|
|
Advances in catalysts and reaction systems for electro/photocatalytic ammonia production |
Shenshen Zheng1,2, Fengying Zhang1,2( ), Yuman Jiang2, Tao Xu2, Han Li2, Heng Guo1,2, Ying Zhou1,2( ) |
1. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China 2. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China |
|
|
Abstract Ammonia is a vital component in the fertilizer and chemical industries, as well as serving as a significant carrier of renewable hydrogen energy. Compared with the industry’s principal technique, the Haber-Bosch method, for ammonia synthesis, electro/photocatalytic ammonia synthesis is increasingly recognized as a viable and eco-friendly alternative. This method enables distributed small-scale deployment and can be powered by sustainable renewable energy sources. However, the efficiency of electro/photocatalytic nitrogen reduction reaction is hindered by the challenges in activating the N≡N bond and nitrogen’s low solubility, thereby limiting its large-scale industrial applications. In this review, recent advancements in electro/photocatalytic nitrogen reduction are summarized, encompassing the complex reaction mechanisms, as well as the effective strategies for developing electro/photocatalytic catalysts and advanced reaction systems. Furthermore, the energy efficiency and economic analysis of electro/photocatalytic nitrogen fixation are deeply discussed. Finally, some unsolved challenges and potential opportunities are discussed for the future development of electro/photocatalytic ammonia synthesis.
|
Keywords
ammonia synthesis
electro/photocatalysis
nitrogen fixation
reaction system
economic and efficiency analysis
|
Corresponding Author(s):
Fengying Zhang,Ying Zhou
|
Just Accepted Date: 29 April 2024
Issue Date: 28 June 2024
|
|
1 |
A J Medford , M C Hatzell . Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catalysis, 2017, 7(4): 2624–2643
https://doi.org/10.1021/acscatal.7b00439
|
2 |
C J M Van der Ham , M T M Koper , D G H Hetterscheid . Challenges in reduction of dinitrogen by proton and electron transfer. Chemical Society Reviews, 2014, 43(15): 5183–5191
https://doi.org/10.1039/C4CS00085D
|
3 |
N Gruber , J N Galloway . An earth-system perspective of the global nitrogen cycle. Nature, 2008, 451(7176): 293–296
https://doi.org/10.1038/nature06592
|
4 |
Green ammonia synthesis. Nature Synthesis, 2023, 2(7): 581–582
|
5 |
N Lazouski , M Chung , K Williams , M L Gala , K Manthiram . Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nature Catalysis, 2020, 3(5): 463–469
https://doi.org/10.1038/s41929-020-0455-8
|
6 |
M Kitano , Y Inoue , Y Yamazaki , F Hayashi , S Kanbara , S Matsuishi , T Yokoyama , S W Kim , M Hara , H Hosono . Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chemistry, 2012, 4(11): 934–940
https://doi.org/10.1038/nchem.1476
|
7 |
T Oshikiri , K Ueno , H Misawa . Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angewandte Chemie International Edition, 2016, 55(12): 3942–3946
https://doi.org/10.1002/anie.201511189
|
8 |
E E Van Tamelen , D A Seeley . Catalytic fixation of molecular nitrogen by electrolytic and chemical reduction. Journal of the American Chemical Society, 1969, 91(18): 5194–5194
https://doi.org/10.1021/ja01046a063
|
9 |
G N Schrauzer , T D Guth . Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society, 1977, 99(22): 7189–7193
https://doi.org/10.1021/ja00464a015
|
10 |
Y Wan , J Xu , R Lv . Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today, 2019, 27: 69–90
https://doi.org/10.1016/j.mattod.2019.03.002
|
11 |
S Wang , F Ichihara , H Pang , H Chen , J Ye . Nitrogen fixation reaction derived from nanostructured catalytic materials. Advanced Functional Materials, 2018, 28(50): 1803309
https://doi.org/10.1002/adfm.201803309
|
12 |
J Li , X Guo , L Gan , Z F Huang , L Pan , C Shi , X Zhang , G Yang , J J Zou . Fundamentals and advances in emerging crystalline porous materials for photocatalytic and electrocatalytic nitrogen fixation. ACS Applied Energy Materials, 2022, 5(8): 9241–9265
https://doi.org/10.1021/acsaem.2c01346
|
13 |
X Cui , C Tang , Q Zhang . A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Advanced Energy Materials, 2018, 8(22): 1800369
https://doi.org/10.1002/aenm.201800369
|
14 |
H Cheng , P Cui , F Wang , L X Ding , H Wang . High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angewandte Chemie International Edition, 2019, 58(43): 15541–15547
https://doi.org/10.1002/anie.201910658
|
15 |
D Liu , M Chen , X Du , H Ai , K H Lo , S Wang , S Chen , G Xing , X Wang , H Pan . Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Advanced Functional Materials, 2021, 31(11): 2008983
https://doi.org/10.1002/adfm.202008983
|
16 |
H P Jia , E A Quadrelli . Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chemical Society Reviews, 2014, 43(2): 547–564
https://doi.org/10.1039/C3CS60206K
|
17 |
G Qing , R Ghazfar , S T Jackowski , F Habibzadeh , M M Ashtiani , C P Chen , M R III Smith , T W Hamann . Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437–5516
https://doi.org/10.1021/acs.chemrev.9b00659
|
18 |
Y Abghoui , E Skúlason . Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catalysis Today, 2017, 286: 69–77
https://doi.org/10.1016/j.cattod.2016.11.047
|
19 |
V T Chebrolu , D Jang , G M Rani , C Lim , K Yong , W B Kim . Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon Energy, 2023, 5(12): e361
https://doi.org/10.1002/cey2.361
|
20 |
S Liu , M Wang , H Ji , X Shen , C Yan , T Qian . Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. National Science Review, 2021, 8(5): 136
https://doi.org/10.1093/nsr/nwaa136
|
21 |
M A Shipman , M D Symes . Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catalysis Today, 2017, 286: 57–68
https://doi.org/10.1016/j.cattod.2016.05.008
|
22 |
Y Abghoui , A L Garden , J G Howalt , T Vegge , E Skúlason . Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments. ACS Catalysis, 2016, 6(2): 635–646
https://doi.org/10.1021/acscatal.5b01918
|
23 |
C Ling , Y Zhang , Q Li , X Bai , L Shi , J Wang . New mechanism for N2 reduction: the essential role of surface hydrogenation. Journal of the American Chemical Society, 2019, 141(45): 18264–18270
https://doi.org/10.1021/jacs.9b09232
|
24 |
Z Yan , M Ji , J Xia , H Zhu . Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: one step closer to a sustainable energy future. Advanced Energy Materials, 2020, 10(11): 1902020
https://doi.org/10.1002/aenm.201902020
|
25 |
A J Medford , A Vojvodic , J S Hummelshøj , J Voss , F Abild-Pedersen , F Studt , T Bligaard , A Nilsson , J K Nørskov . From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328: 36–42
https://doi.org/10.1016/j.jcat.2014.12.033
|
26 |
E Skúlason , T Bligaard , S Gudmundsdóttir , F Studt , J Rossmeisl , Pedersen F Abild , T Vegge , H Jónsson , J K Nørskov . A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Physical Chemistry Chemical Physics, 2012, 14(3): 1235–1245
https://doi.org/10.1039/C1CP22271F
|
27 |
J H Montoya , C Tsai , A Vojvodic , J K Nørskov . The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem, 2015, 8(13): 2180–2186
https://doi.org/10.1002/cssc.201500322
|
28 |
Y Yao , H Wang , X Z Yuan , H Li , M Shao . Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Letters, 2019, 4(6): 1336–1341
https://doi.org/10.1021/acsenergylett.9b00699
|
29 |
Y Zhao , F Li , W Li , Y Li , C Liu , Z Zhao , Y Shan , Y Ji , L Sun . Identification of M-NH2-NH2 intermediate and rate determining step for nitrogen reduction with bioinspired sulfur-bonded FeW catalyst. Angewandte Chemie International Edition, 2021, 60(37): 20331–20341
https://doi.org/10.1002/anie.202104918
|
30 |
W Liao , K Xie , L Liu , X Wang , Y Luo , S Liang , F Liu , L Jiang . Triggering in-plane defect cluster on MoS2 for accelerated dinitrogen electroreduction to ammonia. Journal of Energy Chemistry, 2021, 62: 359–366
https://doi.org/10.1016/j.jechem.2021.03.043
|
31 |
X Xue , R Chen , C Yan , P Zhao , Y Hu , W Zhang , S Yang , Z Jin . Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Research, 2019, 12(6): 1229–1249
https://doi.org/10.1007/s12274-018-2268-5
|
32 |
S Yu , T Xiang , N S Alharbi , B A Alaidaroos , C Chen . Recent development of catalytic strategies for sustainable ammonia production. Chinese Journal of Chemical Engineering, 2023, 62: 65–113
https://doi.org/10.1016/j.cjche.2023.03.028
|
33 |
M M Shi , D Bao , S J Li , B R Wulan , J M Yan , Q Jiang . Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Advanced Energy Materials, 2018, 8(21): 1800124
https://doi.org/10.1002/aenm.201800124
|
34 |
H Tao , C Choi , L X Ding , Z Jiang , Z Han , M Jia , Q Fan , Y Gao , H Wang , A W Robertson . et al.. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem, 2019, 5(1): 204–214
https://doi.org/10.1016/j.chempr.2018.10.007
|
35 |
L Li , C Tang , B Xia , H Jin , Y Zheng , S Z Qiao . Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catalysis, 2019, 9(4): 2902–2908
https://doi.org/10.1021/acscatal.9b00366
|
36 |
T N Ye , S W Park , Y Lu , J Li , M Sasase , M Kitano , T Tada , H Hosono . Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature, 2020, 583(7816): 391–395
https://doi.org/10.1038/s41586-020-2464-9
|
37 |
J Han , X Ji , X Ren , G Cui , L Li , F Xie , H Wang , B Li , X Sun . MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 12974–12977
https://doi.org/10.1039/C8TA03974G
|
38 |
W Zhao , J Zhang , X Zhu , M Zhang , J Tang , M Tan , Y Wang . Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Applied Catalysis B: Environmental, 2014, 144: 468–477
https://doi.org/10.1016/j.apcatb.2013.07.047
|
39 |
K Chu , Y P Liu , Y B Li , H Zhang , Y Tian . Efficient electrocatalytic N2 reduction on CoO quantum dots. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(9): 4389–4394
https://doi.org/10.1039/C9TA00016J
|
40 |
P Wang , W Nong , Y Li , H Cui , C Wang . Strengthening nitrogen affinity on CuAu@Cu core-shell nanoparticles with ultrathin Cu skin via strain engineering and ligand effect for boosting nitrogen reduction reaction. Applied Catalysis B: Environmental, 2021, 288: 119999
https://doi.org/10.1016/j.apcatb.2021.119999
|
41 |
B Yang , W Ding , H Zhang , S Zhang . Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy & Environmental Science, 2021, 14(2): 672–687
https://doi.org/10.1039/D0EE02263B
|
42 |
R Zhao , H Xie , L Chang , X Zhang , X Zhu , X Tong , T Wang , Y Luo , P Wei , Z Wang . et al.. Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem, 2019, 1(2): 100011
https://doi.org/10.1016/j.enchem.2019.100011
|
43 |
Y Tian , D Xu , K Chu , Z Wei , W Liu . Metal-free N, S co-doped graphene for efficient and durable nitrogen reduction reaction. Journal of Materials Science, 2019, 54(12): 9088–9097
https://doi.org/10.1007/s10853-019-03538-0
|
44 |
S Zhou , X Yang , X Xu , S X Dou , Y Du , J Zhao . Boron nitride nanotubes for ammonia synthesis: activation by filling transition metals. Journal of the American Chemical Society, 2020, 142(1): 308–317
https://doi.org/10.1021/jacs.9b10588
|
45 |
Z Wei , Y Zhang , S Wang , C Wang , J Ma . Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(28): 13790–13796
https://doi.org/10.1039/C8TA03989E
|
46 |
L Zhang , L X Ding , G F Chen , X Yang , H Wang . Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angewandte Chemie International Edition, 2019, 58(9): 2612–2616
https://doi.org/10.1002/anie.201813174
|
47 |
J LaiH LiuL X DingJ WangG F ChenH Wang. Black phosphorene with removable aluminum ion protection for enhanced electrochemical nitrogen fixation. Advanced Energy Materials, Jan 9, 2024. https://doi.org/10.1002/aenm.202303963
|
48 |
Y G Liu , M Tian , J Hou , H Y Jiang . Research progress and perspectives on active sites of photo- and electrocatalytic nitrogen reduction. Energy & Fuels, 2022, 36(19): 11323–11358
https://doi.org/10.1021/acs.energyfuels.2c01390
|
49 |
J X Li , Y Yu , S Xu , W Yan , S Mu , J N Zhang . Function of electron spin effect in electrocatalysts. Wuli Huaxue Xuebao, 2023, 39(12): 2302049
https://doi.org/10.3866/PKU.WHXB202302049
|
50 |
T Li , C Tang , H Guo , H Wu , C Duan , H Wang , F Zhang , Y Cao , G Yang , Y Zhou . In situ growth of Fe2O3 nanorod arrays on carbon cloth with rapid charge transfer for efficient nitrate electroreduction to ammonia. ACS Applied Materials & Interfaces, 2022, 14(44): 49765–49773
https://doi.org/10.1021/acsami.2c14215
|
51 |
M Nazemi , S R Panikkanvalappil , M A El Sayed . Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy, 2018, 49: 316–323
https://doi.org/10.1016/j.nanoen.2018.04.039
|
52 |
J Zhao , B Wang , Q Zhou , H Wang , X Li , H Chen , Q Wei , D Wu , Y Luo , J You . et al.. Efficient electrohydrogenation of N2 to NH3 by oxidized carbon nanotubes under ambient conditions. Chemical Communications, 2019, 55(34): 4997–5000
https://doi.org/10.1039/C9CC00726A
|
53 |
Z Wang , K Zheng , S Liu , Z Dai , Y Xu , X Li , H Wang , L Wang . Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11754–11759
https://doi.org/10.1021/acssuschemeng.9b01991
|
54 |
Y Luo , G F Chen , L Ding , X Chen , L X Ding , H Wang . Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule, 2019, 3(1): 279–289
https://doi.org/10.1016/j.joule.2018.09.011
|
55 |
S Zhang , Y Zhao , R Shi , C Zhou , G I N Waterhouse , L Z Wu , C H Tung , T Zhang . Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets. Advanced Energy Materials, 2020, 10(8): 1901973
https://doi.org/10.1002/aenm.201901973
|
56 |
D Bao , Q Zhang , F L Meng , H X Zhong , M M Shi , Y Zhang , J M Yan , Q Jiang , X B Zhang . Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Advanced Materials, 2017, 29(3): 1604799
https://doi.org/10.1002/adma.201604799
|
57 |
W Zhang , Y Shen , F Pang , D Quek , W Niu , W Wang , P Chen . Facet-dependent catalytic performance of Au nanocrystals for electrochemical nitrogen reduction. ACS Applied Materials & Interfaces, 2020, 12(37): 41613–41619
https://doi.org/10.1021/acsami.0c13414
|
58 |
D Yang , T Chen , Z Wang . Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(36): 18967–18971
https://doi.org/10.1039/C7TA06139K
|
59 |
Y Bai , L Ye , T Chen , L Wang , X Shi , X Zhang , D Chen . Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Applied Materials & Interfaces, 2016, 8(41): 27661–27668
https://doi.org/10.1021/acsami.6b08129
|
60 |
M Jin , X Zhang , M Han , H Wang , G Wang , H Zhang . Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(12): 5936–5942
https://doi.org/10.1039/C9TA13135C
|
61 |
H Jin , L Li , X Liu , C Tang , W Xu , S Chen , L Song , Y Zheng , S Z Qiao . Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction. Advanced Materials, 2019, 31(32): 1902709
https://doi.org/10.1002/adma.201902709
|
62 |
X Yang , F Ling , J Su , X Zi , H Zhang , H Zhang , J Li , M Zhou , Y Wang . Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction. Applied Catalysis B: Environmental, 2020, 264: 118477
https://doi.org/10.1016/j.apcatb.2019.118477
|
63 |
C Mao , J Wang , Y Zou , H Li , G Zhan , J Li , J Zhao , L Zhang . Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chemistry, 2019, 21(11): 2852–2867
https://doi.org/10.1039/C9GC01010F
|
64 |
H GuoP YangY YangH WuF ZhangZ F HuangG YangY Zhou. Vacancy-mediated control of local electronic structure for high-efficiency electrocatalytic conversion of N2 to NH3. Small, Nov 30, 2023. https://doi.org/110.1002/small.202309007
|
65 |
C Lv , C Yan , G Chen , Y Ding , J Sun , Y Zhou , G Yu . Back cover: an amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angewandte Chemie International Edition, 2018, 57(21): 6354–6354
https://doi.org/10.1002/anie.201803952
|
66 |
Y Liu , X Kong , X Guo , Q Li , J Ke , R Wang , Q Li , Z Geng , J Zeng . Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies. ACS Catalysis, 2020, 10(2): 1077–1085
https://doi.org/10.1021/acscatal.9b03864
|
67 |
C Lv , C Yan , G Chen , Y Ding , J Sun , Y Zhou , G Yu . An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angewandte Chemie International Edition, 2018, 57(21): 6073–6076
https://doi.org/10.1002/anie.201801538
|
68 |
P Yang , H Guo , H Wu , F Zhang , J Liu , M Li , Y Yang , Y Cao , G Yang , Y Zhou . Boosting charge-transfer in tuned Au nanoparticles on defect-rich TiO2 nanosheets for enhancing nitrogen electroreduction to ammonia production. Journal of Colloid and Interface Science, 2023, 636: 184–193
https://doi.org/10.1016/j.jcis.2023.01.002
|
69 |
J Xiong , P Song , J Di , H Li . Atomic-level active sites steering in ultrathin photocatalysts to trigger high efficiency nitrogen fixation. Chemical Engineering Journal, 2020, 402: 126208
https://doi.org/10.1016/j.cej.2020.126208
|
70 |
M Ji , N Liu , K Li , Q Xu , G Liu , B Wang , J Di , H Li , J Xia . Oxygen defect modulating the charge behavior in titanium dioxide for boosting photocatalytic nitrogen fixation performance. Materials Reports: Energy, 2023, 3(4): 100231
https://doi.org/10.1016/j.matre.2023.100231
|
71 |
H Jia , A Du , H Zhang , J Yang , R Jiang , J Wang , C Y Zhang . Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. Journal of the American Chemical Society, 2019, 141(13): 5083–5086
https://doi.org/10.1021/jacs.8b13062
|
72 |
P Li , Z Zhou , Q Wang , M Guo , S Chen , J Low , R Long , W Liu , P Ding , Y Wu . et al.. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies. Journal of the American Chemical Society, 2020, 142(28): 12430–12439
https://doi.org/10.1021/jacs.0c05097
|
73 |
G Dong , W Ho , C Wang . Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(46): 23435–23441
https://doi.org/10.1039/C5TA06540B
|
74 |
Z Ying , S Chen , T Peng , R Li , J Zhang . Fabrication of an Fe-doped SrTiO3 photocatalyst with enhanced dinitrogen photofixation performance. European Journal of Inorganic Chemistry, 2019, 2019(16): 2182–2192
https://doi.org/10.1002/ejic.201900098
|
75 |
H B Wang , J Q Wang , R Zhang , C Q Cheng , K W Qiu , Y Yang , J Mao , H Liu , M Du , C K Dong . et al.. Bionic design of a Mo(IV)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia. ACS Catalysis, 2020, 10(9): 4914–4921
https://doi.org/10.1021/acscatal.0c00271
|
76 |
T Wu , W Kong , Y Zhang , Z Xing , J Zhao , T Wang , X Shi , Y Luo , X Sun . Greatly enhanced electrocatalytic N2 eeduction on TiO2 via V doping. Small Methods, 2019, 3(11): 1900356
https://doi.org/10.1002/smtd.201900356
|
77 |
X Yu , P Han , Z Wei , L Huang , Z Gu , S Peng , J Ma , G Zheng . Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2(8): 1610–1622
https://doi.org/10.1016/j.joule.2018.06.007
|
78 |
X Chen , C Burda . The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. Journal of the American Chemical Society, 2008, 130(15): 5018–5019
https://doi.org/10.1021/ja711023z
|
79 |
X Li , X Huang , S Xi , S Miao , J Ding , W Cai , S Liu , X Yang , H Yang , J Gao . et al.. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. Journal of the American Chemical Society, 2018, 140(39): 12469–12475
https://doi.org/10.1021/jacs.8b05992
|
80 |
Y Kang , X Wu , Q Gao . Plasmonic-enhanced near-infrared photocatalytic activity of F-doped (NH4)0.33WO3 nanorods. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4210–4219
https://doi.org/10.1021/acssuschemeng.8b05880
|
81 |
W Guo , K Zhang , Z Liang , R Zou , Q Xu . Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48(24): 5658–5716
https://doi.org/10.1039/C9CS00159J
|
82 |
C Chen , D Yan , Y Wang , Y Zhou , Y Zou , Y Li , S Wang . B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small, 2019, 15(7): 1805029
https://doi.org/10.1002/smll.201805029
|
83 |
Y Liu , Q Li , X Guo , X Kong , J Ke , M Chi , Q Li , Z Geng , J Zeng . A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction. Advanced Materials, 2020, 32(24): 1907690
https://doi.org/10.1002/adma.201907690
|
84 |
M Tang , X Jiang , M He , N Jiang , Q Zheng , D B Lin . (boron), O (oxygen) dual-doped carbon spheres as a high-efficiency electrocatalyst for nitrogen reduction. International Journal of Hydrogen Energy, 2021, 46(1): 439–448
https://doi.org/10.1016/j.ijhydene.2020.09.187
|
85 |
J Lee , L L Tan , S P Chai . Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives. Nanoscale, 2021, 13(15): 7011–7033
https://doi.org/10.1039/D1NR00783A
|
86 |
L Zhang , S Hou , T Wang , S Liu , X Gao , C Wang , G Wang . Recent advances in application of graphitic carbon nitride-based catalysts for photocatalytic nitrogen fixation. Small, 2022, 18(28): 2202252
https://doi.org/10.1002/smll.202202252
|
87 |
H Xu , Y Wang , X Dong , N Zheng , H Ma , X Zhang . Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2019, 257: 117932
https://doi.org/10.1016/j.apcatb.2019.117932
|
88 |
J Hu , A Al Salihy , J Wang , X Li , Y Fu , Z Li , X Han , B Song , P Xu . Improved interface charge transfer and redistribution in CuO-CoOOH p-n heterojunction nanoarray electrocatalyst for enhanced oxygen evolution reaction. Advanced Science, 2021, 8(22): 2103314
https://doi.org/10.1002/advs.202103314
|
89 |
X Xue , R Chen , C Yan , Y Hu , W Zhang , S Yang , L Ma , G Zhu , Z Jin . Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale, 2019, 11(21): 10439–10445
https://doi.org/10.1039/C9NR02279A
|
90 |
W ZhangA R MohamedW J Ong. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angewandte Chemie International Edition, 2020, 59(51): 22894–22915
|
91 |
H Liang , H Zou , S Hu . Preparation of the W18O49/g-C3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region. New Journal of Chemistry, 2017, 41(17): 8920–8926
https://doi.org/10.1039/C7NJ01848G
|
92 |
L Zhang , J Zhang , H Yu , J Yu . Emerging S-scheme photocatalyst. Advanced Materials, 2022, 34(11): 2107668
https://doi.org/10.1002/adma.202107668
|
93 |
Y Zhang , J Di , X Zhu , M Ji , C Chen , Y Liu , L Li , T Wei , H Li , J Xia . Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation. Applied Catalysis B: Environmental, 2023, 323: 122148
https://doi.org/10.1016/j.apcatb.2022.122148
|
94 |
I Garagounis , V Kyriakou , A Skodra , E Vasileiou , M Stoukides . Electrochemical synthesis of ammonia in solid electrolyte cells. Frontiers in Energy Research, 2014, 2: 1–10
https://doi.org/10.3389/fenrg.2014.00001
|
95 |
R Lan , S Tao . Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte. RSC Advances, 2013, 3(39): 18016–18021
https://doi.org/10.1039/c3ra43432j
|
96 |
F Köleli , T Röpke . Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Applied Catalysis B: Environmental, 2006, 62(3): 306–310
https://doi.org/10.1016/j.apcatb.2005.08.006
|
97 |
V Kordali , G Kyriacou , C Lambrou . Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chemical Communications, 2000, (17): 1673–1674
https://doi.org/10.1039/b004885m
|
98 |
R Liu , G Xu . Comparison of electrochemical synthesis of ammonia by using sulfonated polysulfone and nafion membrane with Sm1.5Sr0.5NiO4. Chinese Journal of Chemistry, 2010, 28(2): 139–142
https://doi.org/10.1002/cjoc.201090044
|
99 |
H Xie , H Wang , Q Geng , Z Xing , W Wang , J Chen , L Ji , L Chang , Z Wang , J Mao . Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorganic Chemistry, 2019, 58(9): 5423–5427
https://doi.org/10.1021/acs.inorgchem.9b00622
|
100 |
H Zou , W Rong , S Wei , Y Ji , L Duan . Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29462–29468
https://doi.org/10.1073/pnas.2015108117
|
101 |
N Lazouski , Z J Schiffer , K Williams , K Manthiram . Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule, 2019, 3(4): 1127–1139
https://doi.org/10.1016/j.joule.2019.02.003
|
102 |
K Steinberg , X Yuan , C K Klein , N Lazouski , M Mecklenburg , K Manthiram , Y Li . Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nature Energy, 2023, 8(2): 138–148
https://doi.org/10.1038/s41560-022-01177-5
|
103 |
X Fu , J B Pedersen , Y Zhou , M Saccoccio , S Li , R Sažinas , K Li , S Z Andersen , A Xu , N H Deissler . et al.. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science, 2023, 379(6633): 707–712
https://doi.org/10.1126/science.adf4403
|
104 |
Y Guan , H Wen , K Cui , Q Wang , W Gao , Y Cai , Z Cheng , Q Pei , Z Li , H Cao . et al.. Light-driven ammonia synthesis under mild conditions using lithium hydride. Nature Chemistry, 2024, 16(3): 373–379
https://doi.org/10.1038/s41557-023-01395-8
|
105 |
A Tsuneto , A Kudo , T Sakata . Lithium-mediated electrochemical reduction of high pressure N2 to NH3. Journal of Electroanalytical Chemistry, 1994, 367(1): 183–188
https://doi.org/10.1016/0022-0728(93)03025-K
|
106 |
K Li , S Z Andersen , M J Statt , M Saccoccio , V J Bukas , K Krempl , R Sažinas , J B Pedersen , V Shadravan , Y Zhou . et al.. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science, 2021, 374(6575): 1593–1597
https://doi.org/10.1126/science.abl4300
|
107 |
H L Du , M Chatti , R Y Hodgetts , P V Cherepanov , C K Nguyen , K Matuszek , D R MacFarlane , A N Simonov . Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature, 2022, 609(7928): 722–727
https://doi.org/10.1038/s41586-022-05108-y
|
108 |
G F Chen , A Savateev , Z Song , H Wu , Y Markushyna , L Zhang , H Wang , M Antonietti . Saving the energy loss in lithium-mediated nitrogen fixation by using a highly reactive Li3N intermediate for C–N coupling reactions. Angewandte Chemie International Edition, 2022, 61(27): e202203170
https://doi.org/10.1002/anie.202203170
|
109 |
Y C Hao , Y Guo , L W Chen , M Shu , X Y Wang , T A Bu , W Y Gao , N Zhang , X Su , X Feng . et al.. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nature Catalysis, 2019, 2(5): 448–456
https://doi.org/10.1038/s41929-019-0241-7
|
110 |
L Hu , Z Xing , X Feng . Understanding the electrocatalytic interface for ambient ammonia synthesis. ACS Energy Letters, 2020, 5(2): 430–436
https://doi.org/10.1021/acsenergylett.9b02679
|
111 |
S Mahmood , H Wang , F Chen , Y Zhong , Y Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2023, 35(4): 108550
https://doi.org/10.1016/j.cclet.2023.108550
|
112 |
J Wang , L Yu , L Hu , G Chen , H Xin , X Feng . Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nature Communications, 2018, 9(1): 1795
https://doi.org/10.1038/s41467-018-04213-9
|
113 |
K Kim , N Lee , C Y Yoo , J N Kim , H C Yoon , J I Han . Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. Journal of the Electrochemical Society, 2016, 163(7): F610–F612
https://doi.org/10.1149/2.0231607jes
|
114 |
A R Singh , B A Rohr , J A Schwalbe , M Cargnello , K Chan , T F Jaramillo , I Chorkendorff , J K Nørskov . Electrochemical ammonia synthesis-the selectivity challenge. ACS Catalysis, 2017, 7(1): 706–709
https://doi.org/10.1021/acscatal.6b03035
|
115 |
F Zhou , L M Azofra , M Ali , M Kar , A N Simonov , C McDonnell Worth , C Sun , X Zhang , D R MacFarlane . Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy & Environmental Science, 2017, 10(12): 2516–2520
https://doi.org/10.1039/C7EE02716H
|
116 |
K Kim , C Y Yoo , J N Kim , H C Yoon , J I Han . Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte. Korean Journal of Chemical Engineering, 2016, 33(6): 1777–1780
https://doi.org/10.1007/s11814-016-0086-6
|
117 |
A Katayama , T Inomata , T Ozawa , H Masuda . Electrochemical conversion of dinitrogen to ammonia induced by a metal complex-supported ionic liquid. Electrochemistry Communications, 2016, 67: 6–10
https://doi.org/10.1016/j.elecom.2016.03.001
|
118 |
G Marnellos , M Stoukides . Ammonia synthesis at atmospheric pressure. Science, 1998, 282(5386): 98–100
https://doi.org/10.1126/science.282.5386.98
|
119 |
L Wang , X Yan , W Si , D Liu , X Hou , D Li , F Hou , S X Dou , J Liang . Photoelectrochemical nitrogen reduction: a step toward achieving sustainable ammonia synthesis. Chinese Journal of Catalysis, 2022, 43(7): 1761–1773
https://doi.org/10.1016/S1872-2067(21)64001-9
|
120 |
L W Chen , Y C Hao , Y Guo , Q Zhang , J Li , W Y Gao , L Ren , X Su , L Hu , N Zhang . et al.. Metal-organic framework membranes encapsulating gold nanoparticles for direct plasmonic photocatalytic nitrogen fixation. Journal of the American Chemical Society, 2021, 143(15): 5727–5736
https://doi.org/10.1021/jacs.0c13342
|
121 |
L Ye , H Li , K Xie . Sustainable ammonia production enabled by membrane reactor. Nature Sustainability, 2022, 5(9): 787–794
https://doi.org/10.1038/s41893-022-00908-6
|
122 |
D Liu , J Wang , S Bian , Q Liu , Y Gao , X Wang , P K Chu , X F Yu . Photoelectrochemical ammonia synthesis: photoelectrochemical synthesis of ammonia with black phosphorus. Advanced Functional Materials, 2020, 30(24): 2070156
https://doi.org/10.1002/adfm.202070156
|
123 |
J Liu , F Zhang , H Wu , Y Jiang , P Yang , W Zhang , H Guo , Y Cao , G Yang , Y Zhou . Efficient carrier transfer induced by Au nanoparticles for photoelectrochemical nitrogen reduction. Sustainable Energy & Fuels, 2023, 7(3): 883–889
https://doi.org/10.1039/D2SE01201D
|
124 |
T Oshikiri , K Ueno , H Misawa . Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angewandte Chemie International Edition, 2014, 53(37): 9802–9805
https://doi.org/10.1002/anie.201404748
|
125 |
M Ali , F Zhou , K Chen , C Kotzur , C Xiao , L Bourgeois , X Zhang , D R MacFarlane . Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nature Communications, 2016, 7(1): 11335
https://doi.org/10.1038/ncomms11335
|
126 |
J Zhang , H Chen , X Duan , H Sun , S Wang . Photothermal catalysis: from fundamentals to practical applications. Materials Today, 2023, 68: 234–253
https://doi.org/10.1016/j.mattod.2023.06.017
|
127 |
S Wang , W Yu , S Xu , K Han , F Wang . Ammonia from photothermal N2 hydrogenation over Ni/TiO2 catalysts under mild conditions. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 115–123
https://doi.org/10.1021/acssuschemeng.1c04931
|
128 |
C Mao , L Yu , J Li , J Zhao , L Zhang . Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx. Applied Catalysis B: Environmental, 2018, 224: 612–620
https://doi.org/10.1016/j.apcatb.2017.11.010
|
129 |
C Mao , J Wang , Y Zou , Y Shi , C J Viasus , J Y Y Loh , M Xia , S Ji , M Li , H Shang . et al.. Photochemical acceleration of ammonia production by Pt1-Ptn-TiN reduction and N2 activation. Journal of the American Chemical Society, 2023, 145(24): 13134–13146
https://doi.org/10.1021/jacs.3c01947
|
130 |
J Zheng , L Lu , K Lebedev , S Wu , P Zhao , I J McPherson , T S Wu , R Kato , Y Li , P L Ho . et al.. Fe on molecular-layer MoS2 as inorganic Fe-S2-Mo motifs for light-driven nitrogen fixation to ammonia at elevated temperatures. Chem Catalysis, 2021, 1(1): 162–182
https://doi.org/10.1016/j.checat.2021.03.002
|
131 |
D Ye , S C E Tsang . Prospects and challenges of green ammonia synthesis. Nature Synthesis, 2023, 2(7): 612–623
https://doi.org/10.1038/s44160-023-00321-7
|
132 |
L Wang , M Xia , H Wang , K Huang , C Qian , C T Maravelias , G A Ozin . Greening ammonia toward the solar ammonia refinery. Joule, 2018, 2(6): 1055–1074
https://doi.org/10.1016/j.joule.2018.04.017
|
133 |
M WangM A KhanI MohsinJ WicksA H IpK Z SumonC T DinhE H SargentI D GatesM G Kibria. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes? Energy & Environmental Science, 2021, 14(5): 2535–2548
|
134 |
C Smith , A K Hill , L Torrente Murciano . Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science, 2020, 13(2): 331–344
https://doi.org/10.1039/C9EE02873K
|
135 |
G Hochman , A S Goldman , F A Felder , J M Mayer , A J M Miller , P L Holland , L A Goldman , P Manocha , Z Song , S Aleti . Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 8938–8948
https://doi.org/10.1021/acssuschemeng.0c01206
|
136 |
C Arnaiz del Pozo , S Cloete . Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Conversion and Management, 2022, 255: 115312
https://doi.org/10.1016/j.enconman.2022.115312
|
137 |
B Parkinson , P Balcombe , J F Speirs , A D Hawkes , K Hellgardt . Levelized cost of CO2 mitigation from hydrogen production routes. Energy & Environmental Science, 2019, 12(1): 19–40
https://doi.org/10.1039/C8EE02079E
|
138 |
D R MacFarlane , P V Cherepanov , J Choi , B H R Suryanto , R Y Hodgetts , J M Bakker , F M Ferrero Vallana , A N Simonov . A roadmap to the ammonia economy. Joule, 2020, 4(6): 1186–1205
https://doi.org/10.1016/j.joule.2020.04.004
|
139 |
S Zhang , Y Zhao , R Shi , G I N Waterhouse , T Zhang . Photocatalytic ammonia synthesis: recent progress and future. EnergyChem, 2019, 1(2): 100013
https://doi.org/10.1016/j.enchem.2019.100013
|
140 |
B Lin , T Wiesner , M Malmali . Performance of a small-scale haber process: a techno-economic analysis. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15517–15531
https://doi.org/10.1021/acssuschemeng.0c04313
|
141 |
X Liu , Z Shen , X Peng , L Tian , R Hao , L Wang , Y Xu , Y Liu , C T Maravelias , W Li . et al.. A photo-assisted electrochemical-based demonstrator for green ammonia synthesis. Journal of Energy Chemistry, 2022, 68: 826–834
https://doi.org/10.1016/j.jechem.2021.12.021
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|