120935
https://doi.org/10.1016/j.jhazmat.2019.120935
27 K Zhang , Z X Li , X Li , X Y Chen , H Q Tang , X H Liu , C Y Wang , J M Ma . Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries. Rare Metals, 2023, 42(3): 740–750
https://doi.org/10.1007/s12598-022-02107-w
28 B Wu , L Huang , L Yan , H Gang , Y Cao , D Wei , H Wang , Z Guo , W Zhang . Boron-modulated electronic-configuration tuning of cobalt for enhanced nitric oxide fixation to ammonia. Nano Letters, 2023, 23(15): 7120–7128
https://doi.org/10.1021/acs.nanolett.3c01994
29 J Liang , P Liu , Q Li , T Li , L Yue , Y Luo , Q Liu , N Li , B Tang , A A Alshehri . et al.. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angewandte Chemie International Edition, 2022, 61(18): e202202087
https://doi.org/10.1002/anie.202202087
30 P Li , Z Jin , Z Fang , G Yu . A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy & Environmental Science, 2021, 14(6): 3522–3531
https://doi.org/10.1039/D1EE00545F
31 W Zhao , J Qin , W Teng , J Mu , C Chen , J Ke , J C Huang , B Liu , S Wang . Catalytic photo-redox of simulated air into ammonia over bimetallic MOFs nanosheets with oxygen vacancies. Applied Catalysis B: Environmental, 2022, 305: 121046
https://doi.org/10.1016/j.apcatb.2021.121046
32 G W Watt , J D Chrisp . Spectrophotometric method for determination of hydrazine. Analytical Chemistry, 1952, 24(12): 2006–2008
https://doi.org/10.1021/ac60072a044
33 M Fu , Y Mao , H Wang , W Luo , Y Jiang , W Shen , M Li , R He . Enhancing the electrocatalytic performance of nitrate reduction to ammonia by in-situ nitrogen leaching. Chinese Chemical Letters, 2024, 35(2): 108341
https://doi.org/10.1016/j.cclet.2023.108341
34 R Sun , Z H Su , Z F Zhao , M Q Yang , T S Li , J X Zhao , Y C Shang . Ni3S2 nanocrystals in-situ grown on Ni foam as highly efficient electrocatalysts for alkaline hydrogen evolution. Rare Metals, 2023, 42(10): 3420–3429
https://doi.org/10.1007/s12598-023-02337-6
35 G Lu , S Gao , Q Liu , S Zhang , J Luo , X Liu . Design of material regulatory mechanism for electrocatalytic converting NO/NO3− to NH3 progress. Nature and Science, 2023, 3(3): e20220047
36 J Ding , H Yang , H Zhang , Z Wang , Q Liu , L Feng , G Hu , J Luo , X Liu . Dealloyed NiTiZrAg as an efficient electrocatalyst for hydrogen evolution in alkaline seawater. International Journal of Hydrogen Energy, 2024, 53: 318–324
https://doi.org/10.1016/j.ijhydene.2023.12.007
37 D Fang , F He , J Xie , L Xue . Calibration of binding energy positions with C1s for XPS results. Journal of Wuhan University of Technology-Mater. Science Edition, 2020, 35(4): 711–718
38 L N Chen , S H Wang , P Y Zhang , Z X Chen , X Lin , H J Yang , T Sheng , W F Lin , N Tian , S G Sun . et al.. Ru nanoparticles supported on partially reduced TiO2 as highly efficient catalyst for hydrogen evolution. Nano Energy, 2021, 88: 106211
https://doi.org/10.1016/j.nanoen.2021.106211
39 J S Tian , Y C Hu , W F Lu , J H Zhu , X D Liu , J Shen , G Wang , J Schroers . Dealloying of an amorphous TiCuRu alloy results in a nanostructured electrocatalyst for hydrogen evolution reaction. Carbon Energy, 2023, 5(8): e322
https://doi.org/10.1002/cey2.322
40 S Gupta , S Zhao , X X Wang , S Hwang , S Karakalos , S V Devaguptapu , S Mukherjee , D Su , H Xu , G Wu . Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon. ACS Catalysis, 2017, 7(12): 8386–8393
https://doi.org/10.1021/acscatal.7b02949
41 M Y Fan , J J Wang , J Zhao , H Zhang , T Y Ma , X P Han , W B Hu . High-entropy oxide-supported platinum nanoparticles for efficient hydrogen evolution reaction. Rare Metals, 2024, 43(4): 1537–1546
https://doi.org/10.1007/s12598-023-02553-0
42 C Chen , S Li , X Zhu , S Bo , K Cheng , N He , M Qiu , C Xie , D Song , Y Liu . et al.. Balancing sub-reaction activity to boost electrocatalytic urea synthesis using a metal-free electrocatalyst. Carbon Energy, 2023, 5(10): e345
https://doi.org/10.1002/cey2.345
43 C Zhang , H Xu , Y Wang , M An , Y Wang , Z Yuan , W Zhang , C Li , M Guo , D Su . Reduction of 4-nitrophenol with nano-gold@graphene composite porous material. China Powder Science and Technology, 2023, 29(4): 80–93
44 K Chen , J Xiang , Y Guo , X Liu , X Li , K Chu . Pd1Cu single-atom alloys for high-current-density and durable NO-to-NH3 electroreduction. Nano Letters, 2024, 24(2): 541–548
https://doi.org/10.1021/acs.nanolett.3c02259
45 Y Qin , H Cao , Q Liu , S Yang , X Feng , H Wang , M Lian , D Zhang , H Wang , J Luo . et al.. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting. Frontiers of Chemical Science and Engineering, 2023, 18(1): 6
https://doi.org/10.1007/s11705-023-2373-1
46 L Zhang , J Liang , Y Wang , T Mou , Y Lin , L Yue , T Li , Q Liu , Y Luo , N Li . et al.. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angewandte Chemie International Edition, 2021, 60(48): 25263–25268
https://doi.org/10.1002/anie.202110879
47 J Liang , H Chen , T Mou , L Zhang , Y Lin , L Yue , Y Luo , Q Liu , N Li , A A Alshehri . et al.. Coupling denitrification and ammonia synthesis via selective electrochemical reduction of nitric oxide over Fe2O3 nanorods. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(12): 6454–6462
https://doi.org/10.1039/D2TA00744D
48 T Mou , J Liang , Z Ma , L Zhang , Y Lin , T Li , Q Liu , Y Luo , Y Liu , S Gao . et al.. High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni2P nanoarray under ambient conditions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(43): 24268–24275
https://doi.org/10.1039/D1TA07455E
[1] FCE-24007-OF-ZL_suppl_1 Download
[1] Shangcong Zhang, Qian Liu, Xinyue Tang, Zhiming Zhou, Tieyan Fan, Yingmin You, Qingcheng Zhang, Shusheng Zhang, Jun Luo, Xijun Liu. Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes[J]. Front. Chem. Sci. Eng., 2023, 17(6): 726-734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed