Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (8) : 88    https://doi.org/10.1007/s11705-024-2441-1
Post-treatment of Ti-MWW zeolite with potassium fluoride for propylene epoxidation
Xintong Li, Xianchen Gong, Jilong Wang, Shengbo Jin, Hao Xu(), Peng Wu()
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
 Download: PDF(913 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Epoxidation of propylene to propylene oxide (PO) with hydrogen peroxide (HPPO) is an environmentally friendly and cost-efficient process in which titanosilicates are used as catalysts. Ti-MWW is a potential industrial catalyst for this process, which involves the addition of HPPO to PO. The silanol groups generated during secondary crystallization unavoidably result in ring-opening of PO and inefficient decomposition of HPPO, which diminish the PO selectivity and the lifespan of Ti-MWW. To address this issue, we conducted post-treatment modifications of the structured Bf-Ti-MWW catalyst with potassium fluoride aqueous solutions. By quenching the silanol groups with potassium fluoride and implanting electron-withdrawing fluoride groups into the Ti-MWW framework, both the catalytic activity and HPPO utilization efficiency were increased. Moreover, the ring opening reaction of PO was prohibited. In a continuous fixed-bed liquid-phase propylene epoxidation reaction, the KF-treated structured Ti-MWW catalyst displayed an exceptionally long lifespan of 2700 h, with a PO yield of 590 g·kg−1·h−1.

Keywords titanosilicates      Ti-MWW      propylene epoxidation      structured catalyst      KF modification     
Corresponding Author(s): Hao Xu,Peng Wu   
Just Accepted Date: 03 April 2024   Issue Date: 28 May 2024
 Cite this article:   
Xintong Li,Xianchen Gong,Jilong Wang, et al. Post-treatment of Ti-MWW zeolite with potassium fluoride for propylene epoxidation[J]. Front. Chem. Sci. Eng., 2024, 18(8): 88.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2441-1
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I8/88
No.CatalystSi/Kb)PO Yieldc)/%H2O2/%
Conv.d)Eff.e)
1Bf-Ti-MWW48.852.585.7
2Bf-Ti-MWW-KF6860.164.794.0
3Bf-Ti-MWW-KCl19549.253.584.2
4Bf-Ti-MWW-KBr20049.855.585.3
5Bf-Ti-MWW-KI19946.755.883.8
6Bf-Ti-MWW-KHCO36949.354.890.1
7Bf-Ti-MWW-K2CO36546.450.991.1
8Bf-Ti-MWW-KOH6245.148.393.2
9Bf-Ti-MWW-KH2PO416648.956.786.4
10Bf-Ti-MW-LiF50.657.288.5
11Bf-Ti-MW-NaF52.360.786.1
12Bf-Ti-MW-RbF55.861.690.6
13Bf-Ti-MW-CsF47.657.685.6
14Bf-Ti-MWW-NH4F53.160.384.7
Tab.1  Propylene epoxidation over the Ti-MWW catalysts before and after treatmenta)
Fig.1  (a) XRD patterns and (b) N2 adsorption-desorption isotherms at 77 K for (I) Bf-Ti-MWW, (II) Bf-Ti-MWW-KF, (III) Bf-Ti-MWW-KHCO3, and (IV) Bf-Ti-MWW-NH4F.
Samplea)Si/Tib)Si/Kb)SSAc)/ (m2·g?1)Pore volume/(cm3·g?1)
Vmicro.d)Vmeso.
Bf-Ti-MWW486310.150.44
Bf-Ti-MWW-KF53686220.130.48
Bf-Ti-MWW-KHCO352706330.120.50
Bf-Ti-MWW-NH4F516260.140.47
Tab.2  Textural properties of BF-Ti-MWW before and after treatment with potassium salts and ammonium fluoride
Fig.2  (a) UV-Vis spectra, (b) Ti 2p XPS spectra, and (c) 19F MAS NMR spectra of (I) Bf-Ti-MWW, (II) Bf-Ti-MWW-KF, (III) Bf-Ti-MWW-KHCO3, and (IV) Bf-Ti-MWW-NH4F.
Fig.3  (a) H2O adsorption isotherms generated at 298 K, (b) spectra in the hydroxyl-stretching region, and (c) pyridine-adsorbed FTIR spectra after evacuation at 523 K for (I) Bf-Ti-MWW, (II) Bf-Ti-MWW-KF, (III) Bf-Ti-MWW-KHCO3, and (IV) Bf-Ti-MWW-NH4F. B: Br?nsted acid sites; L: Lewis acid sites; H: hydrogen-bonded pyridine.
  Scheme1 Post-treatment of Ti-MWW zeolites with KF for propylene epoxidation and possible structures of the K and F species in Ti-MWW.
Fig.4  (a) Progress of PO hydrolysis over (I) Bf-Ti-MWW, (II) Bf-Ti-MWW-KF, (III) Bf-Ti-MWW-KHCO3, and (IV) Bf-Ti-MWW-NH4F in the presence of H2O2. Reaction conditions: catalyst, 0.2 g; PO, 40 mmol; H2O2 (30 wt %), 10 mmol; H2O/PO molar ratio, 5; temperature, 313 K. (b) Hydrolysis of PO over different catalysts in H2O or H2O/H2O2. Reaction conditions: catalyst, 0.2 g; PO, 40 mmol; H2O2 (30 wt %), 10 mmol (if added); H2O/PO molar ratio, 5; temperature, 313 K; time, 12 h.
Fig.5  (a) Dependence of the TOFs on the H2O2 concentrations for (I) Bf-Ti-MWW-KF and (II) Bf-Ti-MWW. Reaction conditions: catalyst, 0.01 g; H2O2, 30 wt %; solvent, MeCN, 10 mL; temperature, 313 K; time, 4 min. (b) Time-dependent H2O2 conversion in propylene epoxidation over (I) Bf-Ti-MWW-KF and (II) Bf-Ti-MWW. Reaction conditions: catalyst, 0.03 g; H2O2 (30 wt %), 30 mmol; solvent MeCN, 10 mL; propylene pressure, 0.4 MPa; temperature, 313 K.
Fig.6  Stability of the Bf-Ti-MWW-KF catalyst in continuous liquid-phase propylene epoxidation. Reaction conditions: catalyst, 3 g; temperature, 313–333 K; C3H6/H2O2 molar ratio, 3; additive, (NH4)2CO3, 15 ppm; pressure, 2–3 MPa; WHSV (H2O2), 0.4 h?1; WHSV (MeCN), 5 h?1. X: H2O2 conversion; S: PO selectivity; Y: PO yield; U: H2O2 ultilization efficiency.
1 H Xu , P Wu . Two-dimensional zeolites in catalysis: current state-of-the-art and perspectives. Catalysis Reviews: Science and Engineering, 2021, 63(2): 234–301
https://doi.org/10.1080/01614940.2021.1948298
2 V Smeets , E M Gaigneaux , D P Debecker . Titanosilicate epoxidation catalysts: a review of challenges and opportunities. ChemCatChem, 2022, 14(1): e202101132
https://doi.org/10.1002/cctc.202101132
3 R WangC XiaB Peng. Fundamental understanding and catalytic applications of hollow MFI-type zeolites. Catalysis Today, 2022, 405–406: 111–124
4 Y Li , Y Yi , X Wang , B Gao , Y Guo , G Wu , Z Feng , H Guo . Regeneration of a spent TS-1 zeolite catalyst for liquid-phase epoxidation of propylene and H2O2. Industrial & Engineering Chemistry Research, 2023, 62(31): 12152–12173
https://doi.org/10.1021/acs.iecr.3c01141
5 G Wang , Y Li , Q Zhu , G Li , C Zhang , H Guo . Influence of impurities in a methanol solvent on the epoxidation of propylene with hydrogen peroxide over titanium silicalite-1. Catalysts, 2019, 10(1): 15
https://doi.org/10.3390/catal10010015
6 A V Sulimov , A V Ovcharova , A Ovcharov , V R Flid , S V Leont’eva , L G Bruk , Z Y Pastukhova , M R Flid . Study of alkene epoxidation in the presence of extruded silicalite titanium. Russian Chemical Bulletin, 2016, 65(12): 2845–2849
https://doi.org/10.1007/s11172-016-1666-7
7 F Song , Y Liu , L Wang , H Zhang , M He , P Wu . Highly efficient epoxidation of propylene over a novel Ti-MWW catalyst. Studies in Surface Science and Catalysis, 2007, 170(07): 1236–1243
https://doi.org/10.1016/S0167-2991(07)80983-9
8 P Wu , T Tatsumi , T Komatsu , T Yashima . A novel titanosilicate with MWW structure. I. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations. Journal of Physical Chemistry B, 2001, 105(15): 2897–2905
https://doi.org/10.1021/jp002816s
9 Y Yu , N Fang , Z Chen , D Liu , Y Liu , M He . Greening oxidation catalysis: water as a solvent for efficient alkene epoxidation over a titanosilicate/H2O2 system. ACS Sustainable Chemistry & Engineering, 2022, 10(35): 11641–11654
https://doi.org/10.1021/acssuschemeng.2c03524
10 C Torres , D S Pottis , D W Flaherty . Solvent mediated interactions on alkene epoxidations in Ti-MFI: effects of solvent identity and silanol density. ACS Catalysis, 2023, 13(13): 8925–8942
https://doi.org/10.1021/acscatal.3c01073
11 D S Potts , J K Komar , H Locht , D W Flaherty . Understanding rates and regioselectivities for epoxide methanolysis within zeolites: mechanism and roles of covalent and non-covalent interactions. ACS Catalysis, 2023, 13(22): 14928–14944
https://doi.org/10.1021/acscatal.3c04103
12 J Z Tan , D T Bregante , C Torres , D W Flaherty . Transition state stabilization depends on solvent identity, pore size, and hydrophilicity for epoxidations in zeolites. Journal of Catalysis, 2022, 405: 91–104
https://doi.org/10.1016/j.jcat.2021.11.029
13 D P Serrano , R Sanz , P Pizarro , I Moreno , S Blázquez . Preparation of extruded catalysts based on TS-1 zeolite for their application in propylene epoxidation. Catalysis Today, 2013, 143(1): 151–157
14 J Zhou , J Teng , L Ren , Y Wang , Z Liu , W Liu , W Yang , Z Xie . Full-crystalline hierarchical monolithic ZSM-5 zeolites as superiorly active and long-lived practical catalysts in methanol-to-hydrocarbons reaction. Journal of Catalysis, 2016, 340: 166–176
https://doi.org/10.1016/j.jcat.2016.05.009
15 Z Li , X Jiang , G Xiong , B Nie , C Liu , N He , J Liu . Towards the preparation of binderless ZSM-5 zeolite catalysts: the crucial role of silanol nests. Catalysis Science & Technology, 2020, 10(23): 7829–7841
https://doi.org/10.1039/D0CY01289K
16 H Xu , W Tian , L Xu , X Jin , T Xue , L Chen , M He , P Wu . Crossed intergrowth triggered TS-2 microsphere: formation mechanism, modification and catalytic performance. Chinese Journal of Catalysis, 2020, 41(7): 1109–1117
https://doi.org/10.1016/S1872-2067(20)63546-X
17 J Yin , X Jin , H Xu , Y Guan , R Peng , L Chen , J Jiang , P Wu . Structured binder-free MWW-type titanosilicate with Si-rich shell for selective and durable propylene epoxidation. Chinese Journal of Catalysis, 2021, 42(9): 1561–1575
https://doi.org/10.1016/S1872-2067(20)63759-7
18 X Lu , H Xu , J Yan , W J Zhou , A Liebens , P Wu . One-pot synthesis of ethylene glycol by oxidative hydration of ethylene with hydrogen peroxide over titanosilicate catalysts. Journal of Catalysis, 2018, 358: 89–99
https://doi.org/10.1016/j.jcat.2017.12.002
19 L Wu , S Zhao , L Lin , X Fang , Y Liu , M He . In-depth understanding of acid catalysis of solvolysis of propene oxide over titanosilicates and titanosilicate/H2O2 systems. Journal of Catalysis, 2016, 337: 248–259
https://doi.org/10.1016/j.jcat.2016.01.028
20 R R Sever , T W Root . DFT study of solvent coordination effects on titanium-based epoxidation catalysts. Part Ⅰ: formation of the titanium hydroperoxo intermediate. Journal of Physical Chemistry B, 2003, 107(17): 4090–4099
https://doi.org/10.1021/jp026057k
21 R R Sever , T W Root . DFT study of solvent coordination effects on titanium-based epoxidation catalysts. Part two: reactivity of titanium hydroperoxo complexes in ethyleneepoxidation. Journal of Physical Chemistry B, 2003, 107(17): 4090–4099
https://doi.org/10.1021/jp026057k
22 C P Gordon , H Engler , A S Tragl , M Plodinec , T Lunkenbein , A Berkessel , J H Teles , A N Parvulescu , C Copéret . Efficient epoxidation over dinuclear sites in titanium silicalite-1. Nature, 2020, 586(7831): 708–713
https://doi.org/10.1038/s41586-020-2826-3
23 Y Wang , H Yang , Y Zuo , D Tian , G Hou , Y Su , Z Feng , X Guo , C Li . New penta- and hexa-coordinated titanium sites in titanium silicalite-1 catalyst for propylene epoxidation. Applied Catalysis B: Environmental, 2023, 325: 122396
https://doi.org/10.1016/j.apcatb.2023.122396
24 D T Bregante , M C Chan , J Z Tan , E Z Ayla , C P Nicholas , D Shukla , D W Flaherty . The shape of water in zeolites and its impact on epoxidation catalysis. Nature Catalysis, 2021, 4(9): 797–808
https://doi.org/10.1038/s41929-021-00672-4
25 M G Clerici , P Ingallina . Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. Journal of Catalysis, 1993, 140(1): 71–83
https://doi.org/10.1006/jcat.1993.1069
26 Y Yang , J Ding , B Wang , J Wu , C Zhao , G Gao , P Wu . Influences of fluorine implantation on catalytic performance and porosity of MOR-type titanosilicate. Journal of Catalysis, 2014, 320: 160–169
https://doi.org/10.1016/j.jcat.2014.10.008
27 X Lu , H Wu , J Jiang , M He , P Wu . Selective synthesis of propylene oxide through liquid-phase epoxidation of propylene with H2O2 over formed Ti-MWW catalyst. Journal of Catalysis, 2016, 342: 173–183
28 Y Goa , P Wu , T Tatsumi . Influence of fluorine on the catalytic performance of Ti-Beta zeolite. Journal of Physical Chemistry B, 2004, 108(14): 4242–4244
https://doi.org/10.1021/jp049505s
29 X Fang , Q Wang , A Zheng , Y Liu , Y Wang , X Deng , H Wu , F Deng , M He , P Wu . Fluorine-planted titanosilicate with enhanced catalytic activity in alkene epoxidation with hydrogen peroxide. Catalysis Science & Technology, 2012, 2(12): 2433
https://doi.org/10.1039/c2cy20446k
30 X Fang , Q Wang , A Zheng . Post-synthesis, characterization and catalytic properties of fluorine-planted MWW-type titanosilicate. Physical Chemistry Chemical Physics, 2013, 2013,15(14): 4930–4938
31 X Fang , L Sun , L Lin , L Wu , Y Liu . Enhanced catalytic oxidation performance of F-Ti-MWW through the synergistic effect of anion and cation. Catalysis Communications, 2017, 96: 54–57
https://doi.org/10.1016/j.catcom.2017.04.007
32 Y Kuwahara , K Nishizawa , T Nakajima , T Kamegawa , K Mori , H Yamashita . Enhanced catalytic activity on titanosilicate molecular sieves controlled by cation-π interactions. Journal of the American Chemical Society, 2011, 133(32): 12462–12465
https://doi.org/10.1021/ja205699d
33 C Lamberti , S Bordiga , D Arduino , A Zecchina , F Geobaldo , G Spanó , F Genoni , G Petrini , A Carati , F Villain . et al.. Evidence of the presence of two different framework Ti(IV) species in Ti-silicalite-1 in vacuo conditions: an EXAFS and a photoluminescence study. Journal of Physical Chemistry B, 1998, 102(33): 6382–6390
https://doi.org/10.1021/jp981225n
34 L Xu , D D Huang , C G Li , X Ji , S Jin , Z Feng , F Xia , X Li , F Fan , C Li . et al.. Construction of unique six-coordinated titanium species with an organic amine ligand in titanosilicate and their unprecedented high efficiency for alkene epoxidation. Chemical Communications, 2015, 51(43): 9010–9013
https://doi.org/10.1039/C5CC02321A
35 X Lu , W J Zhou , Y Guan , A Liebens , P Wu . Enhancing ethylene epoxidation of a MWW-type titanosilicate/H2O2 catalytic system by fluorine implanting. Catalysis Science & Technology, 2017, 7(12): 2624–2631
https://doi.org/10.1039/C7CY00428A
36 D T Bregante , A M Johnson , A Y Patel , E Z Ayla , M J Cordon , B C Bukowski , J Greeley , R Gounder , D W Flaherty . Cooperative effects between hydrophilic pores and solvents: catalytic consequences of hydrogen bonding on alkene epoxidation in zeolites. Journal of the American Chemical Society, 2019, 141(18): 7302–7319
https://doi.org/10.1021/jacs.8b12861
37 D T Bregante , D W Flaherty . Impact of specific interactions among reactive surface intermediates and confined water on epoxidation catalysis and adsorption in lewis acid zeolites. ACS Catalysis, 2019, 9(12): 10951–10962
https://doi.org/10.1021/acscatal.9b03323
38 K Zhang , R P Lively , J D Noel , M E Dose , B A Mccool , R R Chance , W J Koros . Adsorption of water and ethanol in MFI-type zeolites. Langmuir, 2012, 28(23): 8664–8673
https://doi.org/10.1021/la301122h
39 Yazaydın A Özgür , R W Thompson . Molecular simulation of water adsorption in silicalite: effect of silanol groups and different cations. Microporous and Mesoporous Materials, 2009, 123(1–3): 169–176
https://doi.org/10.1016/j.micromeso.2009.03.045
40 M Trzpit , M Soulard , J Patarin , N Desbiens , F Cailliez , A Boutin , I Demachy , A H Fuchs . The effect of local defects on water adsorption in silicalite-1 zeolite: a joint experimental and molecular simulation study. Langmuir, 2007, 23(20): 10131–10139
https://doi.org/10.1021/la7011205
41 X JinR PengW TongJ YinH XuP Wu. Investigation of the active centers and structural modifications for TS-1 in catalyzing the Beckmann rearrangement. Catalysis Today, 2022, 405–406(1): 193–202
42 L Xu , J Ding , Y Yang , P Wu . Distinctions of hydroxylamine formation and decomposition in cyclohexanone ammoximation over microporous titanosilicates. Journal of Catalysis, 2014, 309: 1–10
https://doi.org/10.1016/j.jcat.2013.08.021
43 H Xu , Y Guan , X Lu , J Yin , X Li , D Zhou , P Wu . Relation of selective oxidation catalytic performance to microenvironment of Ti(IV) active site based on isotopic labeling. ACS Catalysis, 2020, 10(8): 4813–4819
https://doi.org/10.1021/acscatal.0c00439
44 K Na , C Jo , J Kim , W S Ahn , R Ryoo . MFI titanosilicate nanosheets with single-unit-cell thickness as an oxidation catalyst using peroxides. ACS Catalysis, 2011, 1(8): 901–907
https://doi.org/10.1021/cs2002143
45 Y Wang , Y Liu , X Li , H Wu , M He , P Wu . Intermolecular condensation of ethylenediamine to 1,4-diazabicyclo[2,2,2]octane over TS-1 catalysts. Journal of Catalysis, 2009, 266(2): 258–267
https://doi.org/10.1016/j.jcat.2009.06.016
[1] FCE-23119-OF-LX_suppl_1 Download
[1] Yanzhao Sun, Zhitao Lv, Siyu Zhang, Guodong Wen, Yilai Jiao. Kinetics of hydroxylation of phenol with SiC foam supported TS-1 structured catalyst[J]. Front. Chem. Sci. Eng., 2024, 18(11): 129-.
[2] Raquel Portela, Susana Perez-Ferreras, Ana Serrano-Lotina, Miguel A. Bañares. Engineering operando methodology: Understanding catalysis in time and space[J]. Front. Chem. Sci. Eng., 2018, 12(3): 509-536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed