|
|
Reversible heat-set four-phase transitions of gel1-to-sol1-to-gel2-to-sol2 in binary hydrogels |
Mengjiao Liang, Wenwen Cao, Yaodong Huang( ) |
Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China |
|
|
Abstract A class of supramolecular binary hydrogels is formed from dodecylamine or tridecylamine and sparing carboxylic acids (with amine/acid molar ratio ≥ 18). These hydrogels exhibit a remarkable thermally reversible four-phase transition. On heating, they transition from gel one (G1)-to-sol one (Sol1), then to gel two (G2)-to-sol two (Sol2). On cooling, they revert from Sol2-to-G2-to-Sol1-to-G1. Additionally, several G1 and G2 hydrogels undergo thermally reversible gel-to-gel phase transitions, which are reflected by translucent-opaque and opaque-translucent changes in their appearance. The nature of the four-phase transformation was analyzed using a range of techniques. Scanning electron microscopy images confirmed that the fibers of the opaque hydrogel at high temperatures were considerably larger than those of its translucent counterpart at low temperatures. Fluorescence emission spectra demonstrated that higher temperatures, higher amine/acid ratios, and greater acid hydrophobicity increased the hydrophobic interactions. Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopic analyses confirmed the existence of hydrogen-bonding interactions and aggregation in the hydrogels. X-ray diffraction profiles indicated that the hydrogels adopt lamellar structures. The findings advance our current understanding of the phase transition of supramolecular gels and facilitate the constitution of binary or multicomponent gels, providing a practical way to create new smart functional materials.
|
Keywords
binaryhydrogels
dodecylamine
tridecylamine
gel1-to-sol1-to-gel2-to-sol2 phase transition
gel-to-gel phase transition
|
Corresponding Author(s):
Yaodong Huang
|
Just Accepted Date: 17 July 2024
Issue Date: 27 September 2024
|
|
1 |
D J Adams . Personal perspective on understanding low molecular weight gels. Journal of the American Chemical Society, 2022, 144(25): 11047–11053
https://doi.org/10.1021/jacs.2c02096
|
2 |
H Sharma , B K Kalita , D Pathak , B Sarma . Low molecular weight supramolecular gels as a crystallization matrix. Crystal Growth & Design, 2024, 24(1): 17–37
https://doi.org/10.1021/acs.cgd.3c01211
|
3 |
Y Shi , A Feng , S Mao , C Onggowarsito , X Stella Zhang , W Guo , Q Fu . Hydrogels in solar-driven water and energy production: recent advances and future perspectives. Chemical Engineering Journal, 2024, 492: 152303
https://doi.org/10.1016/j.cej.2024.152303
|
4 |
E R Draper , D J Adams . Controlling the assembly and properties of low-molecular-weight hydrogelators. Langmuir, 2019, 35(20): 6506–6521
https://doi.org/10.1021/acs.langmuir.9b00716
|
5 |
Y Liu , Y Ren , J Huang , H Lu , Z Huang , L Wang , Y Ren , J Huang , H Lu , Z Huang . et al.. A mechanically strong shape-memory organohydrogel based on dual hydrogen bonding and gelator-induced solidification effect. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2023, 665: 131175
https://doi.org/10.1016/j.colsurfa.2023.131175
|
6 |
L Zeng , H Cui , Y Liu , X Lin , Z Wang , H Guo , W H Li . Tough antifouling organogels reinforced by the synergistic effect of oleophobic and dipole–dipole interactions. Journal of Industrial and Engineering Chemistry, 2022, 114: 205–212
https://doi.org/10.1016/j.jiec.2022.07.010
|
7 |
L Zhu , Q Lu , T Bian , P Yang , Y Yang , L Zhang . Fabrication and characterization of π–π stacking peptide-contained double network hydrogels. ACS Biomaterials Science & Engineering, 2023, 9(8): 4761–4769
https://doi.org/10.1021/acsbiomaterials.3c00579
|
8 |
L Borsdorf , L Herkert , N Bäumer , L Rubert , B Soberats , P Korevaar , C Bourque , C Gatsogiannis , G Fernández . Pathway-controlled aqueous supramolecular polymerization via solvent-dependent chain conformation effects. Journal of the American Chemical Society, 2023, 145(16): 8882–8895
https://doi.org/10.1021/jacs.2c12442
|
9 |
A Dutta , P Panda , A Das , D Ganguly , S Chattopadhyay , P Banerji , D Pradhan , R K Das . Intrinsically freezing-tolerant, conductive, and adhesive proton donor-acceptor hydrogel for multifunctional applications. ACS Applied Polymer Materials, 2022, 4(10): 7710–7722
https://doi.org/10.1021/acsapm.2c01285
|
10 |
T Suezawa , N Sasaki , Y Yukawa , N Assan , Y Uetake , K Onuma , R Kamada , D Tomioka , H Sakurai , R Katayama . et al.. Ultra-rapid and specific gelation of collagen molecules for transparent and tough gels by transition metal complexation. Advanced Science, 2023, 10(30): 2302637
https://doi.org/10.1002/advs.202302637
|
11 |
G Wang , Y Liu , B Zu , D C Lei , Y Guo , M Wang , X Dou . Reversible adhesive hydrogel with enhanced sampling efficiency boosted by hydrogen bond and van der Waals force for visualized detection. Chemical Engineering Journal, 2023, 455: 140493
https://doi.org/10.1016/j.cej.2022.140493
|
12 |
J Guo , C Zeng , P Wu , G Liu , F Zhou , W Liu . Surface-functionalized Ti3C2Tx MXene as a kind of efficient lubricating additive for supramolecular gel. ACS Applied Materials & Interfaces, 2022, 14(46): 52566–52573
https://doi.org/10.1021/acsami.2c17729
|
13 |
Y Li , J Liu , G Du , H Yan , H Wang , H Zhang , W An , W Zhao , T Sun , F Xin . et al.. Reversible heat-set organogel based on supramolecular interactions of β-cyclodextrin in N,N-dimethylformamide. Journal of Physical Chemistry B, 2010, 114(32): 10321–10326
https://doi.org/10.1021/jp1017373
|
14 |
W Yin , L Shi , M Liang , Y Huang , J Yang . Synthesis and ultraviolet/aggregation-induced emission investigation of novel tetraphenylvinyl hydrazone derivatives: efficient multimodal chemosensors for fluoride ion. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2061–2073
https://doi.org/10.1007/s11705-023-2366-0
|
15 |
P Sahoo . Introducing dihedral angle torsion in a flexible dicarboxylic acid: evolution from a sequential symmetry condensing Liquid crystalline gel to a step-halting heat-set gel. Crystal Growth & Design, 2024, 24(8): 3100–3108
https://doi.org/10.1021/acs.cgd.4c00160
|
16 |
R Ochi , T Nishida , M Ikeda , I Hamachi . Design of peptide-based bolaamphiphiles exhibiting heat-set hydrogelation via retro-Diels-Alder reaction. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(11): 1464–1469
https://doi.org/10.1039/c3tb21680b
|
17 |
D C Zhong , L Q Liao , K J Wang , H J Liu , X Z Luo . Heat-set gels formed from easily accessible gelators of a succinamic acid derivative (SAD) and a primary alkyl amine (R-NH2). Soft Matter, 2015, 11(32): 6386–6392
https://doi.org/10.1039/C5SM01305D
|
18 |
H Xie , M Asad Ayoubi , W Lu , J Wang , J Huang . Wang W. A unique thermo-induced gel-to-gel transition in a pH-sensitive small-molecule hydrogel. Scientific Reports, 2017, 7(1): 8459
https://doi.org/10.1038/s41598-017-09304-z
|
19 |
D K Duraisamy , S M M Reddy , P Saveri , A P Deshpande , G Shanmugam . A unique temperature-induced reverse supramolecular chirality-assisted gel-to-gel transition. Macromolecular Rapid Communications, 2024, 45(10): 2400018
https://doi.org/10.1002/marc.202400018
|
20 |
Y Qin , Y Wang , J Xiong , Q Li , M H Zeng . Supramolecular gel-to-gel transition induced by nanoscale structural perturbation via the rotary motion of Feringa’s motor. Small, 2023, 19(29): e2207785
https://doi.org/10.1002/smll.202207785
|
21 |
D Schwaller , S Zapién-Castillo , A Carvalho , J Combet , D Collin , L Jacomine , P Kékicheff , B Heinrich , J P Lamps , N P Díaz-Zavala , P J Mésini . Gel-to-gel non-variant transition of an organogel caused by polymorphism from nanotubes to crystallites. Soft Matter, 2021, 17(16): 4386–4394
https://doi.org/10.1039/D1SM00195G
|
22 |
V A Mallia , P D Butler , B Sarkar , K T Holman , R G Weiss . Reversible phase transitions within self-assembled fibrillar networks of (R)-18-(n-alkylamino)octadecan-7-ols in their carbon tetrachloride gels. Journal of the American Chemical Society, 2011, 133(38): 15045–15054
https://doi.org/10.1021/ja204371b
|
23 |
Y D Huang , W Tu , Y Q Yuan , D L Fan . Novel organogelators based on pyrazine-2,5-dicarboxylic acid derivatives and their mesomorphic behaviors. Tetrahedron, 2014, 70(6): 1274–1282
https://doi.org/10.1016/j.tet.2013.12.060
|
24 |
Y Huang , Y Yuan , W Tu , Y Zhang , M Zhang , H Qu . Preparation of efficient organogelators based on pyrazine-2,5-dicarboxylic acid showing room temperature mesophase. Tetrahedron, 2015, 71(21): 3221–3230
https://doi.org/10.1016/j.tet.2015.04.010
|
25 |
J van Esch , F Schoombeek , M de Loos , H Kooijman , A L Spek , R M Kellogg , B L Feringa . Cyclic bis-urea compounds as gelators for organic solvents. Chemistry, 1999, 5(3): 937–950
https://doi.org/10.1002/(SICI)1521-3765(19990301)5:3<937::AID-CHEM937>3.0.CO;2-0
|
26 |
M Ayabe , T Kishida , N Fujita , K Sada , S Shinkai . Binary organogelators which show light and temperature responsiveness. Organic & Biomolecular Chemistry, 2003, 1(15): 2744–2747
https://doi.org/10.1039/b304224c
|
27 |
A Kotlewski , B Norder , W F Jager , S J Picken , E Mendes . Can morphological transitions in fibrils drive stiffness of gels formed by discotic liquid crystal organogelators. Soft Matter, 2009, 24(5): 4905–4913
https://doi.org/10.1039/b909622a
|
28 |
K Kalyanasundaram , J K Thomas . Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society, 1977, 99(7): 2039–2044
https://doi.org/10.1021/ja00449a004
|
29 |
L Piñeiro , M Novo , W Al-Soufi . Novo Mercedes, Al-Soufi W. Fluorescence emission of pyrene in surfactant solutions. Advances in Colloid and Interface Science, 2015, 215: 1–12
https://doi.org/10.1016/j.cis.2014.10.010
|
30 |
F Mallamace , C Corsaro , S Longo , S H Chen , D Mallamace . The evaluation of the hydrophilic-hydrophobic interactions and their effect in water-methanol solutions: a study in terms of the thermodynamic state functions in the frame of the transition state theory. Colloids and Surfaces. B, Biointerfaces, 2018, 168: 193–200
https://doi.org/10.1016/j.colsurfb.2018.01.003
|
31 |
D Cao , X Chen , F Cao , W Guo , J Tang , C Cai , S Cui , X Yang , L Yu , Y Su . et al.. An intelligent transdermal formulation of ALA-loaded copolymer thermogel with spontaneous asymmetry by using temperature-induced sol-gel transition and gel-sol (suspension) transition on different sides. Advanced Functional Materials, 2021, 31(22): 2100349
https://doi.org/10.1002/adfm.202100349
|
32 |
F Würthner , C Bauer , V Stepanenko , S Yagai . A black perylene bisimide super gelator with an unexpected J-type absorption band. Advanced Materials, 2008, 20(9): 1695–1698
https://doi.org/10.1002/adma.200702935
|
33 |
B Bai , X Mao , J Wei , Z Wei , H Wang , M Li . Selective anion-responsive organogel based on a gelator containing hydrazide and azobenzene units. Sensors and Actuators. B, Chemical, 2015, 211: 268–274
https://doi.org/10.1016/j.snb.2015.01.111
|
34 |
A Pérez , J L Serrano , T Sierra , A Ballesteros , Saá D de , J Barluenga . Control of self-assembly of a 3-hexen-1,5-diyne derivative: toward soft materials with an aggregation-induced enhancement in emission. Journal of the American Chemical Society, 2011, 133(21): 8110–8113
https://doi.org/10.1021/ja2018898
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|