Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (1) : 3    https://doi.org/10.1007/s11705-023-2369-x
RESEARCH ARTICLE
A tunable ionic covalent organic framework platform for efficient CO2 catalytic conversion
Ting Li1,2, Ji Xiong1,2, Minghui Chen1,2, Quan Shi1,2, Xiangyu Li1,2, Yu Jiang1,2, Yaqing Feng1,2, Bao Zhang1,2,3()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2. Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 522000, China
3. Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
 Download: PDF(8650 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The cycloaddition reaction between epoxides and CO2 is an effective method to utilize CO2 resource. Covalent organic frameworks (COFs) provide a promising platform for the catalytic CO2 transformations on account of their remarkable chemical and physical properties. Herein, a family of novel vinylene-linked ionic COFs named TE-COFs (TTE-COF, TME-COF, TPE-COF, TBE-COF) has been facilely synthesized from N-ethyl-2,4,6-trimethylpyridinium bromide and a series of triphenyl aromatic aldehydes involving different numbers of nitrogen atoms in the central aromatic ring. The resulting catalyst TTE-COF with excellent adsorption capacity (45.6 cm3·g–1, 273 K) exhibited outstanding catalytic performance, remarkable recyclability and great substrate tolerance. Moreover, it was also observed that the introduction of nitrogen atom in the precursor led to a great improvement in the crystallinity and CO2 adsorption capacity of TE-COFs, thus resulting to a progressively improved catalytic performance. This work not only illustrated the influence of monomer nitrogen content on the crystallinity and CO2 adsorption capacity of TE-COFs but also provided a green heterogeneous candidate for catalyzing the cycloaddition between CO2 and epoxides, which shed a light on improving the catalytic performance of the CO2 cycloaddition reaction by designing the covalent organic frameworks structures.

Keywords CO2 cycloaddition reaction      covalent organic frameworks      cyclic carbonate      vinylene-linked      synergetic effects     
Corresponding Author(s): Bao Zhang   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Just Accepted Date: 06 September 2023   Issue Date: 07 November 2023
 Cite this article:   
Ting Li,Ji Xiong,Minghui Chen, et al. A tunable ionic covalent organic framework platform for efficient CO2 catalytic conversion[J]. Front. Chem. Sci. Eng., 2024, 18(1): 3.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2369-x
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I1/3
Fig.1  Design and synthesis of the TE-COFs.
Fig.2  PXRD patterns of (a) TTE-COF, (b) TME-COF, (c) TPE-COF, and (d) TBE-COF.
Fig.3  (a) Solid-state 13C CP-MAS NMR spectra of TE-COFs; (b) FTIR spectra of TE-COFs.
Fig.4  (a) XPS survey spectrum of TTE-COF; (b) high-resolution N 1s XPS spectrum of TTE-COF; (c) high-resolution Br 3d spectrum of TTE-COF.
Fig.5  N2 sorption isotherm and pore size distribution of (a) TTE-COF, (b) TME-COF, (c) TPE-COF, and (d) TBE-COF.
Fig.6  (a, b) CO2 sorption isotherms of the TE-COFs at 273 and 298 K.
Fig.7  SEM images of (a) TTE-COF, (b) TME-COF, (c) TPE-COF, and (d) TBE-COF.
Fig.8  The catalytic kinetics of TE-COFs. Conditions: (a) epichlorohydrin 12.8 mmol, TE-COFs 20 mg, 60 °C, 0.1 MPa, and 20 h; (b) epichlorohydrin 12.8 mmol, TE-COFs 20 mg, 80 °C, 0.1 MPa, and 20 h; (c) epichlorohydrin 12.8 mmol, TE-COFs 20 mg, 100 °C, 0.1 MPa, and 20 h.
Fig.9  (a) Effect of reaction temperature: epichlorohydrin (12.8 mmol), TTE-COF (20 mg), 0.1 MPa, 24 h; (b) effect of reaction time: epichlorohydrin (12.8 mmol), TTE-COF (20 mg), 100 °C, 0.1 MPa; (c) effect of TTE-COF loading: epichlorohydrin (12.8 mmol), 100 °C, 0.1 MPa, 20 h. The yields were determined by 1H NMR.
Entry Epoxide n /mmol Temperature/°C Time/h Yieldc)
1b) 12.8 100 20 trace
2 12.8 100 20 98
3 12.8 100 20 99
4 12.8 70 36 98
5 12.8 120 72 96
6 6.0 120 48 98
7 6.0 120 48 96
8 6.0 120 48 81
Tab.1  CO2 cycloaddition reaction with different epoxidesa)
Fig.10  (a) Recyclability of the TTE-COF catalyst. Conditions: epichlorohydrin 12.8 mmol, TTE-COF 20 mg, 100 °C, 0.1 MPa, and 20 h; (b) N2 sorption isotherm and pore size distribution at 77 K of TTE-COF after 5 cycles of the reaction; (c) PXRD of TTE-COF before and after 5 cycles of the reaction; (d) FTIR spectra of TTE-COF before and after 5 cycles of the reaction.
1 C H Huang , C S Tan . A review: CO2 utilization. Aerosol and Air Quality Research, 2014, 14(2): 480–499
https://doi.org/10.4209/aaqr.2013.10.0326
2 C Hepburn , E Adlen , J Beddington , E A Carter , S Fuss , N M Dowell , J C Minx , P Smith , C K Williams . The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575(7781): 87–97
https://doi.org/10.1038/s41586-019-1681-6
3 S De , A Dokania , A Ramirez , J Gascon . Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. Science Advances, 2020, 10(23): 14147–14185
4 S Tian , F Yan , Z Zhang , J Jiang . Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency. ACS Catalysis, 2019, 5: eaav5077
5 J Chai , Z Liu , J Zhang , J Sun , Z Tian , Y Ji , K Tang , X Zhou , G Cui . A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Applied Materials & Interfaces, 2017, 9(21): 17897–17905
https://doi.org/10.1021/acsami.7b02844
6 G R Dick , A O Komarova , J S Luterbacher . Controlling lignin solubility and hydrogenolysis selectivity by acetal-mediated functionalization. Green Chemistry, 2022, 24(3): 1285–1293
https://doi.org/10.1039/D1GC02575A
7 M Alves , B Grignard , R Mereau , C Jerome , T Tassaing , C Detrembleur . Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies. Catalysis Science & Technology, 2017, 7(13): 2651–2684
https://doi.org/10.1039/C7CY00438A
8 W Zhang , J Dai , Y C Wu , J X Chen , S Y Shan , Z Cai , J B Zhu . Highly reactive cyclic carbonates with a fused ring toward functionalizable and recyclable polycarbonates. ACS Macro Letters, 2022, 11(2): 173–178
https://doi.org/10.1021/acsmacrolett.1c00653
9 F D Monica , A W Kleij . Mechanistic guidelines in nonreductive conversion of CO2: the case of cyclic carbonates. Catalysis Science & Technology, 2020, 10(11): 3483–3501
https://doi.org/10.1039/D0CY00544D
10 Q Liu , L Wu , R Jackstell , M Beller . Using carbon dioxide as a building block in organic synthesis. Nature Communications, 2015, 6(1): 5933
https://doi.org/10.1038/ncomms6933
11 B Jiang , J Liu , G Yang , Z Zhang . Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly (ionic liquids). Chinese Journal of Chemical Engineering, 2023, 55: 202–211
https://doi.org/10.1016/j.cjche.2022.05.018
12 H Song , Y Wang , M Xiao , L Liu , Y Liu , X Liu , H Gai . Design of novel poly (ionic liquids) for the conversion of CO2 to cyclic carbonates under mild conditions without solvent. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9489–9497
https://doi.org/10.1021/acssuschemeng.9b00865
13 L Guo , K J Lamb , M North . Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chemistry, 2021, 23(1): 77–118
https://doi.org/10.1039/D0GC03465G
14 K A Andrea , E D Butler , T R Brown , T S Anderson , D Jagota , C Rose , E M Lee , S D Goulding , J N Murphy , F M Kerton . et al.. Iron complexes for cyclic carbonate and polycarbonate formation: selectivity control from ligand design and metal-center geometry. Inorganic Chemistry, 2019, 58(16): 11231–11240
https://doi.org/10.1021/acs.inorgchem.9b01909
15 Y Wu , X Song , S Xu , Y Chen , O Oderinde , L Gao , R Wei , G Xiao . Chemical fixation of CO2 into cyclic carbonates catalyzed by bimetal mixed MOFs: the role of the interaction between Co and Zn. Dalton Transactions, 2020, 49(2): 312–321
https://doi.org/10.1039/C9DT04027G
16 S S Dhankhar , B Ugale , C M Nagaraja . Co-catalyst-free chemical fixation of CO2 into cyclic carbonates by using metal-organic frameworks as efficient heterogeneous catalysts. Chemistry, an Asian Journal, 2020, 15(16): 2403–2427
https://doi.org/10.1002/asia.202000424
17 S Sarkar , S Ghosh , S M A Islam . Zn(II)-functionalized COF as a recyclable catalyst for the sustainable synthesis of cyclic carbonates and cyclic carbamates from atmospheric CO2. Organic & Biomolecular Chemistry, 2022, 20(8): 1707–1722
https://doi.org/10.1039/D1OB01938D
18 N Haque , S Biswas , S Ghosh , A H Chowdhury , A Khan , S M Islam . Zn(II)-embedded nanoporous covalent organic frameworks for catalytic conversion of CO2 under solvent-free conditions. ACS Applied Nano Materials, 2021, 4(8): 7663–7674
https://doi.org/10.1021/acsanm.1c00785
19 J Li , Y Han , T Ji , N Wu , H Lin , J Jiang , J Zhu . Porous metallosalen hypercrosslinked ionic polymers for cooperative CO2 cycloaddition conversion. Industrial & Engineering Chemistry Research, 2020, 59(2): 676–684
https://doi.org/10.1021/acs.iecr.9b05304
20 W Zhang , Q He , Y Chen , R Luo , X Zhou , H Ji . A metal-free hydroxyl functionalized quaternary phosphine type ionic liquid polymer for cycloaddition of CO2 and epoxides. Dalton Transactions, 2022, 51(4): 1303–1307
https://doi.org/10.1039/D1DT03232A
21 K Liu , Z X Xu , H Huang , Y D Zhang , Y Liu , Z H Qiu , M M Tong , Z Y Long , G J Chen . In situ synthesis of pyridinium-based ionic porous organic polymers with hydroxide anions and pyridinyl radicals for halogen-free catalytic fixation of atmospheric CO2. Green Chemistry, 2022, 24(1): 136–141
https://doi.org/10.1039/D1GC03465K
22 H Wang , H Wang , Z Wang , L Tang , G Zeng , P Xu , M Chen , T Xiong , C Zhou , X Li . et al.. Covalent organic framework photocatalysts: structures and applications. Chemical Society Reviews, 2020, 49(12): 4135–4165
https://doi.org/10.1039/D0CS00278J
23 Z Wang , S Zhang , Y Chen , Z Zhang , S Ma . Covalent organic frameworks for separation applications. Chemical Society Reviews, 2020, 49(3): 708–735
https://doi.org/10.1039/C9CS00827F
24 Z Z Yang , Y Zhao , G Ji , H Zhang , B Yu , X Gao , Z Liu . Fluoro-functionalized polymeric ionic liquids: highly efficient catalysts for CO2 cycloaddition to cyclic carbonates under mild conditions. Green Chemistry, 2014, 16(8): 3724–3728
https://doi.org/10.1039/C4GC00730A
25 J Chen , M Zhong , L Tao , L Liu , S Jayakumar , C Li , H Li , Q Yang . The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO2 cycloaddition reaction. Green Chemistry, 2018, 20(4): 903–911
https://doi.org/10.1039/C7GC03801A
26 Y Zhao , Y Zhao , J Qiu , Z Li , H Wang , J Wang . Facile grafting of imidazolium salt in covalent organic frameworks with enhanced catalytic activity for CO2 fixation and the Knoevenagel reaction. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18413–18419
https://doi.org/10.1021/acssuschemeng.0c05294
27 J Cao , W Shan , Q Wang , X Ling , G Li , Y Lyu , Y Zhou , J Wang . Ordered porous poly(ionic liquid) crystallines: spacing confined ionic surface enhancing selective CO2 capture and fixation. ACS Applied Materials & Interfaces, 2019, 11(6): 6031–6041
https://doi.org/10.1021/acsami.8b19420
28 Y Zhang , D H Yang , S Qiao , B H Han . Synergistic catalysis of ionic liquid-decorated covalent organic frameworks with polyoxometalates for CO2 cycloaddition reaction under mild conditions. Langmuir, 2021, 37(34): 10330–10339
https://doi.org/10.1021/acs.langmuir.1c01426
29 H Zhong , J Gao , R Sa , S Yang , Z Wu , R Wang . Carbon dioxide conversion upgraded by host-guest cooperation between nitrogen-rich covalent organic framework and imidazolium-based ionic polymer. ChemSusChem, 2020, 13(23): 6050
https://doi.org/10.1002/cssc.202002411
30 G Chang , L Yang , J Yang , Y Huang , K Cao , J Ma , D Wang . A nitrogen-rich, azaindole-based microporous organic network: synergistic effect of local dipole-π and dipole-quadrupole interactions on carbon dioxide uptake. Polymer Chemistry, 2016, 7(37): 5768–5772
https://doi.org/10.1039/C6PY01154C
31 Y Zhu , W Zhang . Reversible tuning of pore size and CO2 adsorption in azobenzene functionalized porous organic polymers. Chemical Science, 2014, 5(12): 4957–4961
https://doi.org/10.1039/C4SC02305F
32 F Meng , S Bi , Z Sun , B Jiang , D Wu , J S Chen , F Zhang . Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated Knoevenagel condensation. Angewandte Chemie International Edition, 2021, 60(24): 13614–13620
https://doi.org/10.1002/anie.202104375
33 V S Vyas , F Haase , L Stegbauer , G Savasci , F Podjaski , C Ochsenfeld , B V Lotsch . A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nature Communications, 2015, 6(1): 8508
https://doi.org/10.1038/ncomms9508
34 Z X Xu , K Liu , H Huang , Y D Zhang , Z Y Long , M M Tong , Q J Chen . Quaternization-induced catalyst-free synthesis of viologen-linked ionic polyacetylenes towards heterogeneous catalytic CO2 fixation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(10): 5540–5549
https://doi.org/10.1039/D1TA10312A
35 Y F Zhi , P P Shao , X Feng , H Xia , Y M Zhang , Z Shi , Y Mu , X M Liu . Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO2 under mild conditions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(2): 374–382
https://doi.org/10.1039/C7TA08629F
36 Y W Zhang , S A , Y Zou , X Luo , Z Li , H Xia , X Liu , Y Mu . Gas uptake, molecular sensing and organocatalytic performances of a multifunctional carbazole-based conjugated microporous polymer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(33): 13422–13430
https://doi.org/10.1039/C4TA01871K
37 S Bhunia , P Bhanja , S K Das , T Sen , A Bhaumik . Triazine containing N-rich microporous organic polymers for CO2 capture and unprecedented CO2/N2 selectivity. Journal of Solid State Chemistry, 2017, 247: 113–119
https://doi.org/10.1016/j.jssc.2017.01.001
38 S Dey , A Bhunia , H Breitzke , P B Groszewicz , G Buntkowsky , C Janiak . Two linkers are better than one: enhancing CO2 capture and separation with porous covalent triazine-based frameworks from mixed nitrile linkers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(7): 3609–3620
https://doi.org/10.1039/C6TA07076K
39 G W Coates , D R Moore . Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angewandte Chemie International Edition, 2004, 43(48): 6618–6639
https://doi.org/10.1002/anie.200460442
40 S Klaus , M W Lehenmeier , C E Anderson , B Rieger . Recent advances in CO2/epoxide copolymerization-new strategies and cooperative mechanisms. Coordination Chemistry Reviews, 2011, 255(13-14): 1460–1479
https://doi.org/10.1016/j.ccr.2010.12.002
41 G J Chen , Y D Zhang , K Liu , X Q Liu , L Wu , H Zhong , X J Dang , M M Tong , Z Y Long . In situ construction of phenanthroline-based cationic radical porous hybrid polymers for metal-free heterogeneous catalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(12): 7556–7565
https://doi.org/10.1039/D0TA12018A
[1] FCE-23048-OF-LT_suppl_1 Download
[1] Jiaxin Li, Chengguang Yue, Wenhao Ji, Bangman Feng, Mei-Yan Wang, Xinbin Ma. Recent advances in cycloaddition of CO2 with epoxides: halogen-free catalysis and mechanistic insights[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1879-1894.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed