Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

邮发代号 80-905

Frontiers of Engineering Management  2017, Vol. 4 Issue (3): 295-303   https://doi.org/10.15302/J-FEM-2017047
  本期目录
随机制造和服务系统的层次建模
ZHANG Zhe George1(), YIN Xiaoling2
1. 西华盛顿大学贝宁汉姆决策科学系,西蒙弗雷泽大学比迪商学院
2. 兰州大学管理学院,中国卡内基梅隆大学
Hierarchical modeling of stochastic manufacturing and service systems
Zhe George ZHANG1(), Xiaoling YIN2
1. Department of Decision Sciences, Western Washington University Bellingham, Bellingham, WA 98225, USA; Beedie School of Business, Simon Fraser University Burnaby, Burnaby, BC V5A 1S6, Canada
2. School of Management, Lanzhou University, Lanzhou 730000, China
 全文: PDF(254 KB)   HTML
摘要:

本文对随机制造和服务系统的解析方法进行了研究综述。基于运营细节的范围和层次,我们深入研究了随机系统的微观、中观和宏观模型,统一随机模型理论。针对每种模型,我们着重分析其优势和缺陷,以及适用情况。考虑到阶段分布的服务时间和马尔科夫到达过程,微观模型是基于拟生灭过程;该模型适用于在服务器(生产设备)数量相对较少的情况下,对生产系统中的细节运作进行建模。相比之下,在交通拥挤情形中,中观和宏观模型则分别基于泛函中心极限定理和泛函强数定律。这些高层次模型适用于具有许多服务器(如呼叫中心或大型服务网络)的大型服务系统建模。本研究综述将有助于从业人员选择适当的建模层次,以提高他们对制造或服务系统的动态行为的理解,从而确保可以设计出改善系统性能的最佳方案。此外,从事制造与物流的运营分析和优化的研究人员也将受益于本文。

Abstract

This paper presents a review of methodologies for analyzing stochastic manufacturing and service systems. On the basis of the scale and level of details of operations, we can study stochastic systems using micro-, meso-, and macro-scopic models. Such a classification unifies stochastic modeling theory. For each model type, we highlight the advantages and disadvantages and the applicable situations. Micro-scopic models are based on quasi-birth-and-death process because of the phase-type distributed service times and/or Markov arrival processes. Such models are appropriate for modeling the detailed operations of a manufacturing system with relatively small number of servers (production facilities). By contrast, meso-scopic and macro-scopic models are based on the functional central limit theorem (FCLT) and functional strong law of large numbers (FSLLN), respectively, under heavy-traffic regimes. These high-level models are appropriate for modeling large-scale service systems with many servers, such as call centers or large service networks. This review will help practitioners select the appropriate level of modeling to enhance their understanding of the dynamic behavior of manufacturing or service systems. Enhanced understanding will ensure that optimal policies can be designed to improve system performance. Researchers in operation analytics and optimization of manufacturing and logistics also benefit from such a review.

Key wordsstochastic modeling    QBD process    PH distribution    heavy traffic limits    diffusion process
收稿日期: 2017-06-06      出版日期: 2017-10-30
通讯作者: ZHANG Zhe George     E-mail: gzhang@sfu.ca
Corresponding Author(s): Zhe George ZHANG   
 引用本文:   
ZHANG Zhe George, YIN Xiaoling. 随机制造和服务系统的层次建模[J]. Frontiers of Engineering Management, 2017, 4(3): 295-303.
Zhe George ZHANG, Xiaoling YIN. Hierarchical modeling of stochastic manufacturing and service systems. Front. Eng, 2017, 4(3): 295-303.
 链接本文:  
https://academic.hep.com.cn/fem/CN/10.15302/J-FEM-2017047
https://academic.hep.com.cn/fem/CN/Y2017/V4/I3/295
Fig.1  
Fig.2  
1 Buzacott J A, Shanthikumar J G (1993). Stochastic Models of Manufacturing Systems. New York: Prentice Hall
2 Chen H, Mandelbaum A (1994). Stochastic modeling and analysis of manufacturing systems. In: Yao D D, ed. Operations Research. Berlin: Springer
3 Chen H, Yao D (2001). Fundamentals of Queueing Networks, Performance, Asymptotics, and Optimization. New York: Springer
4 Gautam N (2012). Analysis of Queues. New York: CRC Press
5 Halfin S, Whitt W (1981). Heavy-traffic limits for queues with many exponential servers. Operations Research, 29(3): 567–588
https://doi.org/10.1287/opre.29.3.567
6 He Q (2014). Fundamentals of Matrix-Analytic Methods. New York: Springer
7 Jia Y, Zhang Z G, Tang L (2017). Modeling hot rolling process in steel industry by M/PH/c queues. Working paper. Simon Fraser University, WP0170056
8 Koole G, Mandelbaum A (2002). Queueing models of call centers: An introduction. Annals of Operations Research, 113(1–4): 41–59
https://doi.org/10.1023/A:1020949626017
9 Latouche G, Ramaswami V (1999). Introduction to Matrix Geometric Methods in Stochastic Modeling. Philadelphia: SIAM
10 Neuts M F (1981). Matrix-Geometric Solutions in Stochastic. New York: Dover Publications
11 Whitt W (2002). Stochastic Process Limits. New York: Springer
12 Whitt W (2004). Efficiency-driven heavy-traffic approximations for many-server queues with abandonments. Management Science, 50(10): 1449–1461
https://doi.org/10.1287/mnsc.1040.0279
13 Whitt W (2005). Two fluid approximations for multi-server queues with abandonments. Operations Research Letters, 33(4): 363– 372
https://doi.org/10.1016/j.orl.2004.09.002
14 Whitt W (2006). Fluid models for multiserver queues with abandonments. Operations Research, 54(1): 37–54
https://doi.org/10.1287/opre.1050.0227
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed