Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (10) : 113    https://doi.org/10.1007/s11705-024-2464-7
Flame-retardancy cellulosic triboelectric materials enabled by hydroxyl ionization
Xin Wang, Huancheng Huang, Fanchao Yu, Pinle Zhang, Xinliang Liu()
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
 Download: PDF(1312 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Triboelectric nanogenerators (TENGs) are among the most promising available energy harvesting methods. Cellulose-based TENGs are flexible, renewable, and degradable. However, the flammability of cellulose prevents it from being used in open-flame environments. In this study, the lattice of cellulose was adjusted by the hydroxyl ionization of cellulose molecules, and Na+ was introduced to enhance the flame retardancy of cellulose nanofibers (CNFs). The experimental results showed that the amount of hydrogen bonding between cellulose molecules increased with the introduction of Na+ and that the limiting oxygen index reached 36.4%. The lattice spacing of cellulose increased from 0.276 to 0.286 nm, and the change in lattice structure exposed more hydroxyl groups, which changed the polarity of cellulose. The surface potential of the fibers increased from 239 to 323 mV, the maximum open-circuit voltage was 25 V·cm–2, the short-circuit current was 2.10 μA, and the output power density was 4.56 μW·cm–2. Compared with those of CNFs, the output voltage, current, and transferred charge increased by 96.8%, 517%, and 23%, respectively, and showed good stability and reliability during cyclic exposure. This study provides a valuable strategy for improving the performance of cellulose-based TENGs.

Corresponding Author(s): Xinliang Liu   
Just Accepted Date: 28 April 2024   Issue Date: 27 June 2024
 Cite this article:   
Xin Wang,Huancheng Huang,Fanchao Yu, et al. Flame-retardancy cellulosic triboelectric materials enabled by hydroxyl ionization[J]. Front. Chem. Sci. Eng., 2024, 18(10): 113.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2464-7
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I10/113
Fig.1  Mechanization of flame-retardant cellulose triboelectric materials: (a) schematic of the crystal and hydrogen bonding of CNF and Na-CNF films; (b) flame-retardant properties of the Na-CNF composite films; and (c) schematic of TENG application scenarios (PMMA, polymethyl ethacrylate).
Fig.2  Microstructure of the flame retardant cellulose triboelectric material. SEM images of (a) CNF and (b) Na-CNF films; TEM images of (c) CNF and (d) Na-CNF films; (e) EDS spectra of the Na-CNF films; (f–h) Na, C, and O.
Fig.3  Characteristics of fire-retardant cellulosic triboelectric materials. (a) XRD spectra of CNF and Na-CNF films; (b) FTIR spectra of CNF and Na-CNF films; (c) hydrogen bonding in the inter- and intrachain structures of CNF; (d) hydrogen bonding in the inter- and intrachain structures of the Na-CNF; (e) XPS O 1s peak of the CNF film; (f) XPS O 1s peaks of the Na-CNF films; (g) XPS C 1s peak of the CNF film; (h) XPS C 1s peak of the Na-CNF film; (i) schematic of the change in intermolecular hydrogen bonding of CNF treated with NaOH.
Fig.4  Thermal stability and flame retardancy of the Na-CNF composite films. (a) TG curves of the Na-CNF and CNF films; (b) DTG curves of the Na-CNF and CNF films; (c) strain curves of the Na-CNF and CNF films; (d) HRRs of the Na-CNF and CNF films; (e) THR of the Na-CNF and CNF films; (f) PHRR of Na-CNF films and CNF films; (g) vertical combustion experiments of CNF films and Na-CNF films.
Fig.5  Triboelectric properties of the Na-CNF composite films. (a) surface potentials of the Na-CNF and CNF films; (b) Na-CNF-FEP-TENG working principle; (c) schematic of the Na-CNF TENG structure; (d) comparison of the current outputs of the Na-CNF films and CNF films at 2 Hz; (e) comparison of the voltage outputs of the Na-CNF and CNF films at 2 Hz; (f) comparison of the charge outputs from the Na-CNF films and CNF films at 2 Hz; (g) comparison of the output voltages of Na-CNF films and CNF films loaded with different resistances at 2 Hz; (h) comparison of the output currents of Na-CNF films and CNF films loaded with different resistors at 2 Hz; (i) comparison of the power density of Na-CNF and CNF films loaded with different resistors at 2 Hz; (j) 200 s stability test of the Na-CNF films; (k) surface electron cloud density of CNF fragments and surface electron cloud density of Na-CNF fragments.
1 K He , X Cheng , Y Yao , L Shi , H Yang , W Cong . Characteristics of multiple pool fires in a tunnel with natural ventilation. Journal of Hazardous Materials, 2019, 369: 261–267
https://doi.org/10.1016/j.jhazmat.2019.02.041
2 L Ma , R Wu , S Liu , A Patil , H Gong , J Yi , F Sheng , Y Zhang , J Wang , J Wang . et al.. A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Advanced Materials, 2020, 32(38): 2003897
https://doi.org/10.1002/adma.202003897
3 J Zhou , N Zhou , M Liu , H Tan , Z Wang , X Zhang , Z Su . NiTiO3/Bi2O3/MoS2 double Z-type heterojunction catalysts realize dual-function applications of photocatalytic fuel cells and lactic acid sensing. Applied Surface Science, 2024, 649: 159095
https://doi.org/10.1016/j.apsusc.2023.159095
4 F R Fan , Z Q Tian , Z Lin Wang . Flexible triboelectric generator. Nano Energy, 2012, 1(2): 328–334
https://doi.org/10.1016/j.nanoen.2012.01.004
5 X Chen , X Xie , Y Liu , C Zhao , M Wen , Z Wen . Advances in healthcare electronics enabled by triboelectric nanogenerators. Advanced Functional Materials, 2020, 30(43): 2004673
https://doi.org/10.1002/adfm.202004673
6 C Gao , W Zhang , T Liu , B Luo , C Cai , M Chi , S Zhang , Y Liu , J Wang , J Zhao . et al.. Hierarchical porous triboelectric aerogels enabled by heterointerface engineering. Nano Energy, 2024, 121: 109223
https://doi.org/10.1016/j.nanoen.2023.109223
7 S An , X Pu , S Zhou , Y Wu , G Li , P Xing , Y Zhang , C Hu . Deep learning enabled neck motion detection using a triboelectric nanogenerator. ACS Nano, 2022, 16(6): 9359–9367
https://doi.org/10.1021/acsnano.2c02149
8 M Yin , X Lu , G Qiao , Y Xu , Y Wang , T Cheng , Z L Wang . Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Advanced Energy Materials, 2020, 10(22): 2000627
https://doi.org/10.1002/aenm.202000627
9 X Li , J Wang , Y Liu , T Zhao , B Luo , T Liu , S Zhang , M Chi , C Cai , Z Wei . et al.. Lightweight and strong cellulosic triboelectric materials enabled by cell wall nanoengineering. Nano Letters, 2024, 24(10): 3273–3281
https://doi.org/10.1021/acs.nanolett.4c00458
10 X Wang , C Yao , F Wang , Z Li . Cellulose-based nanomaterials for energy applications. Small, 2017, 13(42): 1702240
https://doi.org/10.1002/smll.201702240
11 H Liao , J Na , W Zhou , S Hur , P M Chien , C Wang , L Wang , Y Yamauchi , Z Yuan . Enhancing energy harvesting performance and sustainability of cellulose-based triboelectric nanogenerators: strategies for performance enhancement. Nano Energy, 2023, 116: 108769
https://doi.org/10.1016/j.nanoen.2023.108769
12 J He , Y Liu , C Wu , S Liu , Y Lu , Q Wu . Pre-oxidation of cellulose controlled by the nitrogen-phosphorus compound catalyst to prepare fibers with ultra-high flame retardancy. Industrial Crops and Products, 2023, 195: 116355
https://doi.org/10.1016/j.indcrop.2023.116355
13 A Cordner , M Mulcahy , P Brown . Chemical regulation on fire: rapid policy advances on flame retardants. Environmental Science & Technology, 2013, 47(13): 7067–7076
https://doi.org/10.1021/es3036237
14 L C Guo , Z Lv , T Zhu , G He , J Hu , J Xiao , T Liu , S Yu , J Zhang , H Zhang . et al.. Associations between serum polychlorinated biphenyls, halogen flame retardants, and renal function indexes in residents of an e-waste recycling area. Science of the Total Environment, 2023, 858: 159746
https://doi.org/10.1016/j.scitotenv.2022.159746
15 Q Duan , Z Zhang , J Zhao , J He , W Peng , Y Zhang , T Liu , S Wang , S Nie . Fire-retardant hydroxyapatite/cellulosic triboelectric materials for energy harvesting and sensing at extreme conditions. Nano Energy, 2023, 117: 108851
https://doi.org/10.1016/j.nanoen.2023.108851
16 R Wang , J Ma , S Ma , Q Zhang , N Li , M Ji , T Jiao , X Cao . A biodegradable cellulose-based flame-retardant triboelectric nanogenerator for fire warning. Chemical Engineering Journal, 2022, 450: 137985
https://doi.org/10.1016/j.cej.2022.137985
17 Y C Li , S Mannen , A B Morgan , S Chang , Y H Yang , B Condon , J C Grunlan . Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Advanced Materials, 2011, 23(34): 3926–3931
https://doi.org/10.1002/adma.201101871
18 Y Zheng , J Miao , N Maeda , D Frey , R J Linhardt , T J Simmons . Uniform nanoparticle coating of cellulose fibers during wet electrospinning. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(36): 15029–15034
https://doi.org/10.1039/C4TA03221G
19 D W Schindler , S R Carpenter , S C Chapra , R E Hecky , D M Orihel . Reducing phosphorus to curb lake eutrophication is a success. Environmental Science & Technology, 2016, 50(17): 8923–8929
https://doi.org/10.1021/acs.est.6b02204
20 V A Yiga , M Lubwama , P W Olupot . Thermal stability of unmodified and alkali-modified rice husks for flame retardant fiber-reinforced PLA composites. Journal of Thermal Analysis and Calorimetry, 2022, 147(20): 11049–11075
https://doi.org/10.1007/s10973-022-11311-w
21 R Shi , L Tan , L Zong , Q Ji , X Li , K Zhang , L Cheng , Y Xia . Influence of Na+ and Ca2+ on flame retardancy, thermal degradation, and pyrolysis behavior of cellulose fibers. Carbohydrate Polymers, 2017, 157: 1594–1603
https://doi.org/10.1016/j.carbpol.2016.11.034
22 X Liu , Q Zhang , B Peng , Y Ren , B Cheng , C Ding , X Su , J He , S Lin . Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid. Journal of Cleaner Production, 2020, 243: 118641
https://doi.org/10.1016/j.jclepro.2019.118641
23 S Zhu , Y Liu , G Du , Y Shao , Z Wei , J Wang , B Luo , C Cai , X Meng , S Zhang . et al.. Customizing temperature-resistant cellulosic triboelectric materials for energy harvesting and emerging applications. Nano Energy, 2024, 124: 109449
https://doi.org/10.1016/j.nanoen.2024.109449
24 T Pöhler , P Widsten , T Hakkarainen . Improved fire retardancy of cellulose fibres via deposition of nitrogen-modified biopolyphenols. Molecules, 2022, 27(12): 3741
https://doi.org/10.3390/molecules27123741
25 H Kim , J R Youn , Y S Song . Eco-friendly flame retardant nanocrystalline cellulose prepared via silylation. Nanotechnology, 2018, 29(45): 455702
https://doi.org/10.1088/1361-6528/aadc87
26 S G Karaj-Abad , M Abbasian , M Jaymand . Grafting of poly[(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite. Carbohydrate Polymers, 2016, 152: 297–305
https://doi.org/10.1016/j.carbpol.2016.07.017
27 L Van Hai , L Zhai , H C Kim , J W Kim , E S Choi , J Kim . Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydrate Polymers, 2018, 191: 65–70
https://doi.org/10.1016/j.carbpol.2018.03.008
28 S Du , T Li , X Wang , L Zhang , Z Yang , R Lin , T Zhu . Molecular simulation on mechanism of thiophene hydrodesulfurization on surface of Ni2P. Energy Exploration & Exploitation, 2021, 39(3): 975–992
https://doi.org/10.1177/0144598721994950
29 Z Peter . Order in cellulosics: historical review of crystal structure research on cellulose. Carbohydrate Polymers, 2021, 254: 117417
https://doi.org/10.1016/j.carbpol.2020.117417
30 Y H Zhang , Y Shao , C Luo , H Z Ma , H Yu , X Liu , B Yin , J L Wu , M B Yang . Preparation of a high-performance chitosan-based triboelectric nanogenerator by regulating the surface microstructure and dielectric constant. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2022, 11(1): 260–268
https://doi.org/10.1039/D2TC04262B
31 A Thakur , M Jangra , S Dam , S Hussain . Impedance studies of free-standing, flexible thin films of PVDF filled with gallium nitride nanoparticles. Journal of Materials Science Materials in Electronics, 2022, 33(23): 18658–18672
https://doi.org/10.1007/s10854-022-08715-7
32 G Du , J Wang , Y Liu , J Yuan , T Liu , C Cai , B Luo , S Zhu , Z Wei , S Wang . et al.. Fabrication of advanced cellulosic triboelectric materials via dielectric modulation. Advanced Science, 2023, 10(15): 2206243
https://doi.org/10.1002/advs.202206243
33 R Zhang , M Hummelgård , J Örtegren , H Andersson , M Olsen , D Chen , J Li , A Eivazi , C Dahlström , M Norgren . et al.. Triboelectric nanogenerators with ultrahigh current density enhanced by hydrogen bonding between nylon and graphene oxide. Nano Energy, 2023, 115: 108737
https://doi.org/10.1016/j.nanoen.2023.108737
34 H Lee , J Sundaram , L Zhu , Y Zhao , S Mani . Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. Carbohydrate Polymers, 2018, 181: 506–513
https://doi.org/10.1016/j.carbpol.2017.08.119
35 Y Yue. A comparative study of cellulose I and II and fibers and nanocrystals. LSU Digital Commons. Dissertation for the Master of Science Degree. Baton Rouge: Louisiana State University, 2011, 57–58
36 Y Liu , H Hu . X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers, 2008, 9(6): 735–739
https://doi.org/10.1007/s12221-008-0115-0
37 M Kathirselvam , A Kumaravel , V P Arthanarieswaran , S S Saravanakumar . Characterization of cellulose fibers in thespesia populnea barks: influence of alkali treatment. Carbohydrate Polymers, 2019, 217: 178–189
https://doi.org/10.1016/j.carbpol.2019.04.063
38 Q Lin , S Liu , X Wang , Y Huang , W Yu . Preparation of ultra-conductive bamboo cellulose fiber via a facile pretreatment. Applied Surface Science, 2022, 575: 151700
https://doi.org/10.1016/j.apsusc.2021.151700
39 Z Li , C Chen , H Xie , Y Yao , X Zhang , A Brozena , J Li , Y Ding , X Zhao , M Hong . et al.. Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2021, 5(3): 235–244
https://doi.org/10.1038/s41893-021-00831-2
40 Y Hishikawa , E Togawa , T Kondo . Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega, 2017, 2(4): 1469–1476
https://doi.org/10.1021/acsomega.6b00364
41 Z Lu , H Zhang , L Liu , H Cao , Z Cheng , H Liu , X An . Study on cellulose nanofibers (CNF) distribution behaviors and their roles in improving paper property. Industrial Crops and Products, 2023, 201: 116897
https://doi.org/10.1016/j.indcrop.2023.116897
42 H Yang , R Yan , H Chen , D H Lee , C Zheng . Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 2007, 86(12-13): 1781–1788
https://doi.org/10.1016/j.fuel.2006.12.013
43 L Ge , C Zhao , M Zuo , Y Du , J Tang , H Chu , Y Wang , C Xu . Effects of Fe addition on pyrolysis characteristics of lignin, cellulose and hemicellulose. Journal of the Energy Institute, 2023, 107: 101177
https://doi.org/10.1016/j.joei.2023.101177
44 D Chen , K Cen , X Zhuang , Z Gan , J Zhou , Y Zhang , H Zhang . Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combustion and Flame, 2022, 242: 112142
https://doi.org/10.1016/j.combustflame.2022.112142
45 D Xu , Q Ji , L Tan , G Tian , F Quan , Y Xia . Influence of alkaline metal ions on flame retardancy and thermal degradation of cellulose fibers. Fibers and Polymers, 2014, 15(2): 220–225
https://doi.org/10.1007/s12221-014-0220-1
46 W Shen , H Wang , Y Liu , Q Guo , Y Zhang . Oxidization activated carbon fiber through nitrocellulose combustion. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 308(1–3): 20–24
https://doi.org/10.1016/j.colsurfa.2007.05.023
47 R Sonnier , B Otazaghine , L Ferry , J M Lopez-Cuesta . Study of the combustion efficiency of polymers using a pyrolysis-combustion flow calorimeter. Combustion and Flame, 2013, 160(10): 2182–2193
https://doi.org/10.1016/j.combustflame.2013.04.009
48 C Lin , L Sun , X Meng , X Yuan , C X Cui , H Qiao , P Chen , S Cui , L Zhai , L Mi . Covalent organic frameworks with tailored functionalities for modulating surface potentials in triboelectric nanogenerators. Angewandte Chemie International Edition, 2022, 61(42): e202211601
https://doi.org/10.1002/anie.202211601
49 Y M Wang , X Zhang , D Yang , L Wu , J Zhang , T Lei , R Yang . Highly stable metal-organic framework UiO-66-NH2 for high-performance triboelectric nanogenerators. Nanotechnology, 2022, 33(6): 065402
https://doi.org/10.1088/1361-6528/ac32f8
[1] FCE-24019-OF-WX_suppl_1 Download
[2] FCE-24019-OF-WX_suppl_2 Video  
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed