Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (10) : 114    https://doi.org/10.1007/s11705-024-2465-6
Rhodium complex-anchored and supramolecular polymer-grafted CdS nanoflower for enhanced photosynthesis of H2O2 and photobiocatalytic C–H bond oxyfunctionalization
Hongwei Jia1, Xiaoyang Yue1(), Yuying Hou1, Fei Huang1, Cuiyao Cao1, Feifei Jia1, Guanhua Liu1, Xiaobing Zheng1,2(), Yunting Liu1(), Yanjun Jiang1,2
1. School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
2. National-Local Joint Engineering Laboratory for Energy Conversion in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
 Download: PDF(1603 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Unspecific peroxygenases exhibit high activity for the selective oxyfunctionalization of inert C(sp3)–H bonds using only H2O2 as a clean oxidant, while also exhibiting sensitivity to H2O2 concentration. CdS-based semiconductors are promising for the photosynthesis of H2O2 owing to their adequately negative potential for oxygen reduction reaction via a proton-coupled electron transfer process, however, they suffer from fast H2O2 decomposition on the surface of pristine CdS. Therefore, [Cp*Rh(bpy)H2O]2+, a highly selective proton-coupled electron transfer catalyst, was anchored onto a supramolecular polymer-grafted CdS nanoflower to construct an efficient integrated photocatalyst for generating H2O2, mitigating the surface issue of pristine CdS, increasing light absorption, accelerating photonic carrier separation, and enhancing oxygen reduction reaction selectivity to H2O2. This photocatalyst promoted the light driven H2O2 generation rate up to 1345 μmol·L–1·g–1·h–1, which was 2.4 times that of pristine CdS. The constructed heterojunction photocatalyst could supply H2O2 in situ for nonspecific peroxygenases to catalyze the C–H oxyfunctionalization of ethylbenzene, achieving a yield of 81% and an ee value of 99% under optimum conditions. A wide range of substrates were converted to the corresponding chiral alcohols using this photo-enzyme catalytic system, achieving the corresponding chiral alcohols in good yield (51%–88%) and excellent enantioselectivity (90%–99% ee).

Keywords cadmium sulfide      unspecific peroxygenases      photobiocatalysis      hydrogen peroxide      oxyfunctionalization     
Corresponding Author(s): Xiaoyang Yue,Xiaobing Zheng,Yunting Liu   
Just Accepted Date: 21 May 2024   Issue Date: 18 July 2024
 Cite this article:   
Hongwei Jia,Xiaoyang Yue,Yuying Hou, et al. Rhodium complex-anchored and supramolecular polymer-grafted CdS nanoflower for enhanced photosynthesis of H2O2 and photobiocatalytic C–H bond oxyfunctionalization[J]. Front. Chem. Sci. Eng., 2024, 18(10): 114.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2465-6
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I10/114
Fig.1  Schematic illustration of the synthetic route for M@CdS heterojunction.
Fig.2  SEM image of (a) CdS nanosheet and (b) M@CdS; (c) TEM and (d) HRTEM image of M@CdS; (e–h) HAADF and EDS elemental mapping images of M@CdS heterojunction photocatalyst.
Fig.3  High-resolution XPS spectra of (a) C 1S, (b) Cd 3d, (c) S 2p, and (d) Rh 3d of pristine CdS, PAH/bpy@CdS, and M@CdS samples.
Fig.4  (a) UV-vis DRS spectra, (b) Tauc plots, (c) band gap structure of pristine CdS and M@CdS, (d) steady-state PL spectra, (e) EIS Nyquist plots, and (f) transient photocurrent responses.
Fig.5  (a) Photocatalytic H2O2 generation performances of CdS, CdS + free M and M@CdS; (b) H2O2 generation rate by CdS, CdS + Free M and M@CdS; (c) stability testing of M@CdS heterojunctions for photocatalytic H2O2 production; (d) the specific content of coordinated Rh and the corresponding H2O2 generation rate under various initial concentration of bpy-COOH and PAH; (e) H2O2 generation rate with different scavengers; (f) screening and control experiments of photobiocatalytic synthesis of (R)-1-phenylethanol by M@CdS.
  Scheme1 Photobiocatalytic oxyfunctionalization cascade of M@CdS supramolecular photocatalyst and UPO.
  Scheme2 Product scope for the photobiocatalytic oxyfunctionalization using the M@CdS photocatalyst.
1 J Yamaguchi , A D Yamaguchi , K Itami . Itami K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angewandte Chemie International Edition, 2012, 51(36): 8960–9009
https://doi.org/10.1002/anie.201201666
2 L Guillemard , N Kaplaneris , L Ackermann , M J Johansson . Late-stage C–H functionalization offers new opportunities in drug discovery. Nature Reviews. Chemistry, 2021, 5(8): 522–545
https://doi.org/10.1038/s41570-021-00300-6
3 S K Sinha , S Guin , S Maiti , J P Biswas , S Porey , D Maiti . Toolbox for distal C–H bond functionalizations in organic molecules. Chemical Reviews, 2022, 122(6): 5682–5841
https://doi.org/10.1021/acs.chemrev.1c00220
4 N Holmberg-Douglas , D A Nicewicz . Photoredox-catalyzed C–H functionalization reactions. Chemical Reviews, 2022, 122(2): 1925–2016
https://doi.org/10.1021/acs.chemrev.1c00311
5 L Zhang , T Ritter . A perspective on late-stage aromatic C–H bond functionalization. Journal of the American Chemical Society, 2022, 144(6): 2399–2414
https://doi.org/10.1021/jacs.1c10783
6 N Y S Lam , K Wu , J Q Yu . Advancing the logic of chemical synthesis: C−H activation as strategic and tactical disconnections for C−C bond construction. Angewandte Chemie International Edition, 2021, 60(29): 15767–15790
https://doi.org/10.1002/anie.202011901
7 R S Heath , N J Turner . Recent advances in oxidase biocatalysts: enzyme discovery, cascade reactions and scale up. Current Opinion in Green and Sustainable Chemistry, 2022, 38: 100693
https://doi.org/10.1016/j.cogsc.2022.100693
8 M Hobisch , D Holtmann , P Gomez de Santos , M Alcalde , F Hollmann , S Kara . Recent developments in the use of peroxygenases—exploring their high potential in selective oxyfunctionalisations. Biotechnology Advances, 2021, 51: 107615
https://doi.org/10.1016/j.biotechadv.2020.107615
9 A Beltrán-Nogal , I Sánchez-Moreno , D Méndez-Sánchez , de Santos P Gómez , F Hollmann , M Alcalde . Surfing the wave of oxyfunctionalization chemistry by engineering fungal unspecific peroxygenases. Current Opinion in Structural Biology, 2022, 73: 102342
https://doi.org/10.1016/j.sbi.2022.102342
10 D T MonterreyA Menés-RubioM KeserD Gonzalez-PerezM Alcalde. Unspecific peroxygenases: the pot of gold at the end of the oxyfunctionalization rainbow? Current Opinion in Green and Sustainable Chemistry, 2023, 41: 100786
11 G Grogan . Hemoprotein catalyzed oxygenations: P450s, UPOs, and progress toward scalable reactions. JACS Au, 2021, 1(9): 1312–1329
https://doi.org/10.1021/jacsau.1c00251
12 L Schmermund , S Reischauer , S Bierbaumer , C K Winkler , A Diaz-Rodriguez , L J Edwards , S Kara , T Mielke , J Cartwright , G Grogan . et al.. Chromoselective photocatalysis enables stereocomplementary biocatalytic pathways*. Angewandte Chemie International Edition, 2021, 60(13): 6965–6969
https://doi.org/10.1002/anie.202100164
13 W YuC HuL BaiN TianY ZhangH Huang. Photocatalytic hydrogen peroxide evolution: what is the most effective strategy? Nano Energy, 2022, 104: 107906
14 J H Lee , H Cho , S O Park , J M Hwang , Y Hong , P Sharma , W C Jeon , Y Cho , C Yang , S K Kwak . et al.. High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition. Applied Catalysis B: Environment and Energy, 2021, 284: 119690
15 S Thakur , T Kshetri , N H Kim , J H Lee . Sunlight-driven sustainable production of hydrogen peroxide using a CdS-graphene hybrid photocatalyst. Journal of Catalysis, 2017, 345: 78–86
https://doi.org/10.1016/j.jcat.2016.10.028
16 E Zhang , Q Zhu , J Huang , J Liu , G Tan , C Sun , T Li , S Liu , Y Li , H Wang . et al.. Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water. Applied Catalysis B. Applied Catalysis B: Environment and Energy, 2021, 293: 120213
https://doi.org/10.1016/j.apcatb.2021.120213
17 C Lai , M Xu , F Xu , B Li , D Ma , Y Li , L Li , M Zhang , D Huang , L Tang . et al.. An S-scheme CdS/K2Ta2O6 heterojunction photocatalyst for production of H2O2 from water and air. Chemical Engineering Journal, 2023, 452: 139070
https://doi.org/10.1016/j.cej.2022.139070
18 B Zhu , J Liu , J Sun , F Xie , H Tan , B Cheng , J Zhang . CdS decorated resorcinol-formaldehyde spheres as an inorganic/organic S-scheme photocatalyst for enhanced H2O2 production. Journal of Materials Science and Technology, 2023, 162: 90–98
https://doi.org/10.1016/j.jmst.2023.03.054
19 Z Wei , S Zhao , W Li , X Zhao , C Chen , D L Phillips , Y Zhu , W Choi . Artificial photosynthesis of H2O2 through reversible photoredox transformation between catechol and o-benzoquinone on polydopamine-coated CdS. ACS Catalysis, 2022, 12(18): 11436–11443
https://doi.org/10.1021/acscatal.2c03288
20 G Zhang , X Li , D Chen , N Li , Q Xu , H Li , J Lu . Internal electric field and adsorption effect synergistically boost carbon dioxide conversion on cadmium sulfide@covalent triazine frameworks core-shell photocatalyst. Advanced Functional Materials, 2023, 33(51): 2308553
https://doi.org/10.1002/adfm.202308553
21 A K Mengele , S Rau . Product selectivity in homogeneous artificial photosynthesis using [(bpy)Rh(Cp*)X]n+-based catalysts. Inorganics, 2017, 5(2): 35
https://doi.org/10.3390/inorganics5020035
22 S Ogo , T Yatabe , T Tome , R Takenaka , Y Shiota , K Kato . Safe, one-pot, homogeneous direct synthesis of H2O2. Journal of the American Chemical Society, 2023, 145(8): 4384–4388
https://doi.org/10.1021/jacs.2c13149
23 C H Lee , J Kim , C B Park . Park C B. Z-Schematic artificial leaf structure for biosolar oxyfunctionalization of hydrocarbons. ACS Energy Letters, 2023, 8(6): 2513–2521
https://doi.org/10.1021/acsenergylett.3c00587
24 X Deng , X Zheng , F Jia , C Cao , H Song , Y Jiang , Y Liu , G Liu , S Li , L Wang . Unspecific peroxygenases immobilized on Pd-loaded three-dimensional ordered macroporous (3DOM) titania photocatalyst for photo-enzyme integrated catalysis. Applied Catalysis B: Environment and Energy, 2023, 330: 122622
25 F Jia , Y Liu , X Deng , X Cao , X Zheng , L Zhou , J Gao , Y Jiang . Immobilization of enzymes on cyclodextrin-anchored dehiscent mesoporous TiO2 for efficient photoenzymatic hydroxylation. ACS Applied Materials & Interfaces, 2023, 15(6): 7928–7938
https://doi.org/10.1021/acsami.2c17971
26 L Zhang , J Ran , S Z Qiao , M Jaroniec . Characterization of semiconductor photocatalysts. Chemical Society Reviews, 2019, 48(20): 5184–5206
https://doi.org/10.1039/C9CS00172G
27 Q Xiang , J Yu , M Jaroniec . Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. Journal of the American Chemical Society, 2012, 134(15): 6575–6578
https://doi.org/10.1021/ja302846n
28 Q Xiang , B Cheng , J Yu . Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Applied Catalysis B: Environment and Energy, 2013, 138: 299–303
29 Y Chen , W Zhong , F Chen , P Wang , J Fan , H Yu . Photoinduced self-stability mechanism of CdS photocatalyst: the dependence of photocorrosion and H2-evolution performance. Journal of Materials Science and Technology, 2022, 121: 19–27
https://doi.org/10.1016/j.jmst.2021.12.051
30 X Xue , W Dong , Q Luan , H Gao , G Wang . Novel interfacial lateral electron migration pathway formed by constructing metallized CoP2/CdS interface for excellent photocatalytic hydrogen production. Applied Catalysis B: Environment and Energy, 2023, 334: 122860
31 L Xie , X Huang , Y Huang , K Yang , P Jiang . Core-shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. ACS Applied Materials & Interfaces, 2013, 5(5): 1747–1756
https://doi.org/10.1021/am302959n
32 M Xia , W Zhang , Y Xu , H Lin , Y Jiao , L Shen , R Li , M Zhang , H Hong . Polyamide membranes with a ZIF-8@Tannic acid core-shell nanoparticles interlayer to enhance nanofiltration performance. Desalination, 2022, 541: 116042
https://doi.org/10.1016/j.desal.2022.116042
33 C Q Li , X Du , S Jiang , Y Liu , Z L Niu , Z Y Liu , S S Yi , X Z Yue . Constructing direct Z-scheme heterostructure by enwrapping ZnIn2S4 on CdS hollow cube for efficient photocatalytic H2 generation. Advanced Science, 2022, 9(24): 2201773
https://doi.org/10.1002/advs.202201773
34 Q Mu , Y Su , Z Wei , H Sun , Y Lian , Y Dong , P Qi , Z Deng , Y Peng . Dissecting the interfaces of MOF-coated CdS on synergized charge transfer for enhanced photocatalytic CO2 reduction. Journal of Catalysis, 2021, 397: 128–136
https://doi.org/10.1016/j.jcat.2021.03.018
35 J Liu , X Ren , C Li , M Wang , H Li , Q Yang . Assembly of COFs layer and electron mediator on silica for visible light driven photocatalytic NADH regeneration. Applied Catalysis B: Environment and Energy, 2022, 310: 121314
36 D Wang , H Zeng , X Xiong , M F Wu , M Xia , M Xie , J Zou , S L Luo . Highly efficient charge transfer in CdS-covalent organic framework nanocomposites for stable photocatalytic hydrogen evolution under visible light. Science Bulletin, 2020, 65(2): 113–122
https://doi.org/10.1016/j.scib.2019.10.015
37 L Sun , L Li , J Yang , J Fan , Q Xu . Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation. Chinese Journal of Catalysis, 2022, 43(2): 350–358
https://doi.org/10.1016/S1872-2067(21)63869-X
38 L Zou , R Sa , H Zhong , H Lv , X Wang , R Wang . Photoelectron transfer mediated by the interfacial electron effects for boosting visible-light-driven CO2 reduction. ACS Catalysis, 2022, 12(6): 3550–3557
https://doi.org/10.1021/acscatal.1c05449
39 R Gao , J Bai , R Shen , L Hao , C Huang , L Wang , G Liang , P Zhang , X Li . 2D/2D covalent organic framework/CdS Z-scheme heterojunction for enhanced photocatalytic H2 evolution: insights into interfacial charge transfer mechanism. Journal of Materials Science and Technology, 2023, 137: 223–231
https://doi.org/10.1016/j.jmst.2022.09.001
[1] FCE-23126-OF-JH_suppl_1 Download
[1] Yitong Wang, Yue Zhang, Li Wang. Simultaneous removal of total oxidizable carbon, phosphate and various metallic ions from H2O2 solution with amino-functionalized zirconia as adsorbents[J]. Front. Chem. Sci. Eng., 2023, 17(4): 470-482.
[2] Mengying Liu, Yun Xu, Yanjun Zhao, Zheng Wang, Dunyun Shi. Hydroxyl radical-involved cancer therapy via Fenton reactions[J]. Front. Chem. Sci. Eng., 2022, 16(3): 345-363.
[3] Hongbo Li, Bo Zheng, Zhiyong Pan, Baoning Zong, Minghua Qiao. Advances in the slurry reactor technology of the anthraquinone process for H2O2 production[J]. Front. Chem. Sci. Eng., 2018, 12(1): 124-131.
[4] Enxian Yuan, Xiangwei Ren, Li Wang, Wentao Zhao. A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al 2O3 catalyst[J]. Front. Chem. Sci. Eng., 2017, 11(2): 177-184.
[5] CHENG Yongxi, LI Hongtao, WANG Li, LÜ Shuxiang. Reactive extraction for preparation of hydrogen peroxide under pressure[J]. Front. Chem. Sci. Eng., 2008, 2(3): 335-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed