Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (12) : 143    https://doi.org/10.1007/s11705-024-2494-1
In-depth multi-component analysis of bio-aviation fuel derived from waste cooking oil using comprehensive two-dimensional gas chromatography mass spectrometry
Yang Xu1, Xuan Guo1(), Meng Wang2(), Yunming Fang1
1. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2. College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
 Download: PDF(709 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The characterization of bio-aviation fuel composition is paramount for assessing biomass conversion processes and its suitability to meet international standards. Compared with one-dimensional gas chromatography mass spectrometry (1DGC-MS), comprehensive two-dimensional gas chromatography with mass spectrometry (GC × GC-MS) emerges as a promising analytical approach for bio-aviation fuel, offering enhanced separation, resolution, selectivity, and sensitivity. This study addresses the qualitative and quantitative analysis methods for both bulk components and trace fatty acid methyl ester (FAME) in bio-aviation fuel obtained by hydrogenation at 400 °C with Ni-Mo/γ-Al2O3&Meso-SAPO-11 as catalyst using GC × GC-MS. In bulk composition analysis, C12 concentration was highest at 25.597%. Based on GC × GC-MS analysis platform, the quality control method of FAME in bio-aviation fuel was established. At the split ratio of 10:1, limits of detections of six FAMEs were 0.011–0.027 mg·kg–1, and limits of quantifications were 0.036–0.090 mg·kg–1, and the GC × GC-MS research platform had the ability to detect FAME from 2 to 5 mg·kg–1. The results showed that this bio-aviation fuel did not contain FAME.

Keywords bio-aviation fuel      fatty acid methyl ester      GC × GC-MS      quantity     
Corresponding Author(s): Xuan Guo,Meng Wang   
Just Accepted Date: 27 June 2024   Issue Date: 02 September 2024
 Cite this article:   
Yang Xu,Xuan Guo,Meng Wang, et al. In-depth multi-component analysis of bio-aviation fuel derived from waste cooking oil using comprehensive two-dimensional gas chromatography mass spectrometry[J]. Front. Chem. Sci. Eng., 2024, 18(12): 143.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2494-1
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I12/143
Fig.1  TIC diagrams for bio-aviation fuel via (a) 1DGC-MS and (b) GC × GC-MS.
Fig.2  (a) Two-dimensional plot of bio-aviation fuel, (b) alkanes and (c) cycloalkanes identified in the sample by the extracted ion chromatograms m/z 57, 83.
Fig.3  Calibration curves of (a) n-alkanes: C8, C14, C15, C16, (b) n-alkanes: C9, C10, (c) n-alkanes: C11, C12, C13, and (d) cycloalkanes: 1,2-dimethylcyclohexane, 1,2,4-trimethylcyclohexane, 1,1,3,5-tetramethylclohexane and decahydronaphthalene.
Compounds Retention time Linear range/(mg·L–1) Calibration equation R2 LOD/(mg·kg–1) LOQ/(mg·kg–1) RSD/%
1Da)/min 2Db)/s
n-alkanes
C8 12.70 1.26 10-350 y = 1.3352x + 0.091 0.9999 0.228 0.761 5
C9 17.80 1.35 10-500 y = 1.7706x + 0.052 0.9996 0.117 0.390 3
C10 23.20 1.41 10-500 y = 2.1409x + 0.0601 0.9998 0.105 0.349 2
C11 28.40 1.47 10-500 y = 2.1682x + 0.0493 0.9999 0.081 0.271 6
C12 33.40 1.47 10-500 y = 2.1981x + 0.0602 0.999 0.098 0.327 5
C13 38.00 1.53 10-500 y = 2.5515x + 0.0535 0.9991 0.096 0.321 5
C14 42.50 1.53 10-350 y = 2.7257x + 0.0414 0.9994 0.094 0.314 4
C15 46.60 1.56 10-350 y = 2.2808x + 0.0906 0.9982 0.059 0.195 5
C16 50.60 1.59 10-350 y = 1.789x + 0.0747 0.9995 0.076 0.253 4
Cycloalkanes
1,2-dimethylcyclohexane 14.20 1.44 20-400 y = 1.7887x + 0.0383 0.9973 0.291 0.969 3
1,2,4-trimethylcyclohexane 16.80 1.44 20-400 y = 1.5661x + 0.0101 0.9983 0.266 0.888 5
1,1,3,5-tetramethylclohexane 18.60 1.41 10-400 y = 1.5181x + 0.1727 0.9998 0.208 0.694 5
Decahydronaphthalene 28.50 2.07 10-300 y = 1.4131x + 0.0927 0.9991 0.154 0.515 4
Tab.1  Retention time, linear ranges, equation curves, coefficients of determination (R2), LODs, LOQs, and RSD for all standard compounds (n = 7)
Fig.4  The total concentration of (a) alkanes and (b) cycloalkanes in bio-aviation fuel.
Fig.5  The chromatograph of FAME/bio-aviation fuel.
FAMEs Retention time Linear range/(mg·kg–1) Calibration equation R2 LOD/(mg·kg–1) LOQ/(mg·kg–1) RSD/%
1Da)/min 2Db)/s
C16 : 0 61.50 3.06 2-10 y = 8140935x – 13353238 0.9989 0.011 0.036 5
C16 : 1 60.90 3.21 2-10 y = 7197091x –7532034 0.9994 0.013 0.043 3
C18 : 0 67.80 3.15 2-10 y = 7661872x –10521660 0.9999 0.014 0.045 2
C18 : 1 67.00 3.27 2-10 y = 4018256x –2995200 0.9996 0.013 0.042 6
C18 : 2 66.90 3.39 2-10 y = 2905413x –3958543 0.9974 0.027 0.090 5
C18 : 3 67.10 3.48 2-10 y = 383282x + 1422186 0.9991 0.016 0.052 5
Tab.2  Retention time, linear ranges, equation curves, coefficients of determination (R2), LODs, LOQs, and RSD for all standard compounds (n = 7)
1 H Hao , Y Geng , J Sarkis . Carbon footprint of global passenger cars: scenarios through 2050. Energy, 2016, 101: 121–131
https://doi.org/10.1016/j.energy.2016.01.089
2 Y J Hu , L Yang , H Cui , H Wang , C Li , B J Tang . Strategies to mitigate carbon emissions for sustainable aviation: a critical review from a life-cycle perspective. Sustainable Production and Consumption, 2022, 33: 788–808
https://doi.org/10.1016/j.spc.2022.08.009
3 V Grewe , Rao A Gangoli , T Grönstedt , C Xisto , F Linke , J Melkert , J Middel , B Ohlenforst , S Blakey , S Christie . et al.. Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects. Nature Communications, 2021, 12(1): 1–10
https://doi.org/10.1038/s41467-021-24091-y
4 R Han , L Li , X Zhang , Z Lu , S Zhu . Spatial-temporal evolution characteristics and decoupling analysis of influencing factors of China’s aviation carbon emissions. Chinese Geographical Science, 2022, 32(2): 218–236
https://doi.org/10.1007/s11769-021-1247-z
5 Y Della Volpi , S R Paulino . The sustainability of services: considerations on the materiality of accommodation services from the concept of life cycle thinking. Journal of Cleaner Production, 2018, 192(10): 327–334
https://doi.org/10.1016/j.jclepro.2018.04.166
6 Z Wang , X Xu , Y Zhu , T Gan . Evaluation of carbon emission efficiency in China’s airlines. Journal of Cleaner Production, 2020, 243: 118500–118508
https://doi.org/10.1016/j.jclepro.2019.118500
7 J I Hileman , R W Stratton . Alternative jet fuel feasibility. Transport Policy, 2014, 34: 52–62
https://doi.org/10.1016/j.tranpol.2014.02.018
8 X T F E , L Zhang , F Wang , X Zhang , J J Zou . Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels. Frontiers of Chemical Science and Engineering, 2018, 12(3): 358–366
https://doi.org/10.1007/s11705-018-1702-2
9 C J Chuck , J Donnelly . The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Journal of Cleaner Production, 2014, 118(1): 83–91
10 E Martinez-Hernandez , Verduzco L F Ramírez , Allieri M A Amezcua , J Aburto . Process simulation and techno-economic analysis of bio-jet fuel and green diesel production-minimum selling prices. Chemical Engineering Research & Design, 2019, 146: 60–70
https://doi.org/10.1016/j.cherd.2019.03.042
11 S S Doliente , A Narayan , J F D Tapia , N J Samsatli , Y Zhao , S Samsatli . Bio-aviation fuel: a comprehensive review and analysis of the supply chain components. Frontiers in Energy Research, 2020, 8: 1–38
https://doi.org/10.3389/fenrg.2020.00110
12 Z Liu , X Yang . The potential GHGs reduction of co-processing aviation biofuel in life cycle. Bioresources and Bioprocessing, 2023, 10(1): 1–14
https://doi.org/10.1186/s40643-023-00674-z
13 D Chiaramonti . Sustainable aviation fuels the challenge of decarbonization. Energy Procedia, 2019, 158: 1202–1207
https://doi.org/10.1016/j.egypro.2019.01.308
14 S Omar , S Alsamaq , Y Yang , J Wang . Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions. Frontiers of Chemical Science and Engineering, 2019, 13(4): 702–717
https://doi.org/10.1007/s11705-019-1861-9
15 N A Huq , G R Hafenstine , X Huo , H Nguyen , S M Tifft , D R Conklin , D Stück , J Stunkel , Z Yang , J S Heyne . et al.. Toward net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(13): 8118–8119
https://doi.org/10.1073/pnas.2023008118
16 S Ukaew , R Shi , J H Lee , D W Archer , M Pearlson , K C Lewis , L Bregni , D R Shonnard . Full chain life cycle assessment of greenhouse gases and energy demand for canola-derived jet fuel in North Dakota, United States. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2771–2779
https://doi.org/10.1021/acssuschemeng.6b00276
17 N Savage. Fuel options: the ideal biofuel. Environmental Science and Pollution Research International, 2011, 32: 1-2 Nature 2011, 474: S9–S11
18 B Xu , J Dai , Z Du , F Li , H Liu , X Gu , X Wang , N Li , J Zhao . Catalytic conversion of biomass-derived compounds to various amino acids: status and perspectives. Frontiers of Chemical Science and Engineering, 2023, 17(7): 817–829
https://doi.org/10.1007/s11705-022-2254-z
19 R H Moore , K L Thornhill , B Weinzierl , D Sauer , E D’Ascoli , J Kim , M Lichtenstern , M Scheibe , B Beaton , A J Beyersdorf . et al.. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature, 2017, 543(7645): 411–415
https://doi.org/10.1038/nature21420
20 J Yang , Z Xin , Q He , K Corscadden , H Niu . An overview on performance characteristics of bio-jet fuels. Fuel, 2019, 237: 916–936
https://doi.org/10.1016/j.fuel.2018.10.079
21 S D Gregg , J W Fisher , M G Bartlett . A review of analytical methods for the identification and quantification of hydrocarbons found in jet propellant 8 and related petroleum based fuels. Biomedical Chromatography, 2006, 20(6–7): 492–507
https://doi.org/10.1002/bmc.659
22 J M Mehta , P T Lynch , E K Mayhew , K Brezinsky . Evaluation of chemical functional group composition of jet uels using two-dimensional gas chromatography. Energy & Fuels, 2023, 37(3): 2294–2306
https://doi.org/10.1021/acs.energyfuels.2c03514
23 Z Fang , L Richard , J Smith . Microwave-enhanced in situ transesterification of algal biomass to biodiesel. Fuel, 2019, 33: 3275–3289
24 J V Seeley , C T Bates , J D McCurry , S K Seeley . Stationary phase selection and comprehensive two-dimensional gas chromatographic analysis of trace biodiesel in petroleum-based fuel. Journal of Chromatography. A, 2012, 1226: 103–109
https://doi.org/10.1016/j.chroma.2011.07.075
25 F Adam , F Bertoncini , V Coupard , N Charon , D Thiébaut , D Espinat , M C Hennion . Using comprehensive two-dimensional gas chromatography for the analysis of oxygenates in middle distillates. Journal of Chromatography. A, 2008, 1186(1-2): 236–244
https://doi.org/10.1016/j.chroma.2007.12.063
26 A P P Pires , Y Han , J Kramlich , M Garcia-Perez . Chemical composition and fuel properties of alternative jet fuels. BioResources, 2018, 13(2): 2632–2657
https://doi.org/10.15376/biores.13.2.2632-2657
27 C H Lin , Y K Chen , W C Wang . The production of bio-jet fuel from palm oil derived alkanes. Fuel, 2020, 260: 116345–116354
https://doi.org/10.1016/j.fuel.2019.116345
28 K Song , Y Gong , S Guo , D Lv , H Wang , Z Wan , Y Yu , R Tang , T Li , R Tan . et al.. Investigation of partition coefficients and fingerprints of atmospheric gas- and particle-phase intermediate volatility and semi-volatile organic compounds using pixel-based approaches. Journal of Chromatography. A, 2022, 1665: 462808–462814
https://doi.org/10.1016/j.chroma.2022.462808
29 M Staš , M Auersvald , L Kejla , D Vrtiška , J Kroufek , D Kubička . Quantitative analysis of pyrolysis bio-oils: a review. Trends in Analytical Chemistry, 2020, 126: 115857–115886
https://doi.org/10.1016/j.trac.2020.115857
30 V Undavalli , O B Gbadamosi Olatunde , R Boylu , C Wei , J Haeker , J Hamilton , B Khandelwal . Recent advancements in sustainable aviation fuels. Progress in Aerospace Sciences, 2023, 136: 100876–100922
https://doi.org/10.1016/j.paerosci.2022.100876
31 C Vendeuvre , F Bertoncini , L Duval , J L Duplan , D Thiébaut , M C Hennion . Comparison of conventional gas chromatography and comprehensive two-dimensional gas chromatography for the detailed analysis of petrochemical samples. Journal of Chromatography. A, 2004, 1056(1–2): 155–162
https://doi.org/10.1016/j.chroma.2004.05.071
32 E Paige. Sudol, Karisa M. Pierce, Sarah E. Prebihalo, Kristen J. Skogerboe, Bob W. Wright, Synovec R E. Development of gas chromatographic pattern recognition and classification tools for compliance and forensic analyses of fuels: a review. Journal of Chromatography. A, 2020, 1132: 157–186
33 M S Klee , J Cochran , M Merrick , L M Blumberg . Evaluation of conditions of comprehensive two-dimensional gas chromatography that yield a near-theoretical maximum in peak capacity gain. Journal of Chromatography. A, 2015, 1383: 151–159
https://doi.org/10.1016/j.chroma.2015.01.031
34 A Myridakis , Q Wen , P R Boshier , A G Parker , I Belluomo , E Handakas , G B Hanna . Global urinary volatolomics with (GC×)GC-TOF-MS. Analytical Chemistry, 2023, 95(47): 17170–17176
https://doi.org/10.1021/acs.analchem.3c02523
35 M S A Moraes , M V Migliorini , F C Damasceno , F Georges , S Almeida , C A Zini , R A Jacques , E B Caramão . Qualitative analysis of bio oils of agricultural residues obtained through pyrolysis using comprehensive two dimensional gas chromatography with time-of-flight mass spectrometric detector. Journal of Analytical and Applied Pyrolysis, 2012, 98: 51–64
https://doi.org/10.1016/j.jaap.2012.05.007
36 K Mainali , M Garcia-Perez . Identification and quantification of trace oxygenated compounds in alternative jet fuels: fluorescence methods for fast detection of phenolic compounds in operational field conditions. Fuel, 2020, 271: 117652–117665
https://doi.org/10.1016/j.fuel.2020.117652
37 M Wang , M He , Y Fang , J Baeyens , T Tan . The Ni-Mo-γ-Al2O3 catalyzed hydrodeoxygenation of FAME to aviation fuel. Catalysis Communications, 2017, 100: 237–241
https://doi.org/10.1016/j.catcom.2017.07.009
38 S Zhu , X Lu , L Dong , J Xing , X Su , H Kong , G Xu , C Wu . Quantitative determination of compounds in tobacco essential oils by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Journal of Chromatography. A, 2005, 1086(1-2): 107–114
https://doi.org/10.1016/j.chroma.2005.04.007
39 R V S Silva , N S Tessarolo , V B Pereira , V L Ximenes , F L Mendes , M B B de Almeida , D A Azevedo . Quantification of real thermal, catalytic, and hydrodeoxygenated bio-oils via comprehensive two-dimensional gas chromatography with mass spectrometry. Talanta, 2017, 164: 626–635
https://doi.org/10.1016/j.talanta.2016.11.005
[1] FCE-24047-OF-XY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed