Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (10) : 112    https://doi.org/10.1007/s11705-024-2463-8
Advances in catalysts and reaction systems for electro/photocatalytic ammonia production
Shenshen Zheng1,2, Fengying Zhang1,2(), Yuman Jiang2, Tao Xu2, Han Li2, Heng Guo1,2, Ying Zhou1,2()
1. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
2. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
 Download: PDF(8587 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ammonia is a vital component in the fertilizer and chemical industries, as well as serving as a significant carrier of renewable hydrogen energy. Compared with the industry’s principal technique, the Haber-Bosch method, for ammonia synthesis, electro/photocatalytic ammonia synthesis is increasingly recognized as a viable and eco-friendly alternative. This method enables distributed small-scale deployment and can be powered by sustainable renewable energy sources. However, the efficiency of electro/photocatalytic nitrogen reduction reaction is hindered by the challenges in activating the N≡N bond and nitrogen’s low solubility, thereby limiting its large-scale industrial applications. In this review, recent advancements in electro/photocatalytic nitrogen reduction are summarized, encompassing the complex reaction mechanisms, as well as the effective strategies for developing electro/photocatalytic catalysts and advanced reaction systems. Furthermore, the energy efficiency and economic analysis of electro/photocatalytic nitrogen fixation are deeply discussed. Finally, some unsolved challenges and potential opportunities are discussed for the future development of electro/photocatalytic ammonia synthesis.

Keywords ammonia synthesis      electro/photocatalysis      nitrogen fixation      reaction system      economic and efficiency analysis     
Corresponding Author(s): Fengying Zhang,Ying Zhou   
Just Accepted Date: 29 April 2024   Issue Date: 28 June 2024
 Cite this article:   
Shenshen Zheng,Fengying Zhang,Yuman Jiang, et al. Advances in catalysts and reaction systems for electro/photocatalytic ammonia production[J]. Front. Chem. Sci. Eng., 2024, 18(10): 112.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2463-8
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I10/112
Fig.1  Ammonia production and application.
Fig.2  Nitrogen reduction mechanism. (a) Dissociative association mechanism. (b) MK mechanism. TM, transition metal. Reprinted with permission from Ref. [24], copyright 2020, Wiley-VCH. (c) Surface hydrogenation mechanism. Reprinted with permission from Ref. [23], copyright 2019, American Chemical Society.
Fig.3  (a) Volcano type relationship between catalytic activity and bond strength. Reprinted with permission from Ref. [25], copyright 2015, Elsevier. (b) Volcano model. Reprinted with permission from Ref. [26], copyright 2012, Royal Society of Chemistry. SHE, standard hydrogen electrode.
Fig.4  (a) Electron micrographs of AuHNCs and ammonia production rates and Faraday efficiencies (FEs) of Au with different morphologies. Reprinted with permission from Ref. [51], copyright 2018, Elsevier. (b) p-Fe2O3 NRs/CC (carbon cloth) catalyst. Reprinted with permission from Ref. [53], copyright 2019, American Chemical Society. (c) Ti3C2Tx two-dimensional layered carbons. Reprinted with permission from Ref. [54], copyright 2019, Elsevier. (d) Layered double hydroxide (LDH) nanosheets. Reprinted with permission from Ref. [55], copyright 2020, Wiley-VCH. RHE, reversible hydrogen electrode.
Fig.5  (a) Au (210) and Au (310) free energy diagrams with alternating hydrogenation pathways. Reprinted with permission from Ref. [56], copyright 2017, Wiley-VCH. (b) Comparison of activation energies of different crystallographic facets of Au at the rate-limiting step. Reprinted with permission from Ref. [57], copyright 2020, American Chemical Society. (c) Relationships between (110) orientation, (211) orientation, and NRR activity of four Mo-based catalysts. Reprinted with permission from Ref. [58], copyright 2017, Royal Society of Chemistry. (d) N2 fixation of Bi5O7I nanosheets with different primary crystallographic facets activity. Reprinted with permission from Ref. [59], copyright 2016, American Chemical Society.
Fig.6  (a) BVC-A NH3 yield at different bias pressures; (b) NH3 yield at –0.2 V for different catalysts. Reprinted with permission from Ref. [65], copyright 2018, Wiley-VCH. (c) Calculated DOS of LaCoO3 with and without Vo; (d) Ammonia yield of Vo-LaCoO3. Reprinted with permission from Ref. [66], copyright 2020, American Chemical Society.
Fig.7  (a) In2O3/In2S3 heterojunction. Reprinted with permission from Ref. [87], copyright 2019, Elsevier. (b) Bi2MoO6/Vo-BiOBr heterojunction. Vo, oxygen vacancy; NHE, normal hydrogen electrode. Reprinted with permission from Ref. [89], copyright 2019, Royal Society of Chemistry. (c) W18O49/g-C3N4 heterojunction. Reprinted with permission from Ref. [91], copyright 2017, Royal Society of Chemistry. (d) Mechanism of photocatalytic nitrogen fixation by S-type heterojunction. Reprinted with permission from Ref. [93], copyright 2023, Elsevier.
Fig.8  (a) Electrochemical cell based on a mixed conducting membrane. Reprinted with permission from Ref. [95], copyright 2013, Royal Society of Chemistry. (b) The single-chamber electrolytic cell. (c) Solid polymer electrolyte cell. Reprinted with permission from Ref. [97], copyright 2000, Royal Society of Chemistry. (d) The H-type cell for electrocatalytic NRR. CE, counter electrode; RE, reference electrode; WE, working electrode.
Fig.9  (a) Schematic diagram of diffusive adsorption of N2 and H2O on the catalyst surface under pressurized conditions at 0.7 MPa; (b) NH3 yields of Fe3Mo3C/C under different pressure conditions. Reprinted with permission from Ref. [14], copyright 2019, Wiley-VCH. (c) Pressurized device applied on electrocatalytic nitrogen reduction; (d) NH3 yields, FE, and jNH3 for Rh SA/GDY with different N2 pressures applied. Reprinted with permission from Ref. [100], copyright 2020, PNAS.
Fig.10  (a) Corresponding NH3 yields and FE based on Pd/C catalysts in three electrolytes. Reprinted with permission from Ref. [112], copyright 2018, Springer Nature. (b) Schematic diagram of limiting the proton transfer rate by decreasing the proton concentration in the native solution. Reprinted with permission from Ref. [114], copyright 2017, American Chemical Society. (c) Comparison of the performance of electrocatalytic ammonia synthesis in different ionic liquids. Reprinted with permission from Ref. [115], copyright 2017, Royal Society of Chemistry. (d) Schematic diagram of electrochemical synthesis of ammonia in LiCl-KCl-CsCl molten salt. Reprinted with permission from Ref. [116], copyright 2016, Springer Nature.
Fig.11  Photocatalytic nitrogen fixation. (a) Powder system in solution. (b) gas-membrane-solution photocatalytic system. Reprinted with permission from Ref. [120], copyright 2021, American Chemical Society. (c, d) Schematic of ammonia synthesis with a nitrogen permeation membrane reactor. Reprinted with permission from Ref. [121], copyright 2022, Springer Nature.
Fig.12  (a) The NRR reactor with Au NPs/Nb-SrTiO3 photoelectrode. (b) spectral histogram of the action of the apparent quantum efficiency of ammonia formation. Reprinted with permission from Ref. [124], copyright 2014, Wiley-VCH. (c, d) The photoelectrochemical cell and NH3 yield. Reprinted with permission from Ref. [125], copyright 2016, Springer Nature.
Fig.13  (a) Schematic diagram of photothermal and thermal reactors. (b) Comparison of rates of ammonia synthesis reactions performed by Ru NPs on different carriers. Reprinted with permission from Ref. [128], copyright 2018, Elsevier. (c, d) Simulation of ammonia synthesis setup and ammonia activity diagrams with focused beams from a solar concentrator. Reprinted with permission from Ref. [130], copyright 2021, Elsevier.
ProcessEnergy consumption [132]Present day NH3 demonstrated scale [133]CO2 emissions [133]Technology readiness level [134]
H-B30.5 MJ·kg–1 NH3> 2000 t·d–1< 2.0 t CO2·t–1 NH39
(CCUS) + H-B> 2000 t·d–10.5–0.6 t CO27–9
(E-H2O) + H-B264.9 MJ·kg–1 NH3~20–30 kg·d–11–3
Electrocatalytic190.5 MJ·kg–1 NH3a)< 1 kg·d–1< 180 gCO2·kWh–11–3
Photocatalytic208.3 MJ·kg–1 NH3b)< 1 kg·d–11–3
Tab.1  Energy efficiency analysis of several processes
Fig.14  (a) Schematic diagram of a sustainable farm; (b) economic feasibility analysis based on PV-EC system. Reprinted with permission from Ref. [141], copyright 2022, Elsevier. PV-EC, photovoltaic electrochemical.
1 A J Medford , M C Hatzell . Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catalysis, 2017, 7(4): 2624–2643
https://doi.org/10.1021/acscatal.7b00439
2 C J M Van der Ham , M T M Koper , D G H Hetterscheid . Challenges in reduction of dinitrogen by proton and electron transfer. Chemical Society Reviews, 2014, 43(15): 5183–5191
https://doi.org/10.1039/C4CS00085D
3 N Gruber , J N Galloway . An earth-system perspective of the global nitrogen cycle. Nature, 2008, 451(7176): 293–296
https://doi.org/10.1038/nature06592
4 Green ammonia synthesis. Nature Synthesis, 2023, 2(7): 581–582
5 N Lazouski , M Chung , K Williams , M L Gala , K Manthiram . Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nature Catalysis, 2020, 3(5): 463–469
https://doi.org/10.1038/s41929-020-0455-8
6 M Kitano , Y Inoue , Y Yamazaki , F Hayashi , S Kanbara , S Matsuishi , T Yokoyama , S W Kim , M Hara , H Hosono . Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chemistry, 2012, 4(11): 934–940
https://doi.org/10.1038/nchem.1476
7 T Oshikiri , K Ueno , H Misawa . Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angewandte Chemie International Edition, 2016, 55(12): 3942–3946
https://doi.org/10.1002/anie.201511189
8 E E Van Tamelen , D A Seeley . Catalytic fixation of molecular nitrogen by electrolytic and chemical reduction. Journal of the American Chemical Society, 1969, 91(18): 5194–5194
https://doi.org/10.1021/ja01046a063
9 G N Schrauzer , T D Guth . Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society, 1977, 99(22): 7189–7193
https://doi.org/10.1021/ja00464a015
10 Y Wan , J Xu , R Lv . Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today, 2019, 27: 69–90
https://doi.org/10.1016/j.mattod.2019.03.002
11 S Wang , F Ichihara , H Pang , H Chen , J Ye . Nitrogen fixation reaction derived from nanostructured catalytic materials. Advanced Functional Materials, 2018, 28(50): 1803309
https://doi.org/10.1002/adfm.201803309
12 J Li , X Guo , L Gan , Z F Huang , L Pan , C Shi , X Zhang , G Yang , J J Zou . Fundamentals and advances in emerging crystalline porous materials for photocatalytic and electrocatalytic nitrogen fixation. ACS Applied Energy Materials, 2022, 5(8): 9241–9265
https://doi.org/10.1021/acsaem.2c01346
13 X Cui , C Tang , Q Zhang . A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Advanced Energy Materials, 2018, 8(22): 1800369
https://doi.org/10.1002/aenm.201800369
14 H Cheng , P Cui , F Wang , L X Ding , H Wang . High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angewandte Chemie International Edition, 2019, 58(43): 15541–15547
https://doi.org/10.1002/anie.201910658
15 D Liu , M Chen , X Du , H Ai , K H Lo , S Wang , S Chen , G Xing , X Wang , H Pan . Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Advanced Functional Materials, 2021, 31(11): 2008983
https://doi.org/10.1002/adfm.202008983
16 H P Jia , E A Quadrelli . Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chemical Society Reviews, 2014, 43(2): 547–564
https://doi.org/10.1039/C3CS60206K
17 G Qing , R Ghazfar , S T Jackowski , F Habibzadeh , M M Ashtiani , C P Chen , M R III Smith , T W Hamann . Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437–5516
https://doi.org/10.1021/acs.chemrev.9b00659
18 Y Abghoui , E Skúlason . Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catalysis Today, 2017, 286: 69–77
https://doi.org/10.1016/j.cattod.2016.11.047
19 V T Chebrolu , D Jang , G M Rani , C Lim , K Yong , W B Kim . Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon Energy, 2023, 5(12): e361
https://doi.org/10.1002/cey2.361
20 S Liu , M Wang , H Ji , X Shen , C Yan , T Qian . Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. National Science Review, 2021, 8(5): 136
https://doi.org/10.1093/nsr/nwaa136
21 M A Shipman , M D Symes . Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catalysis Today, 2017, 286: 57–68
https://doi.org/10.1016/j.cattod.2016.05.008
22 Y Abghoui , A L Garden , J G Howalt , T Vegge , E Skúlason . Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments. ACS Catalysis, 2016, 6(2): 635–646
https://doi.org/10.1021/acscatal.5b01918
23 C Ling , Y Zhang , Q Li , X Bai , L Shi , J Wang . New mechanism for N2 reduction: the essential role of surface hydrogenation. Journal of the American Chemical Society, 2019, 141(45): 18264–18270
https://doi.org/10.1021/jacs.9b09232
24 Z Yan , M Ji , J Xia , H Zhu . Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: one step closer to a sustainable energy future. Advanced Energy Materials, 2020, 10(11): 1902020
https://doi.org/10.1002/aenm.201902020
25 A J Medford , A Vojvodic , J S Hummelshøj , J Voss , F Abild-Pedersen , F Studt , T Bligaard , A Nilsson , J K Nørskov . From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328: 36–42
https://doi.org/10.1016/j.jcat.2014.12.033
26 E Skúlason , T Bligaard , S Gudmundsdóttir , F Studt , J Rossmeisl , Pedersen F Abild , T Vegge , H Jónsson , J K Nørskov . A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Physical Chemistry Chemical Physics, 2012, 14(3): 1235–1245
https://doi.org/10.1039/C1CP22271F
27 J H Montoya , C Tsai , A Vojvodic , J K Nørskov . The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem, 2015, 8(13): 2180–2186
https://doi.org/10.1002/cssc.201500322
28 Y Yao , H Wang , X Z Yuan , H Li , M Shao . Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Letters, 2019, 4(6): 1336–1341
https://doi.org/10.1021/acsenergylett.9b00699
29 Y Zhao , F Li , W Li , Y Li , C Liu , Z Zhao , Y Shan , Y Ji , L Sun . Identification of M-NH2-NH2 intermediate and rate determining step for nitrogen reduction with bioinspired sulfur-bonded FeW catalyst. Angewandte Chemie International Edition, 2021, 60(37): 20331–20341
https://doi.org/10.1002/anie.202104918
30 W Liao , K Xie , L Liu , X Wang , Y Luo , S Liang , F Liu , L Jiang . Triggering in-plane defect cluster on MoS2 for accelerated dinitrogen electroreduction to ammonia. Journal of Energy Chemistry, 2021, 62: 359–366
https://doi.org/10.1016/j.jechem.2021.03.043
31 X Xue , R Chen , C Yan , P Zhao , Y Hu , W Zhang , S Yang , Z Jin . Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Research, 2019, 12(6): 1229–1249
https://doi.org/10.1007/s12274-018-2268-5
32 S Yu , T Xiang , N S Alharbi , B A Alaidaroos , C Chen . Recent development of catalytic strategies for sustainable ammonia production. Chinese Journal of Chemical Engineering, 2023, 62: 65–113
https://doi.org/10.1016/j.cjche.2023.03.028
33 M M Shi , D Bao , S J Li , B R Wulan , J M Yan , Q Jiang . Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Advanced Energy Materials, 2018, 8(21): 1800124
https://doi.org/10.1002/aenm.201800124
34 H Tao , C Choi , L X Ding , Z Jiang , Z Han , M Jia , Q Fan , Y Gao , H Wang , A W Robertson . et al.. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem, 2019, 5(1): 204–214
https://doi.org/10.1016/j.chempr.2018.10.007
35 L Li , C Tang , B Xia , H Jin , Y Zheng , S Z Qiao . Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catalysis, 2019, 9(4): 2902–2908
https://doi.org/10.1021/acscatal.9b00366
36 T N Ye , S W Park , Y Lu , J Li , M Sasase , M Kitano , T Tada , H Hosono . Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature, 2020, 583(7816): 391–395
https://doi.org/10.1038/s41586-020-2464-9
37 J Han , X Ji , X Ren , G Cui , L Li , F Xie , H Wang , B Li , X Sun . MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 12974–12977
https://doi.org/10.1039/C8TA03974G
38 W Zhao , J Zhang , X Zhu , M Zhang , J Tang , M Tan , Y Wang . Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Applied Catalysis B: Environmental, 2014, 144: 468–477
https://doi.org/10.1016/j.apcatb.2013.07.047
39 K Chu , Y P Liu , Y B Li , H Zhang , Y Tian . Efficient electrocatalytic N2 reduction on CoO quantum dots. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(9): 4389–4394
https://doi.org/10.1039/C9TA00016J
40 P Wang , W Nong , Y Li , H Cui , C Wang . Strengthening nitrogen affinity on CuAu@Cu core-shell nanoparticles with ultrathin Cu skin via strain engineering and ligand effect for boosting nitrogen reduction reaction. Applied Catalysis B: Environmental, 2021, 288: 119999
https://doi.org/10.1016/j.apcatb.2021.119999
41 B Yang , W Ding , H Zhang , S Zhang . Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy & Environmental Science, 2021, 14(2): 672–687
https://doi.org/10.1039/D0EE02263B
42 R Zhao , H Xie , L Chang , X Zhang , X Zhu , X Tong , T Wang , Y Luo , P Wei , Z Wang . et al.. Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem, 2019, 1(2): 100011
https://doi.org/10.1016/j.enchem.2019.100011
43 Y Tian , D Xu , K Chu , Z Wei , W Liu . Metal-free N, S co-doped graphene for efficient and durable nitrogen reduction reaction. Journal of Materials Science, 2019, 54(12): 9088–9097
https://doi.org/10.1007/s10853-019-03538-0
44 S Zhou , X Yang , X Xu , S X Dou , Y Du , J Zhao . Boron nitride nanotubes for ammonia synthesis: activation by filling transition metals. Journal of the American Chemical Society, 2020, 142(1): 308–317
https://doi.org/10.1021/jacs.9b10588
45 Z Wei , Y Zhang , S Wang , C Wang , J Ma . Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(28): 13790–13796
https://doi.org/10.1039/C8TA03989E
46 L Zhang , L X Ding , G F Chen , X Yang , H Wang . Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angewandte Chemie International Edition, 2019, 58(9): 2612–2616
https://doi.org/10.1002/anie.201813174
47 J LaiH LiuL X DingJ WangG F ChenH Wang. Black phosphorene with removable aluminum ion protection for enhanced electrochemical nitrogen fixation. Advanced Energy Materials, Jan 9, 2024. https://doi.org/10.1002/aenm.202303963
48 Y G Liu , M Tian , J Hou , H Y Jiang . Research progress and perspectives on active sites of photo- and electrocatalytic nitrogen reduction. Energy & Fuels, 2022, 36(19): 11323–11358
https://doi.org/10.1021/acs.energyfuels.2c01390
49 J X Li , Y Yu , S Xu , W Yan , S Mu , J N Zhang . Function of electron spin effect in electrocatalysts. Wuli Huaxue Xuebao, 2023, 39(12): 2302049
https://doi.org/10.3866/PKU.WHXB202302049
50 T Li , C Tang , H Guo , H Wu , C Duan , H Wang , F Zhang , Y Cao , G Yang , Y Zhou . In situ growth of Fe2O3 nanorod arrays on carbon cloth with rapid charge transfer for efficient nitrate electroreduction to ammonia. ACS Applied Materials & Interfaces, 2022, 14(44): 49765–49773
https://doi.org/10.1021/acsami.2c14215
51 M Nazemi , S R Panikkanvalappil , M A El Sayed . Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy, 2018, 49: 316–323
https://doi.org/10.1016/j.nanoen.2018.04.039
52 J Zhao , B Wang , Q Zhou , H Wang , X Li , H Chen , Q Wei , D Wu , Y Luo , J You . et al.. Efficient electrohydrogenation of N2 to NH3 by oxidized carbon nanotubes under ambient conditions. Chemical Communications, 2019, 55(34): 4997–5000
https://doi.org/10.1039/C9CC00726A
53 Z Wang , K Zheng , S Liu , Z Dai , Y Xu , X Li , H Wang , L Wang . Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11754–11759
https://doi.org/10.1021/acssuschemeng.9b01991
54 Y Luo , G F Chen , L Ding , X Chen , L X Ding , H Wang . Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule, 2019, 3(1): 279–289
https://doi.org/10.1016/j.joule.2018.09.011
55 S Zhang , Y Zhao , R Shi , C Zhou , G I N Waterhouse , L Z Wu , C H Tung , T Zhang . Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets. Advanced Energy Materials, 2020, 10(8): 1901973
https://doi.org/10.1002/aenm.201901973
56 D Bao , Q Zhang , F L Meng , H X Zhong , M M Shi , Y Zhang , J M Yan , Q Jiang , X B Zhang . Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Advanced Materials, 2017, 29(3): 1604799
https://doi.org/10.1002/adma.201604799
57 W Zhang , Y Shen , F Pang , D Quek , W Niu , W Wang , P Chen . Facet-dependent catalytic performance of Au nanocrystals for electrochemical nitrogen reduction. ACS Applied Materials & Interfaces, 2020, 12(37): 41613–41619
https://doi.org/10.1021/acsami.0c13414
58 D Yang , T Chen , Z Wang . Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(36): 18967–18971
https://doi.org/10.1039/C7TA06139K
59 Y Bai , L Ye , T Chen , L Wang , X Shi , X Zhang , D Chen . Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Applied Materials & Interfaces, 2016, 8(41): 27661–27668
https://doi.org/10.1021/acsami.6b08129
60 M Jin , X Zhang , M Han , H Wang , G Wang , H Zhang . Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(12): 5936–5942
https://doi.org/10.1039/C9TA13135C
61 H Jin , L Li , X Liu , C Tang , W Xu , S Chen , L Song , Y Zheng , S Z Qiao . Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction. Advanced Materials, 2019, 31(32): 1902709
https://doi.org/10.1002/adma.201902709
62 X Yang , F Ling , J Su , X Zi , H Zhang , H Zhang , J Li , M Zhou , Y Wang . Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction. Applied Catalysis B: Environmental, 2020, 264: 118477
https://doi.org/10.1016/j.apcatb.2019.118477
63 C Mao , J Wang , Y Zou , H Li , G Zhan , J Li , J Zhao , L Zhang . Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chemistry, 2019, 21(11): 2852–2867
https://doi.org/10.1039/C9GC01010F
64 H GuoP YangY YangH WuF ZhangZ F HuangG YangY Zhou. Vacancy-mediated control of local electronic structure for high-efficiency electrocatalytic conversion of N2 to NH3. Small, Nov 30, 2023. https://doi.org/110.1002/small.202309007
65 C Lv , C Yan , G Chen , Y Ding , J Sun , Y Zhou , G Yu . Back cover: an amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angewandte Chemie International Edition, 2018, 57(21): 6354–6354
https://doi.org/10.1002/anie.201803952
66 Y Liu , X Kong , X Guo , Q Li , J Ke , R Wang , Q Li , Z Geng , J Zeng . Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies. ACS Catalysis, 2020, 10(2): 1077–1085
https://doi.org/10.1021/acscatal.9b03864
67 C Lv , C Yan , G Chen , Y Ding , J Sun , Y Zhou , G Yu . An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angewandte Chemie International Edition, 2018, 57(21): 6073–6076
https://doi.org/10.1002/anie.201801538
68 P Yang , H Guo , H Wu , F Zhang , J Liu , M Li , Y Yang , Y Cao , G Yang , Y Zhou . Boosting charge-transfer in tuned Au nanoparticles on defect-rich TiO2 nanosheets for enhancing nitrogen electroreduction to ammonia production. Journal of Colloid and Interface Science, 2023, 636: 184–193
https://doi.org/10.1016/j.jcis.2023.01.002
69 J Xiong , P Song , J Di , H Li . Atomic-level active sites steering in ultrathin photocatalysts to trigger high efficiency nitrogen fixation. Chemical Engineering Journal, 2020, 402: 126208
https://doi.org/10.1016/j.cej.2020.126208
70 M Ji , N Liu , K Li , Q Xu , G Liu , B Wang , J Di , H Li , J Xia . Oxygen defect modulating the charge behavior in titanium dioxide for boosting photocatalytic nitrogen fixation performance. Materials Reports: Energy, 2023, 3(4): 100231
https://doi.org/10.1016/j.matre.2023.100231
71 H Jia , A Du , H Zhang , J Yang , R Jiang , J Wang , C Y Zhang . Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. Journal of the American Chemical Society, 2019, 141(13): 5083–5086
https://doi.org/10.1021/jacs.8b13062
72 P Li , Z Zhou , Q Wang , M Guo , S Chen , J Low , R Long , W Liu , P Ding , Y Wu . et al.. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies. Journal of the American Chemical Society, 2020, 142(28): 12430–12439
https://doi.org/10.1021/jacs.0c05097
73 G Dong , W Ho , C Wang . Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(46): 23435–23441
https://doi.org/10.1039/C5TA06540B
74 Z Ying , S Chen , T Peng , R Li , J Zhang . Fabrication of an Fe-doped SrTiO3 photocatalyst with enhanced dinitrogen photofixation performance. European Journal of Inorganic Chemistry, 2019, 2019(16): 2182–2192
https://doi.org/10.1002/ejic.201900098
75 H B Wang , J Q Wang , R Zhang , C Q Cheng , K W Qiu , Y Yang , J Mao , H Liu , M Du , C K Dong . et al.. Bionic design of a Mo(IV)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia. ACS Catalysis, 2020, 10(9): 4914–4921
https://doi.org/10.1021/acscatal.0c00271
76 T Wu , W Kong , Y Zhang , Z Xing , J Zhao , T Wang , X Shi , Y Luo , X Sun . Greatly enhanced electrocatalytic N2 eeduction on TiO2 via V doping. Small Methods, 2019, 3(11): 1900356
https://doi.org/10.1002/smtd.201900356
77 X Yu , P Han , Z Wei , L Huang , Z Gu , S Peng , J Ma , G Zheng . Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2(8): 1610–1622
https://doi.org/10.1016/j.joule.2018.06.007
78 X Chen , C Burda . The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. Journal of the American Chemical Society, 2008, 130(15): 5018–5019
https://doi.org/10.1021/ja711023z
79 X Li , X Huang , S Xi , S Miao , J Ding , W Cai , S Liu , X Yang , H Yang , J Gao . et al.. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. Journal of the American Chemical Society, 2018, 140(39): 12469–12475
https://doi.org/10.1021/jacs.8b05992
80 Y Kang , X Wu , Q Gao . Plasmonic-enhanced near-infrared photocatalytic activity of F-doped (NH4)0.33WO3 nanorods. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4210–4219
https://doi.org/10.1021/acssuschemeng.8b05880
81 W Guo , K Zhang , Z Liang , R Zou , Q Xu . Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48(24): 5658–5716
https://doi.org/10.1039/C9CS00159J
82 C Chen , D Yan , Y Wang , Y Zhou , Y Zou , Y Li , S Wang . B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small, 2019, 15(7): 1805029
https://doi.org/10.1002/smll.201805029
83 Y Liu , Q Li , X Guo , X Kong , J Ke , M Chi , Q Li , Z Geng , J Zeng . A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction. Advanced Materials, 2020, 32(24): 1907690
https://doi.org/10.1002/adma.201907690
84 M Tang , X Jiang , M He , N Jiang , Q Zheng , D B Lin . (boron), O (oxygen) dual-doped carbon spheres as a high-efficiency electrocatalyst for nitrogen reduction. International Journal of Hydrogen Energy, 2021, 46(1): 439–448
https://doi.org/10.1016/j.ijhydene.2020.09.187
85 J Lee , L L Tan , S P Chai . Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives. Nanoscale, 2021, 13(15): 7011–7033
https://doi.org/10.1039/D1NR00783A
86 L Zhang , S Hou , T Wang , S Liu , X Gao , C Wang , G Wang . Recent advances in application of graphitic carbon nitride-based catalysts for photocatalytic nitrogen fixation. Small, 2022, 18(28): 2202252
https://doi.org/10.1002/smll.202202252
87 H Xu , Y Wang , X Dong , N Zheng , H Ma , X Zhang . Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2019, 257: 117932
https://doi.org/10.1016/j.apcatb.2019.117932
88 J Hu , A Al Salihy , J Wang , X Li , Y Fu , Z Li , X Han , B Song , P Xu . Improved interface charge transfer and redistribution in CuO-CoOOH p-n heterojunction nanoarray electrocatalyst for enhanced oxygen evolution reaction. Advanced Science, 2021, 8(22): 2103314
https://doi.org/10.1002/advs.202103314
89 X Xue , R Chen , C Yan , Y Hu , W Zhang , S Yang , L Ma , G Zhu , Z Jin . Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale, 2019, 11(21): 10439–10445
https://doi.org/10.1039/C9NR02279A
90 W ZhangA R MohamedW J Ong. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angewandte Chemie International Edition, 2020, 59(51): 22894–22915
91 H Liang , H Zou , S Hu . Preparation of the W18O49/g-C3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region. New Journal of Chemistry, 2017, 41(17): 8920–8926
https://doi.org/10.1039/C7NJ01848G
92 L Zhang , J Zhang , H Yu , J Yu . Emerging S-scheme photocatalyst. Advanced Materials, 2022, 34(11): 2107668
https://doi.org/10.1002/adma.202107668
93 Y Zhang , J Di , X Zhu , M Ji , C Chen , Y Liu , L Li , T Wei , H Li , J Xia . Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation. Applied Catalysis B: Environmental, 2023, 323: 122148
https://doi.org/10.1016/j.apcatb.2022.122148
94 I Garagounis , V Kyriakou , A Skodra , E Vasileiou , M Stoukides . Electrochemical synthesis of ammonia in solid electrolyte cells. Frontiers in Energy Research, 2014, 2: 1–10
https://doi.org/10.3389/fenrg.2014.00001
95 R Lan , S Tao . Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte. RSC Advances, 2013, 3(39): 18016–18021
https://doi.org/10.1039/c3ra43432j
96 F Köleli , T Röpke . Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Applied Catalysis B: Environmental, 2006, 62(3): 306–310
https://doi.org/10.1016/j.apcatb.2005.08.006
97 V Kordali , G Kyriacou , C Lambrou . Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chemical Communications, 2000, (17): 1673–1674
https://doi.org/10.1039/b004885m
98 R Liu , G Xu . Comparison of electrochemical synthesis of ammonia by using sulfonated polysulfone and nafion membrane with Sm1.5Sr0.5NiO4. Chinese Journal of Chemistry, 2010, 28(2): 139–142
https://doi.org/10.1002/cjoc.201090044
99 H Xie , H Wang , Q Geng , Z Xing , W Wang , J Chen , L Ji , L Chang , Z Wang , J Mao . Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorganic Chemistry, 2019, 58(9): 5423–5427
https://doi.org/10.1021/acs.inorgchem.9b00622
100 H Zou , W Rong , S Wei , Y Ji , L Duan . Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29462–29468
https://doi.org/10.1073/pnas.2015108117
101 N Lazouski , Z J Schiffer , K Williams , K Manthiram . Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule, 2019, 3(4): 1127–1139
https://doi.org/10.1016/j.joule.2019.02.003
102 K Steinberg , X Yuan , C K Klein , N Lazouski , M Mecklenburg , K Manthiram , Y Li . Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nature Energy, 2023, 8(2): 138–148
https://doi.org/10.1038/s41560-022-01177-5
103 X Fu , J B Pedersen , Y Zhou , M Saccoccio , S Li , R Sažinas , K Li , S Z Andersen , A Xu , N H Deissler . et al.. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science, 2023, 379(6633): 707–712
https://doi.org/10.1126/science.adf4403
104 Y Guan , H Wen , K Cui , Q Wang , W Gao , Y Cai , Z Cheng , Q Pei , Z Li , H Cao . et al.. Light-driven ammonia synthesis under mild conditions using lithium hydride. Nature Chemistry, 2024, 16(3): 373–379
https://doi.org/10.1038/s41557-023-01395-8
105 A Tsuneto , A Kudo , T Sakata . Lithium-mediated electrochemical reduction of high pressure N2 to NH3. Journal of Electroanalytical Chemistry, 1994, 367(1): 183–188
https://doi.org/10.1016/0022-0728(93)03025-K
106 K Li , S Z Andersen , M J Statt , M Saccoccio , V J Bukas , K Krempl , R Sažinas , J B Pedersen , V Shadravan , Y Zhou . et al.. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science, 2021, 374(6575): 1593–1597
https://doi.org/10.1126/science.abl4300
107 H L Du , M Chatti , R Y Hodgetts , P V Cherepanov , C K Nguyen , K Matuszek , D R MacFarlane , A N Simonov . Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature, 2022, 609(7928): 722–727
https://doi.org/10.1038/s41586-022-05108-y
108 G F Chen , A Savateev , Z Song , H Wu , Y Markushyna , L Zhang , H Wang , M Antonietti . Saving the energy loss in lithium-mediated nitrogen fixation by using a highly reactive Li3N intermediate for C–N coupling reactions. Angewandte Chemie International Edition, 2022, 61(27): e202203170
https://doi.org/10.1002/anie.202203170
109 Y C Hao , Y Guo , L W Chen , M Shu , X Y Wang , T A Bu , W Y Gao , N Zhang , X Su , X Feng . et al.. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nature Catalysis, 2019, 2(5): 448–456
https://doi.org/10.1038/s41929-019-0241-7
110 L Hu , Z Xing , X Feng . Understanding the electrocatalytic interface for ambient ammonia synthesis. ACS Energy Letters, 2020, 5(2): 430–436
https://doi.org/10.1021/acsenergylett.9b02679
111 S Mahmood , H Wang , F Chen , Y Zhong , Y Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2023, 35(4): 108550
https://doi.org/10.1016/j.cclet.2023.108550
112 J Wang , L Yu , L Hu , G Chen , H Xin , X Feng . Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nature Communications, 2018, 9(1): 1795
https://doi.org/10.1038/s41467-018-04213-9
113 K Kim , N Lee , C Y Yoo , J N Kim , H C Yoon , J I Han . Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. Journal of the Electrochemical Society, 2016, 163(7): F610–F612
https://doi.org/10.1149/2.0231607jes
114 A R Singh , B A Rohr , J A Schwalbe , M Cargnello , K Chan , T F Jaramillo , I Chorkendorff , J K Nørskov . Electrochemical ammonia synthesis-the selectivity challenge. ACS Catalysis, 2017, 7(1): 706–709
https://doi.org/10.1021/acscatal.6b03035
115 F Zhou , L M Azofra , M Ali , M Kar , A N Simonov , C McDonnell Worth , C Sun , X Zhang , D R MacFarlane . Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy & Environmental Science, 2017, 10(12): 2516–2520
https://doi.org/10.1039/C7EE02716H
116 K Kim , C Y Yoo , J N Kim , H C Yoon , J I Han . Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte. Korean Journal of Chemical Engineering, 2016, 33(6): 1777–1780
https://doi.org/10.1007/s11814-016-0086-6
117 A Katayama , T Inomata , T Ozawa , H Masuda . Electrochemical conversion of dinitrogen to ammonia induced by a metal complex-supported ionic liquid. Electrochemistry Communications, 2016, 67: 6–10
https://doi.org/10.1016/j.elecom.2016.03.001
118 G Marnellos , M Stoukides . Ammonia synthesis at atmospheric pressure. Science, 1998, 282(5386): 98–100
https://doi.org/10.1126/science.282.5386.98
119 L Wang , X Yan , W Si , D Liu , X Hou , D Li , F Hou , S X Dou , J Liang . Photoelectrochemical nitrogen reduction: a step toward achieving sustainable ammonia synthesis. Chinese Journal of Catalysis, 2022, 43(7): 1761–1773
https://doi.org/10.1016/S1872-2067(21)64001-9
120 L W Chen , Y C Hao , Y Guo , Q Zhang , J Li , W Y Gao , L Ren , X Su , L Hu , N Zhang . et al.. Metal-organic framework membranes encapsulating gold nanoparticles for direct plasmonic photocatalytic nitrogen fixation. Journal of the American Chemical Society, 2021, 143(15): 5727–5736
https://doi.org/10.1021/jacs.0c13342
121 L Ye , H Li , K Xie . Sustainable ammonia production enabled by membrane reactor. Nature Sustainability, 2022, 5(9): 787–794
https://doi.org/10.1038/s41893-022-00908-6
122 D Liu , J Wang , S Bian , Q Liu , Y Gao , X Wang , P K Chu , X F Yu . Photoelectrochemical ammonia synthesis: photoelectrochemical synthesis of ammonia with black phosphorus. Advanced Functional Materials, 2020, 30(24): 2070156
https://doi.org/10.1002/adfm.202070156
123 J Liu , F Zhang , H Wu , Y Jiang , P Yang , W Zhang , H Guo , Y Cao , G Yang , Y Zhou . Efficient carrier transfer induced by Au nanoparticles for photoelectrochemical nitrogen reduction. Sustainable Energy & Fuels, 2023, 7(3): 883–889
https://doi.org/10.1039/D2SE01201D
124 T Oshikiri , K Ueno , H Misawa . Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angewandte Chemie International Edition, 2014, 53(37): 9802–9805
https://doi.org/10.1002/anie.201404748
125 M Ali , F Zhou , K Chen , C Kotzur , C Xiao , L Bourgeois , X Zhang , D R MacFarlane . Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nature Communications, 2016, 7(1): 11335
https://doi.org/10.1038/ncomms11335
126 J Zhang , H Chen , X Duan , H Sun , S Wang . Photothermal catalysis: from fundamentals to practical applications. Materials Today, 2023, 68: 234–253
https://doi.org/10.1016/j.mattod.2023.06.017
127 S Wang , W Yu , S Xu , K Han , F Wang . Ammonia from photothermal N2 hydrogenation over Ni/TiO2 catalysts under mild conditions. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 115–123
https://doi.org/10.1021/acssuschemeng.1c04931
128 C Mao , L Yu , J Li , J Zhao , L Zhang . Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx. Applied Catalysis B: Environmental, 2018, 224: 612–620
https://doi.org/10.1016/j.apcatb.2017.11.010
129 C Mao , J Wang , Y Zou , Y Shi , C J Viasus , J Y Y Loh , M Xia , S Ji , M Li , H Shang . et al.. Photochemical acceleration of ammonia production by Pt1-Ptn-TiN reduction and N2 activation. Journal of the American Chemical Society, 2023, 145(24): 13134–13146
https://doi.org/10.1021/jacs.3c01947
130 J Zheng , L Lu , K Lebedev , S Wu , P Zhao , I J McPherson , T S Wu , R Kato , Y Li , P L Ho . et al.. Fe on molecular-layer MoS2 as inorganic Fe-S2-Mo motifs for light-driven nitrogen fixation to ammonia at elevated temperatures. Chem Catalysis, 2021, 1(1): 162–182
https://doi.org/10.1016/j.checat.2021.03.002
131 D Ye , S C E Tsang . Prospects and challenges of green ammonia synthesis. Nature Synthesis, 2023, 2(7): 612–623
https://doi.org/10.1038/s44160-023-00321-7
132 L Wang , M Xia , H Wang , K Huang , C Qian , C T Maravelias , G A Ozin . Greening ammonia toward the solar ammonia refinery. Joule, 2018, 2(6): 1055–1074
https://doi.org/10.1016/j.joule.2018.04.017
133 M WangM A KhanI MohsinJ WicksA H IpK Z SumonC T DinhE H SargentI D GatesM G Kibria. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes? Energy & Environmental Science, 2021, 14(5): 2535–2548
134 C Smith , A K Hill , L Torrente Murciano . Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science, 2020, 13(2): 331–344
https://doi.org/10.1039/C9EE02873K
135 G Hochman , A S Goldman , F A Felder , J M Mayer , A J M Miller , P L Holland , L A Goldman , P Manocha , Z Song , S Aleti . Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 8938–8948
https://doi.org/10.1021/acssuschemeng.0c01206
136 C Arnaiz del Pozo , S Cloete . Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Conversion and Management, 2022, 255: 115312
https://doi.org/10.1016/j.enconman.2022.115312
137 B Parkinson , P Balcombe , J F Speirs , A D Hawkes , K Hellgardt . Levelized cost of CO2 mitigation from hydrogen production routes. Energy & Environmental Science, 2019, 12(1): 19–40
https://doi.org/10.1039/C8EE02079E
138 D R MacFarlane , P V Cherepanov , J Choi , B H R Suryanto , R Y Hodgetts , J M Bakker , F M Ferrero Vallana , A N Simonov . A roadmap to the ammonia economy. Joule, 2020, 4(6): 1186–1205
https://doi.org/10.1016/j.joule.2020.04.004
139 S Zhang , Y Zhao , R Shi , G I N Waterhouse , T Zhang . Photocatalytic ammonia synthesis: recent progress and future. EnergyChem, 2019, 1(2): 100013
https://doi.org/10.1016/j.enchem.2019.100013
140 B Lin , T Wiesner , M Malmali . Performance of a small-scale haber process: a techno-economic analysis. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15517–15531
https://doi.org/10.1021/acssuschemeng.0c04313
141 X Liu , Z Shen , X Peng , L Tian , R Hao , L Wang , Y Xu , Y Liu , C T Maravelias , W Li . et al.. A photo-assisted electrochemical-based demonstrator for green ammonia synthesis. Journal of Energy Chemistry, 2022, 68: 826–834
https://doi.org/10.1016/j.jechem.2021.12.021
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed