|
|
Towards an integrated modeling of the plasma-solid interface |
Michael Bonitz1( ), Alexey Filinov1,2,3, Jan-Willem Abraham1, Karsten Balzer4, Hanno Kählert1, Eckhard Pehlke1, Franz X. Bronold5, Matthias Pamperin5, Markus Becker2, Dettlef Loffhagen2, Holger Fehske5 |
1. Institute for Theoretical Physics and Astrophysics, Kiel University, 24098 Kiel, Germany 2. Leibniz Institute for Plasma Research (INP), D-17489 Greifswald, Germany 3. Joint Institute for High Temperatures RAS, 125412 Moscow, Russia 4. Computing Center of Kiel University, D-24118 Kiel, Germany 5. Institute of Physics, Greifswald University, D-17489 Greifswald, Germany |
|
|
Abstract Solids facing a plasma are a common situation in many astrophysical systems and laboratory setups. Moreover, many plasma technology applications rely on the control of the plasma-surface interaction, i.e., of the particle, momentum and energy fluxes across the plasma-solid interface. However, presently often a fundamental understanding of them is missing, so most technological applications are being developed via trial and error. The reason is that the physical processes at the interface of a low-temperature plasma and a solid are extremely complex, involving a large number of elementary processes in the plasma, in the solid as well as fluxes across the interface. An accurate theoretical treatment of these processes is very difficult due to the vastly different system properties on both sides of the interface: Quantum versus classical behavior of electrons in the solid and plasma, respectively; as well as the dramatically differing electron densities, length and time scales. Moreover, often the system is far from equilibrium. In the majority of plasma simulations surface processes are either neglected or treated via phenomenological parameters such as sticking coefficients, sputter rates or secondary electron emission coefficients. However, those parameters are known only in some cases and with very limited accuracy. Similarly, while surface physics simulations have often studied the impact of single ions or neutrals, so far, the influence of a plasma medium and correlations between successive impacts have not been taken into account. Such an approach, necessarily neglects the mutual influences between plasma and solid surface and cannot have predictive power. In this paper we discuss in some detail the physical processes of the plasma-solid interface which brings us to the necessity of coupled plasma-solid simulations. We briefly summarize relevant theoretical methods from solid state and surface physics that are suitable to contribute to such an approach and identify four methods. The first are mesoscopic simulations such as kinetic Monte Carlo and molecular dynamics that are able to treat complex processes on large scales but neglect electronic effects. The second are quantum kinetic methods based on the quantum Boltzmann equation that give access to a more accurate treatment of surface processes using simplifying models for the solid. The third approach are ab initio simulations of surface process that are based on density functional theory (DFT) and time-dependent DFT. The fourths are nonequilibrium Green functions that able to treat correlation effects in the material and at the interface. The price for the increased quality is a dramatic increase of computational effort and a restriction to short time and length scales. We conclude that, presently, none of the four methods is capable of providing a complete picture of the processes at the interface. Instead, each of them provides complementary information, and we discuss possible combinations.
|
Keywords
plasma physics
surface science
plasma- surface modeling
DFT
nonequilibrium Green functions
|
Corresponding Author(s):
Michael Bonitz
|
Online First Date: 06 May 2019
Issue Date: 22 May 2019
|
|
1 |
F Skiff, J Wurtele. Plasma: At the Frontier of Science Discovery. Technical Report, U.S. Department of Energy, Office of Sciences, 2017
|
2 |
M Meyyappan. Plasma nanotechnology: Past, present and future. Journal of Physics. D, Applied Physics, 2011, 44(17): 174002
https://doi.org/10.1088/0022-3727/44/17/174002
|
3 |
K Ostrikov, E C Neyts, M Meyyappan. Plasma nanoscience: From nano-solids in plasmas to nano-plasmas in solids. Advances in Physics, 2013, 62(2): 113–224
https://doi.org/10.1080/00018732.2013.808047
|
4 |
Y W Son, M L Cohen, S G Louie. Energy gaps in graphene nanoribbons. Physical Review Letters, 2006, 97(21): 216803
https://doi.org/10.1103/PhysRevLett.97.216803
|
5 |
D Prezzi, D Varsano, A Ruini, A Marini, E Molinari. Optical properties of graphene nanoribbons: The role of many-body effects. Physical Review. B, 2008, 77(4): 041404
https://doi.org/10.1103/PhysRevB.77.041404
|
6 |
I Adamovich, S D Baalrud, A Bogaerts, P J Bruggeman, M Cappelli, V Colombo, U Czarnetzki, U Ebert, J G Eden, P Favia, et al.. The 2017 plasma roadmap: Low temperature plasma science and technology. Journal of Physics. D, Applied Physics, 2017, 50(32): 323001
https://doi.org/10.1088/1361-6463/aa76f5
|
7 |
G J M Hagelaar, L C Pitchford. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science & Technology, 2005, 14(4): 722–733
https://doi.org/10.1088/0963-0252/14/4/011
|
8 |
Z Donko, N Dyatko. First-principles particle simulation and Boltzmann equation analysis of negative differential conductivity and transient negative mobility effects in xenon. European Physical Journal D, 2016, 70(6): 135
https://doi.org/10.1140/epjd/e2016-60726-4
|
9 |
J Teunissen, U Ebert. 3D pic-mcc simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures. Plasma Sources Science & Technology, 2016, 25(4): 044005
https://doi.org/10.1088/0963-0252/25/4/044005
|
10 |
M M Becker, H Kählert, A Sun, M Bonitz, D Loffhagen. Advanced fluid modeling and PIC/MCC simulations of low-pressure ccrf discharges. Plasma Sources Science & Technology, 2017, 26(4): 044001
https://doi.org/10.1088/1361-6595/aa5cce
|
11 |
A Derzsi, I Korolov, E Schüngel, Z Donkó, J Schulze. Effects of fast atoms and energy-dependent secondary electron emission yields in PIC/MCC simulations of capacitively coupled plasmas. Plasma Sources Science & Technology, 2015, 24(3): 034002
https://doi.org/10.1088/0963-0252/24/3/034002
|
12 |
A V Phelps, Z L Petrović. Cold-cathode discharges and breakdown in argon: Surface and gas phase production of secondary electrons. Plasma Sources Science & Technology, 1999, 8(3): R21–R44
https://doi.org/10.1088/0963-0252/8/3/201
|
13 |
P Brault. Multiscale molecular dynamics simulation of plasma processing: Application to plasma sputtering. Frontiers in Physics, 2018, 6: 59
https://doi.org/10.3389/fphy.2018.00059
|
14 |
S Zhao, W Kang, J Xue, X Zhang, P Zhang. Comparison of electronic energy loss in graphene and BN sheet by means of time-dependent density functional theory. Journal of Physics Condensed Matter, 2015, 27(2): 025401
https://doi.org/10.1088/0953-8984/27/2/025401
|
15 |
K Balzer, N Schlünzen, M Bonitz. Stopping dynamics of ions passing through correlated honeycomb clusters. Physical Review. B, 2016, 94(24): 245118
https://doi.org/10.1103/PhysRevB.94.245118
|
16 |
D B Graves, P Brault. Molecular dynamics for low temperature plasma—surface interaction studies. Journal of Physics. D, Applied Physics, 2009, 42(19): 194011
https://doi.org/10.1088/0022-3727/42/19/194011
|
17 |
E C Neyts, P Brault. Molecular dynamics simulations for plasma-surface interactions. Plasma Processes and Polymers, 2017, 14(12): 1600145
https://doi.org/10.1002/ppap.201600145
|
18 |
J P Sheehan, N Hershkowitz, I D Kaganovich, H Wang, Y Raitses, E V Barnat, B R Weatherford, D Sydorenko. Kinetic theory of plasma sheaths surrounding electron-emitting surfaces. Physical Review Letters, 2013, 111(7): 075002
https://doi.org/10.1103/PhysRevLett.111.075002
|
19 |
F X Bronold, H Fehske. Absorption of an electron by a dielectric wall. Physical Review Letters, 2015, 115(22): 225001
https://doi.org/10.1103/PhysRevLett.115.225001
|
20 |
A Sun, M M Becker, D Loffhagen. PIC/MCC simulation of capacitively coupled discharges in helium: Boundary effects. Plasma Sources Science & Technology, 2018, 27(5): 054002
https://doi.org/10.1088/1361-6595/aac30a
|
21 |
Y Li, D B Go. Using field emission to control the electron energy distribution in high-pressure microdischarges at microscale dimensions. Applied Physics Letters, 2013, 103(23): 234104
https://doi.org/10.1063/1.4841495
|
22 |
H Helmholtz. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierischelektrischen Versuche. Annalen der Physik, 1853, 165(6): 211–233 (in German)
https://doi.org/10.1002/andp.18531650603
|
23 |
R L Heinisch, F X Bronold, H Fehske. Electron surface layer at the interface of a plasma and a dielectric wall. Physical Review. B, 2012, 85(7): 075323
https://doi.org/10.1103/PhysRevB.85.075323
|
24 |
G Onida, L Reining, A Rubio. Electronic excitations: Density-functional versus many-body green’s-function approaches. Reviews of Modern Physics, 2002, 74(2): 601–659
https://doi.org/10.1103/RevModPhys.74.601
|
25 |
G Kotliar, S Y Savrasov, K Haule, V S Oudovenko, O Parcollet, C A Marianetti. Electronic structure calculations with dynamical mean-field theory. Reviews of Modern Physics, 2006, 78(3): 865–951
https://doi.org/10.1103/RevModPhys.78.865
|
26 |
W M C Foulkes, L Mitas, R J Needs, G Rajagopal. Quantum monte carlo simulations of solids. Reviews of Modern Physics, 2001, 73(1): 33–83
https://doi.org/10.1103/RevModPhys.73.33
|
27 |
T Dornheim, S Groth, M Bonitz. The uniform electron gas at warm dense matter conditions. Physics Reports, 2018, 744: 1–86
https://doi.org/10.1016/j.physrep.2018.04.001
|
28 |
J W Abraham. Formation of metal-polymer nanocomposites by plasma-based deposition methods: Kinetic monte carlo and molecular dynamics simulations. Dissertation for the Doctoral Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2018
|
29 |
M Daniil, T Carlos, G Vasco. Deterministic and monte carlo methods for simulation of plasma-surface interactions. Plasma Processes and Polymers, 2016, 14(1-2): 1600175
|
30 |
V Guerra, J Loureiro. Dynamical monte carlo simulation of surface atomic recombination. Plasma Sources Science & Technology, 2004, 13(1): 85–94
https://doi.org/10.1088/0963-0252/13/1/011
|
31 |
J W Abraham, N Kongsuwan, T Strunskus, F Faupel, M Bonitz. Simulation of nanocolumn formation in a plasma environment. Journal of Applied Physics, 2015, 117(1): 014305
https://doi.org/10.1063/1.4905255
|
32 |
K Fujioka. Kinetic Monte Carlo simulations of cluster growth in magnetron plasmas. Dissertation for the Doctoral Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2015
|
33 |
O Polonskyi, A M Ahadi, T Peter, K Fujioka, J W Abraham, E Vasiliauskaite, A Hinz, T Strunskus, S Wolf, M Bonitz,et al.Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source. European Physical Journal D, 2018, 72(5): 93
https://doi.org/10.1140/epjd/e2017-80419-8
|
34 |
L Rosenthal. Monte Carlo simulations of metal-polymer nanocomposite formation. Dissertation for the Doctoral Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2013
|
35 |
E Runge, E K U Gross. Density-functional theory for time-dependent systems. Physical Review Letters, 1984, 52(12): 997–1000
https://doi.org/10.1103/PhysRevLett.52.997
|
36 |
K Balzer, M Bonitz. Nonequilibrium Green’s Functions Approach to Inhomogeneous Systems. Berlin: Springer, 2013
|
37 |
N Schlünzen, M Bonitz. Nonequilibrium Green functions approach to strongly correlated fermions in lattice systems. Contributions to Plasma Physics, 2016, 56(1): 5–91
https://doi.org/10.1002/ctpp.201610003
|
38 |
A Marini, C Hogan, M Grüning, D Varsano. Yambo: An ab initio tool for excited state calculations. Computer Physics Communications, 2009, 180(8): 1392–1403
https://doi.org/10.1016/j.cpc.2009.02.003
|
39 |
H Jürg. Car—parrinello molecular dynamics. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2012, 2(4): 604–612
https://doi.org/10.1002/wcms.90
|
40 |
A Gross. Theoretical Surface Science. 2nd ed. Berlin: Springer, 2009
|
41 |
M Bonitz, J Lopez, K Becker, H Thomsen, eds. Complex plasmas: Scientific Challenges and Technological Opportunities . Berlin: Springer, 2014
|
42 |
T Ott, M Bonitz. Diffusion in a strongly coupled magnetized plasma. Physical Review Letters, 2011, 107(13): 135003
https://doi.org/10.1103/PhysRevLett.107.135003
|
43 |
J W Abraham, T Strunskus, F Faupel, M Bonitz. Molecular dynamics simulation of gold cluster growth during sputter deposition. Journal of Applied Physics, 2016, 119(18): 185301
https://doi.org/10.1063/1.4948375
|
44 |
A Nakano, R K Kalia, K Nomura, A Sharma, P Vashishta, F Shimojo, A C T van Duin, W A Goddard, R Biswas, D Srivastava, et al.. De novo ultrascale atomistic simulations on high-end parallel supercomputers. International Journal of High Performance Computing Applications, 2008, 22(1): 113–128
https://doi.org/10.1177/1094342007085015
|
45 |
S Piana, K Lindorff-Larsen, D E Shaw. Atomic-level description of ubiquitin folding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15): 5915–5920
https://doi.org/10.1073/pnas.1218321110
|
46 |
A F Voter. Hyperdynamics: Accelerated molecular dynamics of infrequent events. Physical Review Letters, 1997, 78(20): 3908–3911
https://doi.org/10.1103/PhysRevLett.78.3908
|
47 |
A Laio, M Parrinello. Escaping free-energy minima. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12562–12566
https://doi.org/10.1073/pnas.202427399
|
48 |
M R Sørensen, A F Voter. Temperature-accelerated dynamics for simulation of infrequent events. Journal of Chemical Physics, 2000, 112(21): 9599–9606
https://doi.org/10.1063/1.481576
|
49 |
K M Bal, E C Neyts. Merging metadynamics into hyperdynamics: Accelerated molecular simulations reaching time scales from microseconds to seconds. Journal of Chemical Theory and Computation, 2015, 11(10): 4545–4554
https://doi.org/10.1021/acs.jctc.5b00597
|
50 |
M Bonitz, A Filinov, J W Abraham, D Loffhagen. Extending first principle plasma-surface simulations to experimentally relevant scales. Plasma Sources Science & Technology, 2018, 27(6): 064005
https://doi.org/10.1088/1361-6595/aaca75
|
51 |
J W Abraham, M Bonitz. Molecular dynamics simulation of Ag–Cu cluster growth on a thin polymer film. Contributions to Plasma Physics, 2018, 58(2-3): 164–173
https://doi.org/10.1002/ctpp.201700151
|
52 |
A Franke, E Pehlke. Diffusion of 1,4-butanedithiol on Au(100)(1x1): A DFT-based master-equation approach. Physical Review. B, 2010, 82(20): 205423
https://doi.org/10.1103/PhysRevB.82.205423
|
53 |
A Filinov, M Bonitz, D Loffhagen. Microscopic modeling of gas-surface scattering. I. A combined molecular dynamics-rate equation approach. Plasma Sources Science & Technology, 2018, 27(6): 064003
https://doi.org/10.1088/1361-6595/aac61e
|
54 |
M Schwartzkopf, G Santoro, C J Brett, A Rothkirch, O Polonskyi, A Hinz, E Metwalli, Y Yao, T Strunskus, F Faupel, et al. Real-time monitoring of morphology and optical properties during sputter deposition for tailoring metal-polymer interfaces. ACS Applied Materials & Interfaces, 2015, 7(24): 13547–13556
https://doi.org/10.1021/acsami.5b02901
|
55 |
J W Abraham, A Hinz, T Strunskus, F Faupel, M Bonitz. Formation of polymer-based nanoparticles and nanocomposites by plasma-assisted deposition methods. European Physical Journal D, 2018, 72(5): 92
https://doi.org/10.1140/epjd/e2017-80426-9
|
56 |
M Bonitz. Quantum Kinetic Theory. 2nd ed. Berlin: Springer, 2016
|
57 |
A Filinov, M Bonitz, D Loffhagen. Microscopic modeling of gas-surface scattering: II. Application to argon atom adsorption on a platinum (111) surface. Plasma Sources Science & Technology, 2018, 27(6): 064002
https://doi.org/10.1088/1361-6595/aac620
|
58 |
M A Lieberman, A J Lichtenberg. Principles of Plasma Discharges and Materials Processing. New York: Wiley-Interscience, 2005
|
59 |
J W Rabalais. Low Energy Ion-surface Interaction. New York: Wiley and Sons, 1994
|
60 |
H Winter. Collision of atoms and ions with surfaces under grazing incidence. Physics Reports, 2002, 367(5): 387–582
https://doi.org/10.1016/S0370-1573(02)00010-8
|
61 |
H P Winter, J Burgdörfer. Slow Heavy-particle Induced Electron Emission from Solid Surfaces. Berlin: Springer, 2007
|
62 |
M Daksha, B Berger, E Schuengel, I Korolov, A Derzsi, M Koepke, Z Donko, J Schulze. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in radio frequency plasmas. Journal of Physics. D, Applied Physics, 2016, 49(23): 234001
https://doi.org/10.1088/0022-3727/49/23/234001
|
63 |
A Marcak, C Corbella, T de los Arcos, A von Keudell. Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor. Review of Scientific Instruments, 2015, 86(10): 106102
https://doi.org/10.1063/1.4932309
|
64 |
W More, J Merino, R Monreal, P Pou, F Flores. Role of energy-level shifts on auger neutralization processes: A calculation beyond the image potential. Physical Review. B, 1998, 58(11): 7385–7390
https://doi.org/10.1103/PhysRevB.58.7385
|
65 |
D M Newns, K Makoshi, R Brako, J N M van Wunnik. Charge transfer in inelastic ion and atom-surface collisions. Physica Scripta, 1983, T6: 5–14
https://doi.org/10.1088/0031-8949/1983/T6/001
|
66 |
A Yoshimori, K Makoshi. Time-dependent Newns-Anderson model. Progress in Surface Science, 1986, 21(3): 251–294
https://doi.org/10.1016/0079-6816(86)90007-9
|
67 |
J Los, J J C Geerlings. Charge exchange in atom-surface collisions. Physics Reports, 1990, 190(3): 133–190
https://doi.org/10.1016/0370-1573(90)90104-A
|
68 |
M Pamperin, F X Bronold, H Fehske. Ion-induced secondary electron emission from metal surfaces. Plasma Sources Science & Technology, 2018, 27(8): 084003
https://doi.org/10.1088/1361-6595/aad4db
|
69 |
N P Wang, E A García, R Monreal, F Flores, E C Goldberg, H H Brongersma, P Bauer. Low-energy ion neutralization at surfaces: Resonant and auger processes. Physical Review A., 2001, 64(1): 012901
https://doi.org/10.1103/PhysRevA.64.012901
|
70 |
D Valdés, E C Goldberg, J M Blanco, R C Monreal. Linear combination of atomic orbitals calculation of the auger neutralization rate of He+ on Al(111), (100), and (110) surfaces. Physical Review. B, 2005, 71(24): 245417
https://doi.org/10.1103/PhysRevB.71.245417
|
71 |
J Marbach, F X Bronold, H Fehske. Resonant charge transfer at dielectric surfaces. European Physical Journal D, 2012, 66(4): 106
https://doi.org/10.1140/epjd/e2012-30014-8
|
72 |
J Marbach, F X Bronold, H Fehske. Pseudoparticle approach for charge-transferring molecule-surface collisions. Physical Review. B, 2012, 86(11): 115417
https://doi.org/10.1103/PhysRevB.86.115417
|
73 |
A Iglesias-García, E A García, E C Goldberg. Role of He excited configurations in the neutralization of He+ ions colliding with a HOPG surface. Physical Review. B, 2013, 87(7): 075434
https://doi.org/10.1103/PhysRevB.87.075434
|
74 |
A Iglesias-García, E A García, E C Goldberg. Importance of considering helium excited states in He+ scattering by aluminum surfaces. Physical Review. B, 2014, 90(19): 195416
https://doi.org/10.1103/PhysRevB.90.195416
|
75 |
M Pamperin, F X Bronold, H Fehske. Many-body theory of the neutralization of strontium ions on gold surfaces. Physical Review. B, 2015, 91(3): 035440
https://doi.org/10.1103/PhysRevB.91.035440
|
76 |
M Pamperin, F X Bronold, H Fehske. Mixed-valence correlations in charge-transferring atom–surface collisions. Physica Scripta, 2015, T165: 014008
https://doi.org/10.1088/0031-8949/2015/T165/014008
|
77 |
J W Gadzuk. Theory of atom-metal interactions I. Alkali atom adsorption. Surface Science, 1967, 6(2): 133–158
https://doi.org/10.1016/0039-6028(67)90001-5
|
78 |
J W Gadzuk. Theory of atom-metal interactions II. One-electron transition matrix elements. Surface Science, 1967, 6(2): 159–170
https://doi.org/10.1016/0039-6028(67)90002-7
|
79 |
F M Propst. Energy distribution of electrons ejected from tungsten by He+. Physical Review, 1963, 129(1): 7–11
https://doi.org/10.1103/PhysRev.129.7
|
80 |
D R Penn, P Apell. Theory of spin-polarized metastable-atomdeexcitation spectroscopy: Ni–He. Physical Review. B, 1990, 41(6): 3303–3315
https://doi.org/10.1103/PhysRevB.41.3303
|
81 |
D C Langreth, P Nordlander. Derivation of a master equation for charge-transfer processes in atom-surface collisions. Physical Review. B, 1991, 43(4): 2541–2557
https://doi.org/10.1103/PhysRevB.43.2541
|
82 |
H Shao, D C Langreth, P Nordlander. Many-body theory for charge transfer in atom-surface collisions. Physical Review. B, 1994, 49(19): 13929–13947
https://doi.org/10.1103/PhysRevB.49.13929
|
83 |
H Shao, D C Langreth, P Nordlander. Theoretical description of charge transfer in atom-surface collisions. In Rabalais J W, ed. Low Energy Ion-surface Interaction. New York: Wiley and Sons, 1994, 117
|
84 |
D Marx, J Hutter. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge: Cambridge University Press, 2009
|
85 |
J Hafner. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry, 2008, 29(13): 2044–2078
https://doi.org/10.1002/jcc.21057
|
86 |
A Groß. Ab initio molecular dynamics simulations of the O2/Pt(111) interaction. Catalysis Today, 2016, 260: 60–65
https://doi.org/10.1016/j.cattod.2015.04.040
|
87 |
T D Kühne. Second generation car–parrinello molecular dynamics. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2014, 4(4): 391–406
https://doi.org/10.1002/wcms.1176
|
88 |
M Baer. Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections. New-York: Wiley-Interscience, 2006
|
89 |
S Nosé. A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 1984, 81(1): 511–519
https://doi.org/10.1063/1.447334
|
90 |
G Henkelman, H Jónsson. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Journal of Chemical Physics, 2000, 113(22): 9978–9985
https://doi.org/10.1063/1.1323224
|
91 |
G Henkelman, B P Uberuaga, H Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904
https://doi.org/10.1063/1.1329672
|
92 |
G H Vineyard. Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids, 1957, 3(1): 121–127
https://doi.org/10.1016/0022-3697(57)90059-8
|
93 |
A Laio, F L Gervasio. Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Reports on Progress in Physics, 2008, 71(12): 126601
https://doi.org/10.1088/0034-4885/71/12/126601
|
94 |
R M Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge: Cambridge University Press, 2004
|
95 |
K Burke. Perspective on density functional theory. Journal of Chemical Physics, 2012, 136(15): 150901
https://doi.org/10.1063/1.4704546
|
96 |
A D Becke. Perspective: Fifty years of density-functional theory in chemical physics. The Journal of Chemical Physics, 2014, 140(18): 18A301
|
97 |
H S Yu, S L Li, D G Truhlar. Perspective: Kohn-Sham density-functional theory descending a staircase. Journal of Chemical Physics, 2016, 145(13): 130901
https://doi.org/10.1063/1.4963168
|
98 |
P Hohenberg, W Kohn. Inhomogeneous electron gas. Physical Review, 1964, 136(3B): B864–B871
https://doi.org/10.1103/PhysRev.136.B864
|
99 |
W Kohn, L J Sham. Self-consistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A): A1133–A1138
https://doi.org/10.1103/PhysRev.140.A1133
|
100 |
J Klimes, A Michaelides. Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. Journal of Chemical Physics, 2012, 137(12): 120901
https://doi.org/10.1063/1.4754130
|
101 |
J P Perdew, J A Chevary, S H Vosko, K A Jackson, M R Pederson, D J Singh, C Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review. B, 1992, 46(11): 6671–6687
https://doi.org/10.1103/PhysRevB.46.6671
|
102 |
J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865
|
103 |
J Tao, J P Perdew, V N Staroverov, G E Scuseria. Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids. Physical Review Letters, 2003, 91(14): 146401
https://doi.org/10.1103/PhysRevLett.91.146401
|
104 |
G Kresse, J Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50
https://doi.org/10.1016/0927-0256(96)00008-0
|
105 |
G Kresse, J Hafner. Ab initio molecular dynamics for liquid metals. Physical Review. B, 1993, 47(1): 558–561
https://doi.org/10.1103/PhysRevB.47.558
|
106 |
G Kresse, J Hafner. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Physical Review. B, 1994, 49(20): 14251–14269
https://doi.org/10.1103/PhysRevB.49.14251
|
107 |
G Kresse, J Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review. B, 1996, 54(16): 11169–11186
https://doi.org/10.1103/PhysRevB.54.11169
|
108 |
P Giannozzi, S Baroni, N Bonini, M Calandra, R Car, C Cavazzoni, D Ceresoli, G L Chiarotti, M Cococcioni, I Dabo, et al.. Quantum espresso: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 2009, 21(39): 395502
https://doi.org/10.1088/0953-8984/21/39/395502
|
109 |
P Giannozzi, O Andreussi, T Brumme, O Bunau, M B Nardelli, M Calandra, R Car, C Cavazzoni, D Ceresoli, M Cococcioni, et al.. Advanced capabilities for materials modelling with quantum espresso. Journal of Physics Condensed Matter, 2017, 29(46): 465901
https://doi.org/10.1088/1361-648X/aa8f79
|
110 |
A E Mattsson, P A Schultz, M P Desjarlais, T R Mattsson, K Leung. Designing meaningful density functional theory calculations in material science—a primer. Modelling and Simulation in Materials Science and Engineering, 2005, 13(1): R1–R31
https://doi.org/10.1088/0965-0393/13/1/R01
|
111 |
D R Hamann. Generalized norm-conserving pseudopotentials. Physical Review. B, 1989, 40(5): 2980–2987
https://doi.org/10.1103/PhysRevB.40.2980
|
112 |
N Trouiller, J L Martins. Efficient pseudopotentials for plane-wave calculations. Physical Review. B, 1991, 43(3): 1993–2006
https://doi.org/10.1103/PhysRevB.43.1993
|
113 |
M Fuchs, M Scheffler. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computer Physics Communications, 1999, 119(1): 67–98
https://doi.org/10.1016/S0010-4655(98)00201-X
|
114 |
D Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review. B, 1990, 41(11): 7892–7895
https://doi.org/10.1103/PhysRevB.41.7892
|
115 |
P E Blöchl. Projector augmented-wave method. Physical Review. B, 1994, 50(24): 17953–17979
https://doi.org/10.1103/PhysRevB.50.17953
|
116 |
G Kresse, D Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review. B, 1999, 59(3): 1758–1775
https://doi.org/10.1103/PhysRevB.59.1758
|
117 |
A Modinos. Resonance charge transfer in atom-surface scattering. Progress in Surface Science, 1987, 26(1): 19–46
https://doi.org/10.1016/0079-6816(87)90047-5
|
118 |
R Brako, D M Newns. Theory of electronic processes in atom scattering from surfaces. Reports on Progress in Physics, 1989, 52(6): 655–697
https://doi.org/10.1088/0034-4885/52/6/001
|
119 |
G A Kimmel, B H Cooper. Dynamics of resonant charge transfer in low-energy alkali-metal-ion scattering. Physical Review. B, 1993, 48(16): 12164–12177
https://doi.org/10.1103/PhysRevB.48.12164
|
120 |
H Winter. Collisions of atoms and ions with surfaces under grazing incidence. Physics Reports, 2002, 367(5): 387–582
https://doi.org/10.1016/S0370-1573(02)00010-8
|
121 |
C P Race, D R Mason, M W Finnis, W M C Foulkes, A P Horsfield, A P Sutton. The treatment of electronic excitations in atomistic models of radiation damage in metals. Reports on Progress in Physics, 2010, 73(11): 116501
https://doi.org/10.1088/0034-4885/73/11/116501
|
122 |
A Wucher, A Duvenbeck. Kinetic excitation of metallic solids: Progress towards a microscopic model. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2011, 269(14): 1655–1660
https://doi.org/10.1016/j.nimb.2010.11.012
|
123 |
M Lindenblatt, E Pehlke, A Duvenbeck, B Rethfeld, A Wucher. Kinetic excitation of solids: The concept of electronic friction. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2006, 246(2): 333–339
https://doi.org/10.1016/j.nimb.2006.01.006
|
124 |
H Nienhaus. Electronic excitations by chemical reactions on metal surfaces. Surface Science Reports, 2002, 45(1): 1–78
https://doi.org/10.1016/S0167-5729(01)00019-X
|
125 |
D Diesing, E Hasselbrink. Chemical energy dissipation at surfaces under uhv and high pressure conditions studied using metal-insulator-metal and similar devices. Chemical Society Reviews, 2016, 45(13): 3747–3755
https://doi.org/10.1039/C5CS00932D
|
126 |
O Bünermann, H Jiang, Y Dorenkamp, A Kandratsenka, S M Janke, D J Auerbach, A M Wodtke. Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption. Science, 2015, 350(6266): 1346–1349
https://doi.org/10.1126/science.aad4972
|
127 |
A M Wodtke. Electronically non-adiabatic influences in surface chemistry and dynamics. Chemical Society Reviews, 2016, 45(13): 3641–3657
https://doi.org/10.1039/C6CS00078A
|
128 |
S P Rittmeyer, J Meyer, J I Juaristi, K Reuter. Electronic friction-based vibrational lifetimes of molecular adsorbates: Beyond the independent-atom approximation. Physical Review Letters, 2015, 115(4): 046102
https://doi.org/10.1103/PhysRevLett.115.046102
|
129 |
S P Rittmeyer, V J Bukas, K Reuter. Energy dissipation at metal surfaces. Advances in Physics: X, 2018, 3(1): 1381574
|
130 |
M Alducin, R D Muiño, J I Juaristi. Non-adiabatic effects in elementary reaction processes at metal surfaces. Progress in Surface Science, 2017, 92(4): 317–340
https://doi.org/10.1016/j.progsurf.2017.09.002
|
131 |
S M Janke, D J Auerbach, A M Wodtke, A Kandratsenka. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption. Journal of Chemical Physics, 2015, 143(12): 124708
https://doi.org/10.1063/1.4931669
|
132 |
G J Kroes, M Pavanello, M Blanco-Rey, M Alducin, D J Auerbach. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111). Journal of Chemical Physics, 2014, 141(5): 054705
https://doi.org/10.1063/1.4891483
|
133 |
S Monturet, P Saalfrank. Role of electronic friction during the scattering of vibrationally excited nitric oxide molecules from Au(111). Physical Review. B, 2010, 82(7): 075404
https://doi.org/10.1103/PhysRevB.82.075404
|
134 |
M S Mizielinski, D M Bird, M Persson, S Holloway. Electronic nonadiabatic effects in the adsorption of hydrogen atoms on metals. Journal of Chemical Physics, 2005, 122(8): 084710
https://doi.org/10.1063/1.1854623
|
135 |
M S Mizielinski, D M Bird, M Persson, S Holloway. Spectrum of electronic excitations due to the adsorption of atoms on metal surfaces. Journal of Chemical Physics, 2007, 126(3): 034705
https://doi.org/10.1063/1.2431362
|
136 |
M S Mizielinski, D M Bird, M Persson, S Holloway. Newnsanderson model of chemicurrents in H/Cu and H/Ag. Surface Science, 2008, 602(14): 2617–2622
https://doi.org/10.1016/j.susc.2008.06.015
|
137 |
M S Mizielinski, D M Bird. Accuracy of perturbation theory for nonadiabatic effects in adsorbate-surface dynamics. Journal of Chemical Physics, 2010, 132(18): 184704
https://doi.org/10.1063/1.3424765
|
138 |
D M Bird, M S Mizielinski, M Lindenblatt, E Pehlke. Electronic excitation in atomic adsorption on metals: A comparison of ab initio and model calculations. Surface Science, 2008, 602(6): 1212–1216
https://doi.org/10.1016/j.susc.2008.01.026
|
139 |
M Lindenblatt, J van Heys, E Pehlke. Molecular dynamics of nonadiabatic processes at surfaces: Chemisorption of H/Al(111). Surface Science, 2006, 600(18): 3624–3628
https://doi.org/10.1016/j.susc.2006.01.066
|
140 |
M Lindenblatt, E Pehlke. Time-dependent density-functional molecular-dynamics study of the isotope effect in chemicurrents. Surface Science, 2006, 600(23): 5068–5073
https://doi.org/10.1016/j.susc.2006.08.034
|
141 |
M Lindenblatt, E Pehlke. Ab initio simulation of the spin transition during chemisorption: H/Al(111). Physical Review Letters, 2006, 97(21): 216101
https://doi.org/10.1103/PhysRevLett.97.216101
|
142 |
M Grotemeyer, E Pehlke. Electronic energy dissipation during scattering of vibrationally excited molecules at metal surfaces: Ab initio simulations for HCl/Al(111). Physical Review Letters, 2014, 112(4): 043201
https://doi.org/10.1103/PhysRevLett.112.043201
|
143 |
M Timmer, P Kratzer. Electron-hole spectra created by adsorption on metals from density functional theory. Physical Review. B, 2009, 79(16): 165407
https://doi.org/10.1103/PhysRevB.79.165407
|
144 |
S Zhao, W Kang, J Xue, X Zhang, P H Zhang. + (D+,T+) beryllium collisions studied using time-dependent density functional theory. Physics Letters, 2015, 379(4): 319–326 (Part A)
https://doi.org/10.1016/j.physleta.2014.11.008
|
145 |
C L Moss, C M Isborn, X Li. Ehrenfest dynamics with a time-dependent density-functional-theory calculation of lifetimes and resonant widths of charge-transfer states of Li+ near an aluminum cluster surface. Physical Review A., 2009, 80(2): 024503
https://doi.org/10.1103/PhysRevA.80.024503
|
146 |
A Castro, M Isla, J I Martínez, J A Alonso. Scattering of a proton with the Li4 cluster: Non-adiabatic molecular dynamics description based on time-dependent density-functional theory. Chemical Physics, 2012, 399: 130–134
https://doi.org/10.1016/j.chemphys.2011.07.005
|
147 |
A V Krasheninnikov, Y Miyamoto, D Tománek. Role of electronic excitation in ion collisions with carbon nanostructures. Physical Review Letters, 2007, 99(1): 016104
https://doi.org/10.1103/PhysRevLett.99.016104
|
148 |
S Bubin, B Wang, S Pantelides, K Varga. Simulation of high-energy ion collisions with graphene fragments. Physical Review. B, 2012, 85(23): 235435
https://doi.org/10.1103/PhysRevB.85.235435
|
149 |
A Ojanperä, A V Krasheninnikov, M Puska. Electronic stopping power from first-principles calculations with account for core electron excitations and projectile ionization. Physical Review. B, 2014, 89(3): 035120
https://doi.org/10.1103/PhysRevB.89.035120
|
150 |
Z Wang, S S Li, L W Wang. Efficient real-time time-dependent density functional theory method and its application to collision of an ion with a 2D material. Physical Review Letters, 2015, 114(6): 063004
https://doi.org/10.1103/PhysRevLett.114.063004
|
151 |
D C Yost, Y Yao, Y Kanai. Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power. Physical Review. B, 2017, 96(11): 115134
https://doi.org/10.1103/PhysRevB.96.115134
|
152 |
A Schleife, Y Kanai, A A Correa. Accurate atomistic first-principles calculations of electronic stopping. Physical Review. B, 2015, 91(1): 014306
https://doi.org/10.1103/PhysRevB.91.014306
|
153 |
A A Correa, J Kohanoff, E Artacho, D Sánchez-Portal, A Caro. Nonadiabatic forces in ion-solid interactions: The initial stages of radiation damage. Physical Review Letters, 2012, 108(21): 213201
https://doi.org/10.1103/PhysRevLett.108.213201
|
154 |
M A Zeb, J Kohanoff, D Sánchez-Portal, A Arnau, J I Juaristi, E Artacho. Electronic stopping power in gold: The role of d electrons and the H/He anomaly. Physical Review Letters, 2012, 108(22): 225504
https://doi.org/10.1103/PhysRevLett.108.225504
|
155 |
R Ullah, F Corsetti, D Sánchez-Portal, E Artacho. Electronic stopping power in narrow band gap semiconductor from first principles. Physical Review. B, 2015, 91(12): 125203
https://doi.org/10.1103/PhysRevB.91.125203
|
156 |
Time-dependent Density Functional Theory. M arques M A L, Ullrich C A, Nogueira F, Rubio A, Burke K, Gross E K U, eds. Berlin: Springer, 2006
|
157 |
Fundamentals of Time-Dependent Density Functional Theory. Marques M A L, Maitra N T, Nogueira F M S, Gross E K U, Rubio A, eds. Berlin: Springer, 2012
|
158 |
C A Ullrich. Time-Dependent Density-Functional Theory. Oxford: Oxford University Press, 2012
|
159 |
C A Ullrich, Z H Yang. A brief compendium of time-dependent density functional theory. Brazilian Journal of Physics, 2014, 44(1): 154–158
https://doi.org/10.1007/s13538-013-0141-2
|
160 |
N T Maitra. Perspective: Fundamental aspects of time-dependent density functional theory. Journal of Chemical Physics, 2016, 144(22): 220901
https://doi.org/10.1063/1.4953039
|
161 |
E Runge, E K U Gross. Density-functional theory for time-dependent systems. Physical Review Letters, 1984, 52(12): 997–1000
https://doi.org/10.1103/PhysRevLett.52.997
|
162 |
E K U Gross, W Kohn. Local density-functional theory of frequency-dependent linear response. Physical Review Letters, 1985, 55(26): 2850–2852
https://doi.org/10.1103/PhysRevLett.55.2850
|
163 |
M R Provorse, C M Isborn. Electron dynamics with real-time time-dependent density functional theory. International Journal of Quantum Chemistry, 2016, 116(10): 739–749
https://doi.org/10.1002/qua.25096
|
164 |
R Nagano, K Yabana, T Tazawa, Y Abe. Time-dependent mean-field description for multiple charge transfer processes in Ar8+–Ar collisions. Physical Review A., 2000, 62(6): 062721
https://doi.org/10.1103/PhysRevA.62.062721
|
165 |
V U Nazarov, J M Pitarke, Y Takada, G Vignale, Y C Chang. Including nonlocality in the exchange-correlation kernel from time-dependent current density functional theory: Application to the stopping power of electron liquids. Physical Review. B, 2007, 76(20): 205103
https://doi.org/10.1103/PhysRevB.76.205103
|
166 |
J C Tully. Molecular dynamics with electronic transitions. Journal of Chemical Physics, 1990, 93(2): 1061–1071
https://doi.org/10.1063/1.459170
|
167 |
N Shenvi, S Roy, J C Tully. Nonadiabatic dynamics at metal surfaces: Independent-electron surface hopping. Journal of Chemical Physics, 2009, 130(17): 174107
https://doi.org/10.1063/1.3125436
|
168 |
M A L Marques, A Castro, G F Bertsch, A Rubio. Octopus: A first-principles tool for excited electron-ion dynamics. Computer Physics Communications, 2003, 151(1): 60–78
https://doi.org/10.1016/S0010-4655(02)00686-0
|
169 |
N O Foglia, U N Morzan, D A Estrin, D A Scherlies, M C G Lebrero. Role of core electrons in quantum dynamics using TDDFT. Journal of Chemical Theory and Computation, 2017, 13(1): 77–85
https://doi.org/10.1021/acs.jctc.6b00771
|
170 |
G Avendaño Franco. Charge transfer processes in atomic collisions from first principles. Dissertation for the Doctoral Degree. Louvain-la-Neuve: Université Catholique de Louvain, 2013
|
171 |
K A H German, C B Weare, J A Yarmoff. Inner-shell promotions in low-energy Li+–Al collisions at clean and alkali-covered Al(100) surfaces. Physical Review. B, 1994, 50(19): 14452–14466
https://doi.org/10.1103/PhysRevB.50.14452
|
172 |
A Castro, H Appel, M Oliveira, C A Rozzi, X Andrade, F Lorenzen, M A L Marques, E K U Gross, A Rubio. Octopus: A tool for the application of time-dependent density functional theory. Physica Status Solidi. B, Basic Research, 2006, 243(11): 2465–2488
https://doi.org/10.1002/pssb.200642067
|
173 |
X Andrade, D Strubbe, U De Giovannini, A H Larsen, M J T Oliveira, J Alberdi-Rodriguez, A Varas, I Theophilou, N Helbig, M J Verstraete, et al.. Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems. Physical Chemistry Chemical Physics, 2015, 17(47): 31371–31396
https://doi.org/10.1039/C5CP00351B
|
174 |
A A Shukri, F Bruneval, L Reining. Ab initio electronic stopping power of protons in bulk materials. Physical Review. B, 2016, 93(3): 035128
https://doi.org/10.1103/PhysRevB.93.035128
|
175 |
S N Markin, D Primetzhofer, M Spitz, P Bauer. Electronic stopping of low-energy H and He in Cu and Au investigated by timeof-flight low-energy ion scattering. Physical Review. B, 2009, 80(20): 205105
https://doi.org/10.1103/PhysRevB.80.205105
|
176 |
D R Mason, J le Page, C P Race, W M C Foulkes, M W Finnis, A P Sutton. Electronic damping of atomic dynamics in irradiation damage of metals. Journal of Physics Condensed Matter, 2007, 19(43): 436209
https://doi.org/10.1088/0953-8984/19/43/436209
|
177 |
M K Grotemeyer. Ab initio Berechnungen zur Anregung von Elektronen-Loch-Paaren durch Molekülschwingungen am Beispiel von HCl auf Al(111). Dissertation for the Doctoral Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2016 (in German)
|
178 |
R D’Agosta, M Di Ventra. Foundations of stochastic time-dependent current-density functional theory for open quantum systems: Potential pitfalls and rigorous results. Physical Review. B, 2013, 87(15): 155129
https://doi.org/10.1103/PhysRevB.87.155129
|
179 |
C A Ullrich. Time-dependent density-functional theory beyond the adiabatic approximation: Insights from a two-electron model system. Journal of Chemical Physics, 2006, 125(23): 234108
https://doi.org/10.1063/1.2406069
|
180 |
V Kapoor. Autoionization in time-dependent density-functional theory. Physical Review. A, 2016, 93(6): 063408
https://doi.org/10.1103/PhysRevA.93.063408
|
181 |
N Lorente, R Monreal, M Alducin. Local theory of auger neutralization for slow and compact ions interacting with metal surfaces. Physical Review A., 1994, 49(6): 4716–4725
https://doi.org/10.1103/PhysRevA.49.4716
|
182 |
R C Monreal. Auger neutralization and ionization processes for charge exchange between slow noble gas atoms and solid surfaces. Progress in Surface Science, 2014, 89(1): 80–125
https://doi.org/10.1016/j.progsurf.2014.01.001
|
183 |
K Balzer, M Rasmussen, N Schlünzen, J P Joost, M Bonitz. Doublon formation by ions impacting a strongly correlated finite lattice system. Physical Review Letters, 2018, 121(26): 267602
https://doi.org/10.1103/PhysRevLett.121.267602
|
184 |
L Keldysh. Diagram technique for nonequilibrium processes. . Soviet Physics, JETP, 1965, 20(4): 1018–1026
|
185 |
L Kadanoff, G Baym. Quantum Statistical Mechanics. New York: Benjamin, 1962
|
186 |
M Bonitz, D Kremp. Kinetic energy relaxation and correlation time of nonequilibrium many-particle systems. Physics Letters, 1996, 212(1-2): 83–90 (Part A)
https://doi.org/10.1016/0375-9601(96)00056-4
|
187 |
M Bonitz, D Kremp, D C Scott, R Binder, W D Kraeft, H S Köhler. Numerical analysis of non-Markovian effects in charge-carrier scattering: One-time versus two-time kinetic equations. Journal of Physics Condensed Matter, 1996, 8(33): 6057–6071
https://doi.org/10.1088/0953-8984/8/33/012
|
188 |
M Bonitz. Correlation time approximation in non-markovian kinetics. Physics Letters, 1996, 221(1-2): 85–93 (Part A)
https://doi.org/10.1016/0375-9601(96)00556-7
|
189 |
D Kremp, M Bonitz, W Kraeft, M Schlanges. Non-Markovian Boltzmann equation. Annals of Physics, 1997, 258(2): 320–359
https://doi.org/10.1006/aphy.1997.5703
|
190 |
P Danielewicz. Quantum theory of nonequilibrium processes ii. Application to nuclear collisions. Annals of Physics, 1984, 152(2): 305–326
https://doi.org/10.1016/0003-4916(84)90093-9
|
191 |
H S Köhler. Memory and correlation effects in nuclear collisions. Physical Review. C, 1995, 51(6): 3232–3239
https://doi.org/10.1103/PhysRevC.51.3232
|
192 |
L Bányai, D B T Thoai, E Reitsamer, H Haug, D Steinbach, M U Wehner, M Wegener, T Marschner, W Stolz. Exciton–lophonon quantum kinetics: Evidence of memory effects in bulk gaas. Physical Review Letters, 1995, 75(11): 2188–2191
https://doi.org/10.1103/PhysRevLett.75.2188
|
193 |
N Kwong, M Bonitz, R Binder, H Köhler. Semiconductor Kadanoff-Baym equations results for optically excited electron-hole plasmas semiconductor quantum wells. Physica Status Solidi. B, Basic Research, 1998, 206: 197
https://doi.org/10.1002/(SICI)1521-3951(199803)206:1<197::AID-PSSB197>3.0.CO;2-9
|
194 |
R Binder, H S Köhler, M Bonitz, N Kwong. Green’s function description of momentum-orientation relaxation of photoexcited electron plasmas in semiconductors. Physical Review. B, 1997, 55(8): 5110–5116
https://doi.org/10.1103/PhysRevB.55.5110
|
195 |
M Bonitz, K Balzer, R van Leeuwen. Invariance of the Kohn center-of-mass mode in a conserving theory. Physical Review. B, 2007, 76(4): 045341
https://doi.org/10.1103/PhysRevB.76.045341
|
196 |
K Balzer, M Bonitz, R van Leeuwen, A Stan, N E Dahlen. Nonequilibrium Green’s function approach to strongly correlated few-electron quantum dots. Physical Review. B, 2009, 79(24): 245306
https://doi.org/10.1103/PhysRevB.79.245306
|
197 |
D Kremp, T Bornath, M Bonitz, M Schlanges. Quantum kinetic theory of plasmas in strong laser fields. Physical Review. E, 1999, 60(4): 4725–4732
https://doi.org/10.1103/PhysRevE.60.4725
|
198 |
M Bonitz, T Bornath, D Kremp, M Schlanges, W D Kraeft. Quantum kinetic theory for laser plasmas. Dynamical screening in strong fields. Contributions to Plasma Physics, 1999, 39(4): 329–347
https://doi.org/10.1002/ctpp.2150390407
|
199 |
G Stefanucci, R van Leeuwen. Nonequilibrium Many-body Theory of Quantum Systems. Cambridge: Cambridge University Press, 2013
|
200 |
K Balzer, S Bauch, M Bonitz. Efficient grid-based method in nonequilibrium Green’s function calculations: Application to model atoms and molecules. Physical Review A., 2010, 81(2): 022510 doi:10.1103/PhysRevA.81.022510
|
201 |
K Balzer, S Bauch, M Bonitz. Time-dependent second-order Born calculations for model atoms and molecules in strong laser fields. Physical Review A., 2010, 82(3): 033427
https://doi.org/10.1103/PhysRevA.82.033427
|
202 |
C Verdozzi, A Wacker, C O Almbladh, M Bonitz. Progress in nonequilibrium Green’s functions (PNGF VI). Journal of Physics: Conference Series, 2016, 696(1): 011001
|
203 |
N Schlünzen, S Hermanns, M Bonitz, C Verdozzi. Dynamics of strongly correlated fermions: Ab initio results for two and three dimensions. Physical Review. B, 2016, 93(3): 035107
https://doi.org/10.1103/PhysRevB.93.035107
|
204 |
M Bonitz, M Scharnke, N Schlünzen. Time-reversal invariance of quantum kinetic equations II: Density operator formalism. Contributions to Plasma Physics, 2018, 58(10): 58
https://doi.org/10.1002/ctpp.201700052
|
205 |
TRIM and SRIM code packages. Available at the website of srim.org (accessed March 11, 2019)
|
206 |
S Heese. Dielectric function of graphene with yambo. Dissertation for the Bachelor Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2017
|
207 |
M Bonitz, K Balzer, N Schlünzen, M Rodriguez Rasmussen, J P Joost. Ion Impact Induced Ultrafast Electron Dynamics in Correlated Materials and Finite Graphene Clusters. Physica Status Solidi, 2019, 1800490: (b)
|
208 |
M Pamperin, F X Bronold, H Fehske. Many-body theory of the neutralization of strontium ions on gold surfaces. Physical Review. B, 2015, 91(3): 035440
https://doi.org/10.1103/PhysRevB.91.035440
|
209 |
W Brenig. Theory of inelastic atom-surface scattering: Average energy loss and energy distribution. Zeitschrift für Physik B, Condensed Matter, 1979, 36(1): 81–87
|
210 |
M Bonitz, L Rosenthal, K Fujioka, V Zaporojtchenko, F Faupel, H Kersten. Towards a particle based simulation of complex plasma driven nanocomposite formation. Contributions to Plasma Physics, 2012, 52(10): 890–898
https://doi.org/10.1002/ctpp.201200038
|
211 |
W Brenig, E Pehlke. Reaction dynamics of H2 on Si. Ab initio supported model calculations. Progress in Surface Science, 2008, 83(5): 263–336
https://doi.org/10.1016/j.progsurf.2008.06.001
|
212 |
F X Bronold, H Fehske. Kinetic modeling of the electronic response of a plasma-facing solid. Journal of Physics. D, Applied Physics, 2017, 50(29): 294003
https://doi.org/10.1088/1361-6463/aa7901
|
213 |
I Langmuir, H Mott-Smith. Studies of electric discharges in gases at low pressure. General Electric Review, 1924, 27: 449
|
214 |
S Robertson. Sheaths in laboratory and space plasmas. Plasma Physics and Controlled Fusion, 2013, 55(9): 093001
https://doi.org/10.1088/0741-3335/55/9/093001
|
215 |
R P Brinkmann. From electron depletion to quasi-neutrality: The sheath-bulk transition in rf modulated discharges. Journal of Physics. D, Applied Physics, 2009, 42(19): 194009
https://doi.org/10.1088/0022-3727/42/19/194009
|
216 |
R N Franklin. The plasma-sheath boundary region. Journal of Physics. D, Applied Physics, 2003, 36(22): R309–R320
https://doi.org/10.1088/0022-3727/36/22/R01
|
217 |
K U Riemann. The Bohm criterion and sheath formation. Journal of Physics. D, Applied Physics, 1991, 24(4): 493–518
https://doi.org/10.1088/0022-3727/24/4/001
|
218 |
L A Schwager, C K Birdsall. Collector and source sheaths of a finite ion temperature plasma. Physics of Fluids. B, Plasma Physics, 1990, 2(5): 1057–1068
https://doi.org/10.1063/1.859279
|
219 |
M D Campanell, M V Umansky. Strongly emitting surfaces unable to float below plasma potential. Physical Review Letters, 2016, 116(8): 085003
https://doi.org/10.1103/PhysRevLett.116.085003
|
220 |
S Langendorf, M Walker. Effect of secondary electron emission on the plasma sheath. Physics of Plasmas, 2015, 22(3): 033515
https://doi.org/10.1063/1.4914854
|
221 |
J P Sheehan, N Hershkowitz, I D Kaganovich, H Wang, Y Raitses, E V Barnat, B R Weatherford, D Sydorenko. Kinetic theory of plasma sheaths surrounding electron-emitting surfaces. Physical Review Letters, 2013, 111(7): 075002
https://doi.org/10.1103/PhysRevLett.111.075002
|
222 |
D Sydorenko, I D Kaganovich, Y Raitses, A Smolyakov. Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission. Physical Review Letters, 2009, 103(14): 145004
https://doi.org/10.1103/PhysRevLett.103.145004
|
223 |
F Taccogna, S Longo, M Capitelli. Plasma-surface interaction model with secondary electron emission effects. Physics of Plasmas, 2004, 11(3): 1220–1228
https://doi.org/10.1063/1.1647567
|
224 |
P N Hu, S Ziering. Collisionless theory of a plasma sheath near an electrode. Physics of Fluids, 1966, 9(11): 2168–2179
https://doi.org/10.1063/1.1761586
|
225 |
R N Franklin. Plasma Phenomena in Gas Discharges. Oxford: Clarendon Press, 1976
|
226 |
M M Becker, G K Grubert, D Loffhagen. Boundary conditions for the electron kinetic equation using expansion techniques. European Physical Journal Applied Physics, 2010, 51(1): 11001
https://doi.org/10.1051/epjap/2010073
|
227 |
M J Kushner. Modeling of microdischarge devices: Pyramidal structures. Journal of Applied Physics, 2004, 95(3): 846–859
https://doi.org/10.1063/1.1636251
|
228 |
Y B Golubovskii, V A Maiorov, J Behnke, J F Behnke. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen. Journal of Physics. D, Applied Physics, 2002, 35(8): 751–761
https://doi.org/10.1088/0022-3727/35/8/306
|
229 |
R Dussart, L J Overzet, P Lefaucheux, T Dufour, M Kulsreshath, M A Mandra, T Tillocher, O Aubry, S Dozias, P Ranson, et al.. Integrated micro-plasmas in silicon operating in helium. European Physical Journal D, 2010, 60(3): 601–608
https://doi.org/10.1140/epjd/e2010-00272-7
|
230 |
M K Kulsreshath, L Schwaederle, L J Overzet, P Lefaucheux, J Ladroue, T Tillocher, O Aubry, M Woytasik, G Schelcher, R Dussart. Study of dc micro-discharge arrays made in silicon using cmos compatible technology. Journal of Physics. D, Applied Physics, 2012, 45(28): 285202
https://doi.org/10.1088/0022-3727/45/28/285202
|
231 |
J G Eden, S J Park, J H Cho, M H Kim, T J Houlahan, B Li, E S Kim, T L Kim, S K Lee, K S Kim, et al.. Plasma science and technology in the limit of the small: Microcavity plasmas and emerging applications. IEEE Transactions on Plasma Science, 2013, 41(4): 661–675
https://doi.org/10.1109/TPS.2013.2253132
|
232 |
P A Tchertchian, C J Wagner, T J Houlahan Jr, B Li, D J Sievers, J G Eden. Control of the interface between electron-hole and electron-ion plasmas: Hybrid semiconductor-gas phase devices as a gateway for plasma science. Contributions to Plasma Physics, 2011, 51(10): 889–905
https://doi.org/10.1002/ctpp.201100037
|
233 |
N P Ostrom, J G Eden. Microcavity plasma photodetectors: Photosensitivity, dynamic range, and the plasma-semiconductor interface. Applied Physics Letters, 2005, 87(14): 141101
https://doi.org/10.1063/1.2072767
|
234 |
Z Sternovsky. The effect of ion-neutral collisions on the weakly collisional plasma-sheath and the reduction of the ion flux to the wall. Plasma Sources Science & Technology, 2005, 14(1): 32–35
https://doi.org/10.1088/0963-0252/14/1/004
|
235 |
K U Riemann. Kinetic analysis of the collisional plasma-sheath transition. Journal of Physics. D, Applied Physics, 2003, 36(22): 2811–2820
https://doi.org/10.1088/0022-3727/36/22/007
|
236 |
T E Sheridan, J Goree. Collisional plasma sheath model. Physics of Fluids. B, Plasma Physics, 1991, 3(10): 2796–2804
https://doi.org/10.1063/1.859987
|
237 |
T V Tsankov, U Czarnetzki. Information hidden in the velocity distribution of ions and the exact kinetic bohm criterion. Plasma Sources Science & Technology, 2017, 26(5): 055003
https://doi.org/10.1088/1361-6595/aa5f45
|
238 |
D Lacroix, S Hermanns, C M Hinz, M Bonitz. Ultrafast dynamics of finite Hubbard clusters: A stochastic mean-field approach. Physical Review. B, 2014, 90(12): 125112
https://doi.org/10.1103/PhysRevB.90.125112
|
239 |
M Hopjan, D Karlsson, S Ydman, C Verdozzi, C O Almbladh. Merging features from green’s functions and time dependent density functional theory: A route to the description of correlated materials out of equilibrium? Physical Review Letters, 2016, 116(23): 236402
https://doi.org/10.1103/PhysRevLett.116.236402
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|